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Abstract—Over the past decades, the increasing penetration of5
distributed energy resources (DERs) has dramatically changed6
the power load composition in the distribution networks. The7
traditional static and dynamic load models can hardly capture the8
dynamic behavior of modern loads especially for fault-induced de-9
layed voltage recovery (FIDVR) events. Thus, a more comprehen-10
sive composite load model with combination of static load, different11
types of induction motors, single-phase A/C motor, electronic load12
and DERs has been proposed by Western Electricity Coordinating13
Council (WECC). However, due to the large number of parameters14
and model complexity, the WECC composite load model (WECC15
CMLD) raises new challenges to power system studies. To overcome16
these challenges, in this paper, a cutting-edge parameter reduction17
(PR) approach for WECC CMLD based on active subspace method18
(ASM) is proposed. Firstly, the WECC CMLD is parameterized in19
a discrete-time manner for the application of the proposed method.20
Then, parameter sensitivities are calculated by discovering the21
active subspace, which is a lower-dimensional linear subspace of the22
parameter space of WECC CMLD in which the dynamic response23
is most sensitive. The interdependency among parameters can be24
taken into consideration by our approach. Finally, the numerical25
experiments validate the effectiveness and advantages of the pro-26
posed approach for WECC CMLD model.Q127

Index Terms—WECC composite load model, parameter28
reduction, active subspace, dimension reduction.29

I. INTRODUCTION30

LOAD modeling is significant for power system studies such31

as parameter identification, optimization and stability anal-32

ysis, which has been widely studied [1]. It can be classified into33

static and dynamic load models. Constant impedance-current-34

power (ZIP) model, exponential model and frequency dependent35

model are typical static loads models, and traditional dynamic36

load models include induction motor (IM) and exponential37
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recovery load model [2]. To provide more accurate responses, 38

composite load models are developed by combining static and 39

dynamic load models. Motivated by the 1996 blackout reported 40

by the Western Systems Coordinating Council (WSCC), the 41

classic ZIP+IM composite load model was developed to model 42

highly stressed loading conditions in summer peak hours [3]. 43

However, this interim load model was unable to capture the 44

fault-induced delayed voltage recovery (FIDVR) events [4]. 45

Therefore, a more comprehensive composite load model was 46

proposed by Western Electricity Coordinating Council (WECC) 47

that contains substation transformer, shunt reactance, feeder 48

equivalent, induction motors, single-phase AC motor, ZIP load, 49

electronic load, and DER [5]. WECC composite load model 50

(WECC CMLD) produces accurate responses, nevertheless, the 51

large number of parameters and high model complexity raise 52

new challenges for power system studies. Name parameter 53

identification as one significant example, where the large num- 54

ber of parameters brings great difficulties to search for global 55

optimum when performing parameter identification. The reason 56

is twofold: firstly, the large number of parameters result in a large 57

search space that reduces the optimization efficiency; secondly, 58

the insensitive parameters and parameter interdependencies usu- 59

ally result in a large number of local optima, which increases 60

the difficulty of achieving global optimum [6]. Although the 61

parameters have physical meanings, some of them only have 62

marginal impacts on the model response altogether or along 63

certain parameter variation directions [7]. Moreover, consider- 64

ing full load model parameter set could significantly increase the 65

complexity of power system studies. Therefore, it is imperative 66

to develop a method to screen out the insensitive parameters. 67

Then, only the sensitive parameters are to be determined in the 68

parameter identification problem while the others can be kept 69

at their respective default values. In this way, the dimension 70

of search space of load model parameters can be significantly 71

reduced. Thus, lower computational cost (less model runs) and 72

higher accuracy (easier to find the optimum) can be achieved 73

when conducting power system studies such as parameter iden- 74

tification without compromising fidelity of the load model. 75

The above problem can be resolved by dimension reduction in 76

parameter space based on sensitivity analysis of a parameterized 77

model whose inputs are system parameters. As discussed in [8], 78

parameter reduction (PR) methods can be classified into local 79

and global ones. Local PR methods are suitable for known 80

parameters with small uncertainties, in which partial derivatives 81

of output with respect to the model parameters are computed 82
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to evaluate the relative variation of output with respect to each83

