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Abstract—A large-scale deployment of phasor measurement5
units (PMUs) that reveal the inherent physical laws of power6
systems from a data perspective enables an enhanced awareness7
of power system operation. However, the high-granularity and8
non-stationary nature of PMU data and imperfect data quality9
could bring great technical challenges for real-time system event10
identification. To address these challenges, this paper proposes a11
two-stage learning-based framework. In the first stage, a Markov12
transition field (MTF) algorithm is exploited to extract the latent13
data features by encoding temporal dependency and transition14
statistics of PMU data in graphs. Then, a spatial pyramid pooling15
(SPP)-aided convolutional neural network (CNN) is established16
to efficiently and accurately identify power events. The proposed17
method fully builds on and is also tested on a large real-world18
dataset from several tens of PMU sources (and the corresponding19
event logs), located across the U.S., with a time span of two con-20
secutive years. The numerical results validate that our method has21
high identification accuracy while showing good robustness against22
poor data quality.

Q1

23

Index Terms—Event identification, Markov transition field,24
phasor measurement unit, spatial pyramid pooling.25

I. INTRODUCTION26

LARGE-SCALE blackouts, such as the Northeast blackout27

of 2003 in the U.S., which started with a local event28

but eventually affected 50 million customers, continuously re-29

mind us of the need for better and faster event detection and30

identification to enhance the wide-area situational awareness31

of power system operation [1]. Recent years have seen a rapid32

growth in the deployment of phasor measurement units (PMUs),33

providing a unique opportunity for preventing cascading failures34

and blackouts [2]. Unlike the supervisory control and data ac-35

quisition (SCADA) system that only offers power system mon-36

itoring at steady state, PMU collects high-granularity voltage37

and current phasor, frequency, and frequency variation (e.g., 3038

or 60 samples per second in the U.S.), which enables capturing39

the fast dynamics of power systems. Therefore, exploiting PMU40
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data for real-time event identification has attracted increasing 41

attention. 42

Related Works: The existing works on PMU-based event 43

detection and identification can be mainly classified into two 44

categories: 1) signal processing-based methods [3]–[6]; and 2) 45

machine learning-based methods [7]–[10]. In [3], a wavelet- 46

based method was designed for detecting the event occurrence 47

and classifying events. In [4], a dynamic programming-based 48

swinging door trending method was developed to detect the 49

start-time and placement of events. The authors in [5] proposed a 50

quadratic fitting method to recover the dynamics of events and a 51

knowledge-based criterion to classify events. In [6], the extended 52

Kalman-filtering algorithm was applied to detect voltage events. 53

Inspired by the recent success of machine learning techniques 54

in data analytics, many researchers have adopted different ma- 55

chine learning methods to identify the types of events. In [7], 56

a multiclass extreme learning machine classifier was utilized 57

to perform near-real-time automatic event diagnosis. In [8], a 58

data-driven algorithm consisting of an unequal-interval reduc- 59

tion method and principal component analysis was proposed to 60

detect and locate events using PMU data. In [9], a hierarchical 61

clustering-based method was proposed to determine the types 62

of events, using several characteristics of multidimensional 63

minimum volume enclosing. In [10], the k-nearest neighbor 64

and support vector machine classifiers were exploited to per- 65

form event identification based on different pattern creation 66

methods. 67

Challenges: While researchers have contributed numerous 68

valuable works on this topic, several critical questions remain 69

open, which may challenge the practical deployment of these 70

methods. 1) Data quality issues, such as bad data, dropouts, 71

and time error, arise frequently in reality, and can easily lead to 72

misclassification of bad data as events, which were ignored in 73

the previous works. Basically, data quality issues can disjoint 74

the dimensional consistency of data samples during the training 75

procedure, thus resulting in a failed event identification. To 76

avoid this situation, a common solution is to drop data points 77

with quality issues. However, this strategy is hard to apply 78

during online testing, such as real-time power system operation, 79

because data points cannot be dropped. Thus, poor robustness 80

against data quality makes the data-driven event identification 81

models insufficiently convincing in practice. 2) Most of the 82

previous methods rely on the complicated data imputation and 83

optimization in online event identification, which may affect the 84

real-time performance of these methods [8]. 3) Some existing 85
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studies require the spatial information of PMUs (i.e., detailed86