parameter. Nonetheless, the input parameters are subject to a84

range in typical load modeling problems. Therefore, a global85

sensitivity metric is necessary to measure the sensitivity of86

output with respect to parameters.87

There are many existing global PR approaches. One of the88

most common and simplest techniques in engineering is the89

so-called “One-At-A-Time” (OAT) method that varies one pa-90

rameter while fixing the others. However, this method can only91

provide a rough qualitative approximation of the parameter92

sensitivities and cannot fully reveal the nonlinearity and inter-93

dependency among the parameters due to its low exploration94

of the parameter space. In [9], the OAT method was improved95

by proposing two sensitivity measures, mean μ and standard96

deviation σ based on the elementary effects methods. This97

method has higher exploration rate of the parameter space98

and can qualitatively analyze which parameter may have in-99

fluence on nonlinear and/or interaction effects. This method is100

further extended by supersaturated design [10], screening by101

groups [11], sequential bifurcation method [12] and factorial102

fractional design [13] based on the number of parameters and103

experiments in a particular scenario [14].104

To quantitatively study the comprehensive parameter sensi-105

tivity patterns and their interdependencies, variance-based ap-106

proaches such as Sobel indices [15] were proposed for nonlinear107

and non-monotonic models. However, to precisely estimate the108

sensitivity indices with arbitrary order interactions between109

parameters, these approaches require a formidably large number110

of experiments [16]. In [17], a total-effect index was introduced,111

which can measure the contribution to the output variance of112

parameters, including all variance caused by its interactions of113

any order with any other parameters, as well as reducing the114

requirement of the number of experiments. These indices are115

usually estimated by Monte Carlo methods [18]. Such methods116

are accurate but suffer from high computational cost when large117

sample size is required. Thus, it motivates the recent research on118

exploring efficient numerical algorithms including the analysis119

of variance (ANOVA) decomposition [19], Fourier Amplitude120

Sensitivity Test (FAST) [20] and least absolute shrinkage and121

selection operator (LASSO) [21]. Despite the relative reduction122

in computational cost by these methods, they can result in insta-123

bility and inaccuracy when the number of parameters increases124

(larger than 10) [14], [22]. Some researches delve into the trajec-125

tory sensitivity analysis, e.g., in [23], the time-varying parameter126

sensitivities of ZIP+IM model are derived based on perturbation127

and Taylor expansion method. However, such methods need128

explicit mathematical model and require the model output to129

be differentiable with respect to the parameters for the Jacobian130

matrices to exist, which makes it inapplicable for WECC CMLD.131

Different from OAT and and variance-based approaches, the132

active subspace method (ASM) is based on gradient evaluations133

for detecting and exploiting the most influential direction in the134

parameter space of a given model to construct an approximation135

on a low-dimensional subspace of the model’s parameters as136

well as quantify the interdependencies among parameters [24].137

As a Monte Carlo sampling based method, ASM also requires138

multiple experiments, but it has better accuracy and requires139

relatively lower sample size.140

There are limited studies on the PR problem of WECC 141

CMLD. In [1], the parameter sensitivity and interdependen- 142

cies among parameters are analyzed using OAT method and 143

clustering techniques, motivated by observing that different 144

parameter combinations can give the same data fitting results 145

in measurement-based load modeling. As discussed above, the 146

OAT method suffers from low accuracy and low exploration rate 147

of the parameter space. Moreover, the interdependency is sim- 148

ply determined by whether parameters have similar trajectory 149

sensitivities in this work. In addition, the newly-approved aggre- 150

gated distributed energy resources (DER_A) model in WECC 151

CMLD has not been considered. PR was conducted by means 152

of data-driven feature-wise kernelized LASSO (FWKL) in [21], 153

which uses multiple randomly-generated parameter vectors and 154

corresponding output residuals to compute parameter sensitivi- 155

ties by solving a LASSO optimization problem. This approach 156

avoids utilizing analytical gradient and can obtain the optimal 157

sensitivity. In addition, the employment of LASSO ensures 158

parameter interdependency is captured in a feature-wise manner. 159

However, due to high non-convexity of WECC CMLD, the result 160

is very sensitive to parameter setting of the algorithm and the 161

distribution of the dataset. Also, the large number of experiments 162

and optimization process greatly increase its computational cost. 163

In this paper, a novel PR approach is proposed by leveraging 164

the ASM. As an alternative PR technique, ASM is a relatively 165

new dimension reduction tool that has shown its effectiveness in 166

many fields such as bioengineering [25] and aerospace engineer- 167

ing [26]. The outstanding advantages of ASM include relatively 168

low computational cost, high accuracy and the ability to quantify 169

the parameter interdependency. 170

The novelty and main contributions of our paper are sum- 171

marized as follows. Motivated by the fact that the WECC 172

CMLD is a differential-algebraic system and ASM can only 173

deal with algebraic functions, we first cast the WECC CMLD 174

as a discrete-time system for parameterization. Secondly, a 175

comprehensive PR approach tailored for WECC CMLD based 176

on ASM is proposed. Thirdly, factors influencing accuracy of PR 177

results are rigorously analyzed. Finally, statistical and numerical 178

experiments are conducted to validate the effectiveness of the 179

proposed method. Comparative case studies with three classical 180

PR methods are also conducted and discussed. 181

The rest of the paper is organized as follows. Section II 182

introduces the WECC CMLD and develops its parameterized 183

model. Section III proposes the PR algorithm and conducts 184

accuracy analysis. Case studies are carried out in Section IV 185

to demonstrate the effectiveness of the proposed method, which 186

is followed by conclusions. 187

II. PROBLEM STATEMENT 188

In this section, the structure and function of WECC CMLD 189

are introduced, then a parameterized model of the composite 190

load is established for PR. 191

A. Introduction of WECC CMLD 192

As shown in Fig. 1, WECC CMLD consists of three 3-phase 193

motors, one single-phase motor, one ZIP load, one electronic 194

load and one DER_A model. Three 3-phase motors represent 195
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Fig. 1. A schematic diagram of the WECC CMLD [28].

three different types of dynamic components. Motor A rep-196

resents three-phase induction motors with low inertia driving197

constant torque loads, e.g. air conditioning compressor motors198

and positive displacement pumps. Motor B represents three-199

phase induction motors with high inertia driving variable torque200

loads such as commercial ventilation fans and air handling201

systems. Motor C represents three-phase induction motors with202

low inertia driving variable torque loads such as the common203

centrifugal pumps. Single-phase motor D captures behaviors of204

single-phase air with reciprocating compressors. However, it is205

challenging to model the fault point-on-wave and voltage ramp-206

ing effects [5]. Moreover, new A/C motors are mostly equipped207

with scroll compressors and/or power electronic drives, making208

their dynamic characteristics significantly different than con-209

ventional motors. Therefore, WECC uses a performance-based210

model to represent single-phase motors. As increasing percent-211

age of end-uses become electronically connected [3], the WECC212

CMLD adopts a simplistic representation of power electronic213

loads as constant power loads with unity power factor. A ZIP load214

is used as static one in this model. The DER model is specified215

as the newly-approved DER_A model presented in [27].216

B. Motivation for PR217

The WECC CMLD contains 183 parameters, which pose sig-218

nificant challenges for power system studies such as parameter219

identification, optimization and control. By observing that part220

of the parameters can be determined by engineering judgment,221

we can filter out them according to the analysis in [21]. In partic-222

ular, the parameters of transformer, feeder, and the stalling and223

restarting of induction motors can be excluded since they have224

small range of uncertainties and are usually pre-determined by225

their default values to meet practical engineering requirements.226

In this way, 64 parameters are screened out a priori. Nonetheless,227

the number of parameters that remains is still too large for228

power system studies. Therefore, in this paper, we use ASM229

to further reduce the number of parameters. The WECC CMLD230

is a differential-algebraic system which is usually represented231

as a continuous-time state space model [4]. Considering that232

ASM requires a scalar function with domain as parameters and233

range as active or reactive power, in this section, we parameterize234

the WECC CMLD in a discretization manner. The parameter-235

ized model produces similar responses as the original one with236

high-fidelity as long as the Nyquist-Shannon sampling theorem 237

is satisfied. 238

C. Parameterized WECC CMLD 239

The WECC CMLD is a hybrid model with dynamic and static 240

components. The state vector x ∈ Rnd of three-phase motors 241

and DER is governed by the following differential equation 242

ẋ(t) = f(x(t),θ(t),u(t)), (1)

where θ(t) ∈ Rnp denotes the parameter vector; u(t) = 243

[|V (t)|, φ(t),Δf(t)]T is the input vector consisting of voltage 244

magnitude, voltage angle and frequency deviation, respectively; 245

f : Rnd × Rnp × R3 → Rnd represents the dynamic model of 246

three-phase motors, and DER; nd and np are the total number of 247

dynamic states and parameters. The active and reactive power 248

output of the dynamic components, yd(t) = [Pd(t), Qd(t)]
T is 249

given by 250

yd(t) = gd(x(t),θ(t),u(t)). (2)

In PR using ASM, a mapping between parameters and ac- 251

tive/reactive power is required for PR. Based on the fact that the 252

input of load model u is usually sampled every T seconds, we 253

can discretize (1) as 254

x(k) = f̄(x(k − 1),θ(k − 1),u(k − 1)), (3)

where f̄ is the discretized function of f , k = 1, 2, . . . , N , N is 255

the total number of measurements. Note that the sampling rate 256

should satisfy Nyquist-Shannon sampling theorem to guarantee 257

that discrete sequence of samples can capture all the information 258

from a continuous-time signal. Then, x(k) can be calculated 259

from the initial state x(0) by iteratively evaluating f̄ using past 260

sequences of parameters and inputs, [θ(k − 1), . . . ,θ(0),u(k − 261

1), . . . ,u(0)]. Finally, by substituting (3) iteratively into (2), we 262

can obtain the desired mapping using some algebraic function 263

ḡd: 264

yd(k) = ḡd(θ(k), . . . ,θ(0),u(k), . . . ,u(0),x(0)). (4)

Regarding x and u as constants, Eq. (4) depicts the relation- 265

ship between active/reactive power of dynamic components and 266

parameters. 267

As for the static components such as single-phase motor, elec- 268

tronic load, and static ZIP load, the mapping from parameters 269

to active and reactive power outputs can be represented as 270

ys(k) = gs(θ(k),u(k)). (5)

The total power output y(k) of the WECC CMLD can be cal- 271

culated by adding the dynamic and static parameterized model 272

together. For ease of deriving PR approach for the composite 273

load model, we define the parameterized model as g in the 274

form of 275

y(k) = yd(k) + ys(k)

= g(θ(k), . . . ,θ(0),u(k), . . . ,u(0),x(0)). (6)

If the parameters are considered as time-invariant during a 276

short time period, Eq. (6) can be simplified as 277

y(k) = g(θ,u(k), . . . ,u(0),x(0)). (7)
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where y(k) = [P (k), Q(k)]T , and g = [gP , gQ]
T .278