system topology), which may be unavailable due to privacy87

protection.88

Our Contributions: To solve these questions, in this paper,89

a learning-based method is developed to identify power event90

types using PMU measurements. The proposed method focuses91

on providing an efficient and accurate event identifier to enhance92

situational awareness, while introducing robustness against data93

quality issues in real-time operation. To achieve this, two stages94

are included in the proposed method: 1) the time-varying statis-95

tical characteristics of the PMU data (i.e., voltage magnitude and96

frequency variation) are extracted using a Markov-based time-97

series feature extraction. In this stage, the time-series PMU data98

is converted into image-like data. 2) A robust event identification99

model is developed to build a mapping relationship between the100

results of stage I and event types by adopting a spatial pyramid101

pooling (SPP) strategy in a convolutional neural network (CNN)-102

based model. One salient merit of the proposed method is that103

the dimension of the testing data can be different with that of the104

training data, thus providing a superior solution to the online data105

quality problem. Specifically, after the model is trained using the106

historical PMU data and the corresponding event labels, when107

a new data sample shows data quality issues, the relevant data108

points can be marked and then directly excluded. The remaining109

good-quality PMU data of arbitrary dimension is assigned as110

input to the trained model, and the output will be the estimated111

event type. Hence, our model does not generate any artificial112

data point that could reduce the accuracy of event identification.113

Moreover, our method provides an efficient way for encoding114

time-series PMU data into image-like data, which preserves both115

temporal ordering and statistical dynamics, under incomplete in-116

formation of the transmission system (i.e., topology). To validate117

the performance of our method, a large amount of real-world118

PMU data over two consecutive years, gathered from several119

tens of PMUs throughout the U.S., and sufficient real event120

labels are utilized for model development and testing. It should121

be noted that the proposed method is fine-tuned on our dataset122

to optimize the values of the model hyperparameters. However,123

the methodology is general and can be applied to any other PMU124

datasets after some fine-tuning procedure. This is true for any125

data-driven solution. Our method is designed to address common126

challenges in all PMU datasets. The large number of real event127

labels contained in this dataset provides a good foundation for128

developing an efficient and practical event identification model.129

Besides, we have tested the sensitivity of our model accuracy130

to the size of missing data to demonstrate the robustness of the131

model.132

The rest of this paper is constructed as follows: Section II133

introduces the available PMU dataset and data pre-processing.134

In Section III, an Markov-based time-series feature extraction al-135

gorithm is utilized to summarize the hidden features of PMU data136

in graphs. Section IV proposes the SPP-aided CNN-based event137

identification method based on MTF-graphs. The numerical138

results are analyzed in Section V. Section VI presents research139

conclusions.140

TABLE I
STATISTICAL SUMMARY OF THREE INTERCONNECTIONS

II. PMU DATA DESCRIPTION AND PRE-PROCESSING 141

A. PMU Dataset Description 142

The available PMU dataset includes more than 440 PMU 143

sources that are installed in the Eastern, Western, and Electric 144

Reliability Council of Texas interconnections at different voltage 145

levels with the nominal frequency of 60 Hz. For convenience, 146

let A, B and C denote the three interconnections hereinafter. 147

They are equipped with 215, 43 and 188 PMUs, respectively. 148

Most data segment is archived at 30 frames/s and the remaining 149

is archived at 60 frames/s. Each PMU measures voltage and 150

current phasor, system frequency, frequency variation rate, and 151

PMU status information. The dataset spans a time period of 152

around two consecutive years (2016–2017). The total size of 153

the dataset is more than 20 TB (in Parquet form).1 These data 154

files were read in Python and MATLAB environments. In total, 155

around 670 billion sampling points have been used to conduct 156

the analyses. 157

B. Event Log Description 158

Since data-driven event identification can be converted to 159

a classification problem, real event labels play a vital role in 160

providing the ground truths. A unique advantage of our dataset 161

is that we not only have 20 TB PMU measurements but also 162

enough real event labels recorded by utilities. This is exactly the 163

type of data that system operators have access to and can utilize 164

for event identification model development in reality. Hence, the 165

available dataset provides a good foundation for developing an 166

efficient and practical event identification model. In summary, 167

a total of 6767 event labels, consisting of 6133 known events 168

and 634 unknown events (where the event type entry is empty 169

or unspecified), are included in our dataset. Each available event 170

label contains the interconnection number, start timestamp, end 171

timestamp, event type, and high-level event cause, of which a 172

detailed statistical summary is presented in Table I. The type 173

and timestamp of events have been verified by matching them 174

with the corresponding protection relay records, ensuring the 175

high confidence of these event labels. Note that the proofreading 176

of these events was done by the data providers. Thus, due 177

to sensitive information protection purposes, this information 178

1The pacific northwest national laboratory (PNNL) team has formatted the
raw dataset to 20 TB in Parquet form so as to save memory while facilitating
the learning algorithm design and validation.
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Fig. 1. Illustration of two-stage learning-based event identification framework.
In the data extraction and cleaning, a 2-s time window is selected to extract
the event data and then PMU status information and engineering intuition are
utilized to eliminate the missing and/or bad data for training dataset. The stage I
encodes the PMU data to a graph by characterizing the transition probability and
temporal dependency. The stage II constructs an end-to-end mapping between
the graphs and the event types by leveraging deep learning techniques.