III. PR APPROACH FOR WECC CMLD USING ASM279

In this section, we will use ASM to reduce the parameters280

of the WECC CMLD. Firstly, the preliminaries of ASM are281

introduced. Then, the application of ASM to WECC CMLD is282

elaborated in steps. Finally, the factors affecting the accuracy of283

PR is analyzed theoretically.284

A. Preliminaries of ASM285

An active subspace is a lower-dimensional linear subspace286

of the parameter space, along which input perturbations alter287

the model’s predictions more than the perturbations along the288

directions which are orthogonal to the subspace on average.289

This subspace allows for a global measurement of sensitivity290

of output variables with respect to parameters, and is often used291

to decrease the dimension of the parameter space. Consider a292

parameterized function g : χ → R that maps the parameters of293

a system, θ̄ ∈ χ := {x ∈ Rm| − 1 � xi � 1, i = 1, . . . ,m}, to294

a scalar output of interest, e.g., active power P or reactive power295

Q, where χ indicates a normalized set of parameter values.296

To discover the active subspace, we define the following297

C matrix,298

C =

∫
χ

(∇θ̄g(θ̄))(∇θ̄g(θ̄))
T ρ(θ̄)dθ̄. (8)

where ρ(θ̄) : χ → R+ is the joint probability function of pa-299

rameters satisfying300 ∫
χ

ρ(θ̄)dθ̄ = 1. (9)

For any smooth function g(θ̄), the matrix C is called average301

derivative functional in the context of dimension reduction,302

which weights input values according to the density ρ(θ̄). Note303

that a single normalized parameter is a random variable taking304

values in [−1, 1], which when appropriately scaled represents a305

parameter in the original model (7). Since the dimension of the306

parameter space in this model is 64, we takem = 64 throughout.307

The matrixC is the average of the outer product of the gradient of308

g(θ̄) with itself and has some useful properties that will allow us309

to deduce information about how g(θ̄) is altered by perturbations310

in its arguments.311

Remark 1: From (8), each element of C is the average of312

the product of partial derivatives (which can be regarded as313

parameter sensitivity)314

Cij =

∫
χ

(
∂g

∂θ̄i

)(
∂g

∂θ̄j

)
ρdθ̄, i, j = 1, . . . ,m, (10)

where Cij is the (i, j) element of C, and m is the number of315

parameters. If we consider ∇θ̄g(θ̄) to be a random vector by316

virtue of θ̄’s density ρ, then C is the uncentered covariance ma-317

trix of the gradient of output with respect to the parameters [24].318

This allows us to use the covariance matrix C to measure the319

correlation between each pair of parameter gradients. For sim-320

plicity, denote ∂g
∂θi

as si, denote the mean and standard deviation321

of gradient of ith parameter as μsi and σsi , respectively. Then, 322

the correlation between (i, j) parameter gradients is 323

ρsi,sj =
cov(si, sj)

σsiσsj

=
E
[
(si − μsi)(sj − μsj )

]
σsiσsj

=
Cij − μsiμsj

σsiσsj

. (11)

Eq. (11) shows that the C matrix encodes the correlation in- 324

formation between parameter gradients, which means the ASM 325

takes into consideration the interdependency of parameters. This 326

is one of the advantages compared to other PR methods. 327

The matrix C is symmetric, and thus permitting the spectral 328

eigendecomposition 329

C = WΛW T . (12)

where W is an orthogonal matrix whose columns wi, (i = 330

1, . . . ,m) are the orthonormal eigenvectors of C. Λ = 331

diag([λ1, . . . , λm]), and λ1 �, . . . ,� λm. 332

Since W is orthogonal, from the definition of eigenvectors 333

and (8), the eigenvalues of C can be calculated as 334

λi = wT
i Cwi

= wT
i

(∫
χ

(∇θ̄g(θ̄))(∇θ̄g(θ̄))
T ρ(θ̄)dθ̄

)
wi

=

∫
χ

((∇θ̄g(θ̄))
Twi)

2ρ(θ̄)dθ̄, i = 1, . . . ,m. (13)

From (13) we see that the eigenvalues of the C matrix are the 335

mean squared directional derivatives of g(θ̄) in the direction 336

of the corresponding eigenvector. If an eigenvalue is small, 337

then (13) shows that g(θ̄) is insensitive in the direction of 338

the corresponding eigenvector on average. On the contrary, a 339

large eigenvalue indicates that g(θ̄) changes significantly in the 340

direction of the corresponding eigenvector. 341

After determining the eigendecomposition (12), the eigenval- 342

ues and eigenvectors can be separated according to the magni- 343

tudes of eigenvalues: 344

Λ =

[
Λ1 0

0 Λ2

]
, W =

[
W 1 0

0 W 2

]
(14)

whereΛ1 andW 1 contain the first n larger eigenvalues and cor- 345

responding eigenvectors, Λ2 and W 2 contain the other m− n 346

smaller ones. To determine such separation, one can find the 347

spectral gap between the nth and (n+ 1)th eigenvalues on a 348

log plot in the order of magnitudes. It is worth noting that 349

the existence of a significant spectral gap directly indicates the 350

existence of active subspace [24]. 351

Keeping in mind that W is orthogonal, from (14), any param- 352

eter vector θ can be represented as 353

θ = WW Tθ

= W 1W
T
1 θ +W 2W

T
2 θ
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Fig. 2. The block diagram of the proposed PR algorithm based on ASM.

= W 1θ1 +W 2θ2 (15)

Then, an output of interest with any parameter vector θ is354

g(θ) = g(W 1θ1 +W 2θ2). (16)

From the definition of W 1 and W 2, we know that small per-355

turbations on θ2 have low impact on the value of g. Conversely,356

small perturbations on θ1 will alter g significantly. According to357

this property, the range of W 1 is defined as the active subspace,358

and on the contrary, the range of W 2 as the corresponding359

inactive subspace of the model. These subspaces describe the360

sensitivity of the output of interest with respect to parameter361

variations.362

It is worth noting that, though both ASM and principal com-363

ponents analysis (PCA) include the process of eigendecomposi-364

tion, they are intrinsically different. The PCA eigendecomposed365

the covariance matrix of the parameter vector θ, whereas the366

matrix to be eigendecomposed in the active subspace is defined367

as (8).368

B. PR Algorithm Based on ASM369

The overall algorithm for PR of WECC CMLD using ASM is370

summarized in Fig. 2. The key idea of the algorithm is elaborated371

in details as follows:372

Step 1: Construct the parameter set χ = [−1, 1]m,m = 64 as373

the normalized parameter space for all the selected parameters of374

WECC CMLD, and draw M samples {θ̄j}, j = 1, . . . ,M from375

χ according to some probability density function satisfying (9).376

Usually, uniform distribution is chosen for simplicity.377

Step 2: For each sampled parameter vector θ̄j , approximate378

the gradient ∇θ̄gj = ∇θ̄g(θ̄j) using first order forward finite379

differences method as follows:380

∇θ̄g(θ̄j)=

⎡
⎢⎢⎣

∂g
∂θ̄j,1

...
∂g

∂θ̄j,m

⎤
⎥⎥⎦≈

⎡
⎢⎢⎣

g(θj,1+δj,1)−g(θj,1)
δj,1

...
g(θj,m+δj,m)−g(θj,m)

δj,m

⎤
⎥⎥⎦, j = 1, . . . ,M,

(17)

where δj is an arbitrarily small positive vector perturbation from381

the sampled parameter values. When g is a practical system,382

e.g., WECC CMLD, one needs to transform the normalized383

parameter vector θ̄j to θj that is in the standard range of384

parameters, using the following linear mapping, 385

θj =
1

2
(diag(θupper − θlower)θ̄j + (θupper − θlower)). (18)

where θupper and θlower are upper and lower bounds of the 386

parameter vectors, respectively. Thus, θj in (18) denotes the 387

vector of real parameter values of the WECC CMLD. 388

Step 3: Approximate the average derivative functional C 389

using Monte Carlo simulation as 390

C = Ĉ ≈ 1

M

M∑
j=1

(∇θ̄gj)(∇θ̄gj)
T . (19)

Step 4: Compute the eigendecomposition of approximate 391

matrix Ĉ: 392

Ĉ = Ŵ Λ̂Ŵ
T
, (20)

which is equivalent to calculating the singular value decompo- 393

sition of the matrix 394

1√
M

[∇θ̄g1, . . . ,∇θ̄gM ] = Ŵ
√
Λ̂V̂

T
, (21)

where the singular values are the square roots of the eigenvalues 395

of Ĉ and the left singular vectors are the eigenvectors of Ĉ. The 396

singular value decomposition perspective was first used in [29] 397

to determine the active subspace that is related to the principal 398

components of a collection of gradients. 399

Step 5: After the decomposition (21), one needs to search for 400

the largest spectral gap among eigenvalues in Λ̂ for subspace 401

separation. The existence of a larger spectral gap indicates a 402

more accurate determination of active subspace. To automat- 403

ically find the optimal separation, we can use the following 404

equation, 405

Δλ̂i =
λ̂i − λ̂i+1

λ̂1

, i = 1, . . . ,m− 1. (22)

Then, the dimension of the active subspace is 406

dim(range(W 1)) = argmax
i=1,...,m−1

Δλ̂i. (23)

From (23), we know that the index of the largest value of 407

Δλ̂i indicates the location of the largest spectral gap. In the 408

dimension reduction context, often only the first value Δλ̂1 is 409

considered such that the dimension of the active subspace is 410
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limited to one, which makes it more convenient for visualization411

of the output as a function of the active subspace [24]. Then,412

the magnitudes of elements in the first eigenvector describe the413

weights of parameters.414

Remark 2: The active subspace describes the most sensitive415

direction in the parameter space along which the output of inter-416

est evolves fastest. Thus, from (16) the output of parameterized417

model can be approximated by only the active subspace of418

parameter space, i.e.,419

g(θ) ≈ g(W 1θ1), θ1 = W T
1 θ. (24)

Eq. (24) indicates that g is related to θ1 which is a linear combi-420

nation of original parameters θ. This linear combination reflects421

the weight of each parameter and their collective influence on422

the output of interest.423

The accuracy of the approximation (24) depends mainly on424

two factors which will be further discussed in the next subsec-425

tion.426

C. Accuracy Analysis of PR Based on ASM427

In this subsection, two main factors affecting the accuracy of428

PR using ASM introduced above will be discussed.429

1) Sample Size M : In the above algorithm, the most costly430

computation processes are eigendecomposition and computing431

gradient for M times. In our case, the number of parameters432

is m = 64, so the computational cost of eigendecomposition is433

negligible compared to the computation of gradient. Thus, the434

selection of M that is large enough for approximating Λ and W435

while minimizing the computational cost is of vital importance.436

To estimate the first n eigenvalues of matrix C, the sample size437

M can be chosen as438

M = βn log(m), (25)

where β is an oversampling factor, which is usually selected439

between 70 and 120. In the next section, we will verify that440

this range of β is sufficient in the PR of WECC CMLD by441

experiment. The logarithm term log(m) follows from the bounds442

in the theorem proposed in [29].443

2) Gradient Approximation: The WECC CMLD suffers444

from high nonlinearity and complexity that render it difficult to445

derive a closed-form expression of gradient of output of interest446

with respect to the parameters. In view of the simulating g is not447

too expensive nor too noisy andm is not too large, we can utilize448

finite difference method to estimate the gradient. We know that,449

a smaller δ produces a more accurate approximation but with450

increased computational cost and vice versa. This relationship451

can be expressed as the following inequality by using (17),452 ∥∥∥∥∇θ̄g(θ̄j)− g(θj+δj)−g(θj)

δj

∥∥∥∥�√
mα(δj), j = 1, . . . ,M,

(26)

where limδj→0 α(δj) = 0.453

In the following, we will give a criterion for the selection454

of finite difference perturbation δj by restating Theorem 3.13455

from [24].456

Theorem 1 (Accuracy criterion of estimated active subspace 457

[Thm. 3.13 in [24]]): Assume that ‖∇θ̄g(θ̄j)‖ � L for j = 458

1, . . . ,M, and choose small parameter ε and β in (25) satisfying 459

0 < ε � λn − λn+1

5λ1
, (27)

β � max
L2

nε2

{
λ1

λ2
n

,
1

λ1

}
. (28)

If the finite difference perturbation is small enough such that 460

5mα(δj)
2+10L

√
mα(δj) � λ̂n−λ̂n+1, j=1, . . . ,M, (29)

then, the distance between real active subspace W 1 and the 461

approximated one Ŵ 1 using Monte Carlo and finite difference 462

approximation method is bounded by 463

dist(range(Ŵ 1), range(W 1)) �
4mα(δj)

2 + 8L
√
mα(δj)

(1− ε)λn − (1 + ε)λn+1

+
4ελ1

λn − λn+1
(30)

for j = 1, . . . ,M, with high probability. 464

Proof: The proof follows the similar steps as in [24] by simply 465

combining (25) and (28). � 466

We choose δj = 1× 10−6, L = 1, m = 64, ε = 0.1, β = 467

100 and α(δj) = δj such that (27)-(29) hold. Then, based on 468

Theorem 1, the error of active subspace estimate is bounded by 469

0.8 and the simulation result is not too far off. 470

Remark 2: When the two factors are appropriately set, another 471

most influential factor is the normalized eigenvalue separation 472

λ1/λn − λn+1 in (30), which depends on the system character- 473

istics only. The existence of significant spectral gap indicates a 474

clear active subspace and accurate estimation. 475

IV. CASE STUDIES 476

In this section, the proposed ASM is applied to analyze the 477

sensitivities of the parameters of WECC CMLD. Firstly, a basic 478

case study is conducted to show the implementation process 479

and how to interpret the result. Then, the proposed method is 480

also applied to the FIVDR case to show its effectiveness on 481

more complicated voltage profile. Finally, three classical PR 482

techniques are applied to the WECC CMLD for comparison 483

with the proposed method. 484

A. Case I: Apply ASM to WECC CMLD and Result Analyses 485

1) Simulation Setup: We first provide the simulation setup 486

for the case studies. The range of parameters [θlower,θupper] is 487

set by adding plus and minus fifty percent of perturbations on the 488

standard values given in the guideline of WECC CMLD [28] as 489

shown in Table I. Using (25) with m = 64, n = 1 and β = 120, 490

the sample size is calculated as MASM ≈ 500. In Section IV-C, 491

we will show the convergence of parameter sensitivity with 492

respect to increasing sample size, from which we can conclude 493

that MASM = 500 is a good balance between accuracy and 494

computational cost. Then, the samples are drawn uniformly from 495

χ. When approximating the gradient using (17), the finite differ- 496

ence perturbationδ is chosen as1× 10−6, which is small enough 497
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TABLE I
NUMERICAL RANGE OF LOAD PARAMETERS OF WECC CMLD

Fig. 3. The load bus input profile: (a) voltage magnitude; (b) voltage angle;
(c) frequency.

to satisfy (29). Since ASM assumes scalar functiong, we conduct498

the simulation by selecting active and reactive power as output of499

interest separately. The voltage and power measurements for PR500

in this simulation is generated by the Power System Simulator501

for Engineering (PSS/E) and the ACTIVSg500 test case with502

a line-to-ground fault [21] as shown in Fig. 3. The case study503

Fig. 4. The semilog plot of the magnitudes of eigenvalues of matrix Ĉ with
respect to (a) real power and (b) reactive power.

is conducted on a standard PC with an Intel(R) Xeon(R) CPU 504

running at 3.70 GHz and with 32.0 GB of RAM using MATLAB. 505

2) Discovering Active Subspace and Parameter Sensitivities: 506

To discover the active subspace, we can follow the algorithm 507

provided in Section III.B. Given the simulation setup as above, 508

we firstly approximate the matrix C by Monte Carlo simulation 509

(19) for MASM = 500 with the gradient estimated by finite dif- 510

ference method (17). In this case study, the g(θj + δj) and g(θj) 511

before transient are obtained using the mathematical model of 512

WECC composite load developed in [30] for faster calculation 513

of the gradient. Instead, one can also use other commercial 514

software such as PSS/E or PSLF with potentially longer simula- 515

tion time. Once the approximate Ĉ is constructed, the singular 516

value decomposition is applied to abstract the eigenvalues and 517

corresponding eigenvectors. The eigenvalues of Ĉ are shown in 518

Fig. 4 in descending order. Recall that a significant spectral gap 519

indicates the existence of active subspace, so it is important to 520

look into the gaps of eigenvalues in Fig. 4. Note that the largest 521

spectral gap exists between the first and second ones even though 522

it seems that the one between the 45th and 46th ones is larger 523
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Fig. 5. The normalized eigenvalue separation of the magnitudes of eigenvalues
of matrix Ĉ with respect to (a) real power and (b) reactive power.

Fig. 6. The magnitudes of first eigenvector denoting the sensitivities of pa-
rameters of WECC CMLD with respect to real power.

Fig. 7. The magnitudes of first eigenvector denoting the sensitivities of pa-
rameters of WECC CMLD with respect to reactive power.

since it is a semilog plot. To clearly show the largest spectral gap,524

we conduct the normalized eigenvalue separation (22) and the525

result in Fig. 5 clearly shows the dominance of the gap between526

the first and second eigenvalues.527

Then, the first eigenvector forms the active subspace of Ĉ and528

the magnitude of each element of the eigenvector describes the529

sensitivity of each corresponding parameter and their interde-530

pendency. The weights of parameters with respect to the real and531

reactive power are shown in Fig. 6 and Fig. 7, respectively. The532

parameters in the red rectangles that have the largest weights533

Fig. 8. Sufficient summary plots of (a) real and (b) reactive power with respect
to the active subspace using MASM = 500 samples.

imply the reduced parameter space. However, noting that the 534

weights of parameters in the green rectangle though dominated 535

by those in the red, are still larger than those that are almost 536

zero. Thus, one may wonder whether these parameters also have 537

significant impacts on the output of the interest as well. To verify 538

the PR result, we will perform further studies in the following 539

subsections. 540

3) Sufficient Summary Plot: In this subsection, we utilize 541

sufficient summary plot to empirically validate the active sub- 542

space discovered in the last subsection. Sufficient summary plot 543

was originally developed as a visualization tool for determining 544

low-dimensional combination of inputs in regression graphics. 545

In the context of PR, it is often used to verify the active subspace, 546

because it reveals the relationship between the output of interest 547

P or Q, and the linear combination of input parameters W T
1 θj . 548

If the relationship presents evidently tight and univariate trend, 549

then one can conclude that the discovered active subspace is 550

validated. 551

Fig. 8 shows the sufficient summary plots of real and reactive 552

power with respect to W T
1 θj . The obvious linear trends verify 553

the effectiveness of active subspace. 554

4) PR Result Validation: To finally determine the dimension 555

of reduced parameter space, we conduct the following simula- 556

tions on the WECC CMLD. We first add 20% of positive pertur- 557

bations to the insensitive parameters outside the red rectangles 558

of Fig. 6 and Fig. 7. The results are shown as red lines in Fig. 9 559

and Fig. 10, respectively. Then, we add same perturbations to 560

the parameters outside both rectangles to test whether restricting 561

the PR result will lead to significant accuracy improvement. The 562

results are shown in green dashed lines in Fig. 9 and Fig. 10. 563

Finally, we add the same perturbations to the most sensitive 564

parameters in the red rectangles, and the results are denoted in 565

blue dotted lines. 566

From Fig. 9 and Fig. 10, we find that the real and reac- 567

tive power are sensitive to the parameters inside the red rect- 568

angles and insensitive to the others. Moreover, including the 569

parameters inside the green rectangles as sensitive ones does 570

not have a noticeable impact on accuracy. Therefore, we can 571

conclude that the parameters of the WECC CMLD can be 572

reduced to the ones in the red rectangles only with almost 573

the same dynamic response, which verifies the effectiveness of 574

ASM. 575
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Fig. 9. Validation of PR result for real power of WECC CMLD, with different
combinations of parameters perturbed by twenty percent.

Fig. 10. Validation of PR result for reactive power of WECC CMLD, with
different combinations of parameters perturbed by twenty percent.

B. case II: Influence of FIDVR on Reduction Result576

In this subsection, we will test the performance of the pro-577

posed method on FIDVR case which is obtained from real578

utility data, as shown in Fig. 11. This case contains multi-phase579

faults, including phase-to-phase, phase-to-phase-to-ground and580

three-phase-to-ground faults. The other simulation setup is the581

same as that in Case I.582

Comparing the parameter sensitivity results in Fig. 12 and583

Fig. 13 with Case I, we can find that the parameters of single-584

phase motor become sensitive. This can be attributed to that585

the single-phase motor plays an important role in capturing the586

dynamics during the delayed-recovery stage.587

Same as in Case I, 20% of perturbation is added to three588

parameter sets: parameters with lowest sensitivities (outside all589

the rectangles in Fig. 12 and Fig. 13), parameters with lower590

sensitivities (outside the red rectangles), and most sensitive591

parameters (inside the red rectangles). The comparison results592

in Fig. 14 and Fig. 15 show that the output of interest is altered593

Fig. 11. The load bus input profile of FIDVR case: (a) voltage magnitude; (b)
voltage angle; (c) frequency.

Fig. 12. The parameter sensitivities of WECC CMLD with respect to active
power in FIDVR case.

significantly in the calculated sensitive direction but is almost 594

not influenced when perturbing the insensitive parameters. This 595

verifies the effectiveness of our method on FIDVR case. 596

C. case III: Comparison With Three Classical PR Methods 597

In this subsection, the proposed ASM method is compared 598

with three representative and widely-used methods: FWKL 599

method [21], Sobel method [17] and Morris method In [9]. 600

The regularization parameter λ of FWKL is chosen as 100. 601

The sample size of Monte Carlo simulation for Sobel method is 602

selected as MSobel = 1500. The times of repetition for Morris 603

method is selected asMMorris = 15. The other simulation setups 604
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Fig. 13. The parameter sensitivities of WECC CMLD with respect to reactive
power in FIDVR case.

Fig. 14. Validation of PR result for real power of WECC CMLD, with different
combinations of parameters perturbed by twenty percent.

Fig. 15. Validation of PR result for reactive power of WECC CMLD, with
different combinations of parameters perturbed by twenty percent.

Fig. 16. Parameter sensitivities calculated by FWKL method. 12 parameters
in the red rectangle are considered as sensitive ones.

Fig. 17. Parameter sensitivities calculated by Sobel method. 9 parameters in
the red rectangle are considered as sensitive ones.

are the same as in Case I. Since the results of active and reactive 605

power are consistent, for simplicity, only the results of active 606

power are shown here. 607

The parameter sensitivities calculated by three methods are 608

shown in Fig. 16 –18, respectively. We can observe that, Morris 609

method reduces least number of parameters, while Sobel method 610

reduces the most. Moreover, the identified sensitive parameter 611

indices by Sobel are the most similar to those by ASM. The 612

result validation is conducted by adding 20% on all sensitive 613

and insensitive parameters sets, respectively. From Fig. 19, we 614

can observe that, the blue line (ASM) deviates farthest away 615

from the black line (original) in the sensitive direction, and is 616

closest to that in the insensitive one. This indicates that ASM is 617

the most accurate among the four methods for this case. 618

Some key features of the four methods can be concluded as 619

Table. II. Note that the computational cost of ASM, Sobel and 620

Morris are considered in terms of the number of experiments. 621

FWKL is optimization-based, thus its computational cost de- 622

pends on the numbers of both iterations and experiments, which 623

makes it take more time than the other three methods. To further 624

compare the computational cost of ASM and Sobel methods, we 625

sequentially increase the Monte Carlo sample sizes to observe 626
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Fig. 18. Parameter sensitivities calculated by Morris method. 24 parameters
outside the red rectangle are considered as sensitive ones. μ and σ are the mean
and standard deviation of the elementary effects, respectively.

Fig. 19. Comparison of results validation of four methods by adding 20%
perturbation on: (a) sensitive parameters; (b) insensitive parameters.

TABLE II
COMPARISON OF KEY FEATURES OF THE FOUR PR METHODS

Fig. 20. Comparison of convergence rates of: (a) ASM; (b) Sobel.

the converge rate of parameter sensitivities. Fig. 20 shows that 627

the sensitivities obtained by ASM converge after 500 samples, 628

while Sobel needs about 1500 ones. As a conclusion, the ASM is 629

the most accurate with relatively lower computational cost (than 630

Sobel and FWKL methods). 631

V. CONCLUSION 632

A novel PR approach for the WECC CMLD is proposed based 633

on ASM. With this approach, the sensitivities of parameters are 634

computed while the interdependency among the parameters is 635

taken into consideration. By applying the proposed algorithm 636

to the WECC CMLD, the dimensions of parameter spaces can 637

be significantly reduced. The PR result is validated by sufficient 638

summary plot and perturbation tests with different voltage cases. 639

The comparison with other classical methods has shown the 640

advantages of the proposed method. 641

Note that the ASM requires scalar function which limits its 642

application to vector-valued parameterized model whose output 643

is [P,Q]T . Therefore, it cannot be directly used to analyze the 644

parameter sensitivity for both real and reactive power simulta- 645

neously. One may use a scalar to combine them, however such 646

output of interest may lack the physical meaning. We would 647

like trying to extend the scalar ASM to deal with vector-valued 648

functions in the future work. 649
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