is unavailable for us and cannot be utilized as input to the179

proposed event identification model. Moreover, the definition180

of each event type was left entirely up to the data providers. We181

did not make any manual changes to the event labels. In other182

words, we try to simulate the real situation faced by the system183

operators. The proposed model is based solely on the event184

labels from the data providers instead of integrating much prior185

event information, thus ensuring the practicability of our model.186

Since three interconnections have different event categorization187

systems, it is impossible to directly merge the three event logs188

into a single dataset. Therefore, in this work, we have used the189

event log from one interconnection that has the most known190

events (around 4800 known events) for model development and191

validation.192

C. Data Pre-Processing193

As a real-world dataset, our dataset is not perfect and has194

some vague and incomplete information. Hence, to eliminate the195

impact of these problems on model training, the available PMU196

dataset is initially passed through a data pre-processing that197

combines various methods and engineering intuitions. Note that198

this data pre-processing is developed on empirical knowledge199

rather than purely heuristic. The goal of the data pre-processing200

is twofold: 1) select an appropriate analysis-window to extract201

the data into frames corresponding to pre-event and event states202

for training a learning model; 2) eliminate missing and bad data203

caused by communication and meter malfunction.204

Following the start timestamp in the event log, we have205

extracted 60 seconds of pre-event and 120 seconds of post-event206

data to visualize power events. Fig. 2 shows event plots of all207

PMUs in the interconnection. Note that this figure is plotted208

against a frequency event and line outage on the data provider’s209

event log. As is demonstrated in Fig. 2, it is clear that the most210

critical changes happen around the inception of event, but the211

lengths of changes are different for different PMU-recordings.212

In addition, these figures show that the length of the change213

can be at second- or sub-second-levels for different types of214

events. Thus, to apply PMU-base event identifiers in real-world215

Fig. 2. Plots of multiple PMUs’ data for two events.

application, a second-level analysis-window is needed. Hence, 216

in this work, a 2-second analysis-window is selected to extract 217

the event data [10], [11]. Obviously, the 2-second analysis- 218

window cannot cover all events, but it contains sufficient event 219

features to determine the types. This has been demonstrated 220

using numerical results. Basically, using the data-driven event 221

identification model, most of the events could be identified with 222

multiple post-event samples rather than data from the entire 223

event. Moreover, the 2-second analysis-window can avoid the 224

curse of dimensionality for model development and ensure the 225

real-time performance of the event identification. Noted that 226

the previous method also utilizes a similar analysis window for 227

PMU-based event identification [2]. According to the sampling 228

rate of PMUs, each analysis window should include 120 data 229

points. However, as described in Table. I, the resolution of the 230

available event logs collected by the data providers is minute- 231

level, thus, not sufficient to directly extract the start timestamp of 232

events at the second-level. To tackle this, a statistical algorithm 233

is proposed to apply for the entire data set, which can detect the 234

transition between the normal and event states. The rationale be- 235

hind this is that, since PMUs are synchronized, the variations in 236

PMU-recordings will occur at the same time. It should be noted 237

that this statistical algorithm can be bypassed if the resolution 238

of event logs is sufficient for a 2-second analysis-window. The 239

proposed algorithm involves the following steps: 240
� Step 1: Define and initialize the 2-second event set E = ∅ 241

and the event counter i← 1. 242
� Step 2: Select the i’th event from the event logs and then 243

extract related 60 seconds of pre-event and 120 seconds of 244

post-event data Di. 245



IE
EE P

ro
of

4 IEEE TRANSACTIONS ON POWER SYSTEMS

� Step 3: Utilize the modified z-score for Di and identify the246

time stamps with the minimum score, of which the set is247

denoted as Ti [12].248
� Step 4: Find the time stamp with the highest frequency of249

minimum values belonging to Ti, denoted as t∗i .250
� Step 5: Sort Di based on the 2-second analysis-window,251

and find the 2-second data that includes t∗i , denoted as D∗i ;252

add D∗i to E.253
� Step 6: i← i+ 1; go back to Step 2 until i equals the total254

number of events.255

When the 2-second event dataset is obtained, PMU status flags256

information is utilized to perform data quality assessment [13].257

The status flags are in binary form and all information is258

aligned as 16-bit long. Each bit corresponds to a different status259

based on IEEE C37.118.2-2011 standard, such as bits 03-00260

reflecting the trigger reason and bits 05-04 showing the time261

error (i.e., asynchrony). When the value of the status flag is262

0 in the decimal format, data can be used properly; otherwise,263

data should be removed due to the various PMU malfunction.264

Also, the engineering intuitions is used to design several simple265

threshold-based methods for further detecting the data quality266

problems which are not identified by the PMU. For example,267

a number of data windows contained a single sample with an268

unreasonable value compared to the nominal value, which is269

dismissed as bad data. Following our data quality assessment,270

when a consecutive missing/bad data occurs, the data is excluded271

from our study because it is hard to provide a high accuracy data272

imputation for the consecutive missing/bad data. The rest of273

the missing/bad data are filled and corrected through a linear274

interpolation. [11].275

III. MARKOV-BASED PMU DATA FEATURE EXTRACTION276

Despite PMUs’ high precision and ability to capture system277

dynamics, PMU-based event identification via simple features278

(i.e., voltage magnitude and frequency) is a difficult task. The279

source of this challenge is the non-stationary characteristics of280

real-world PMU data, which is caused by sudden variations in281

system behavior during events [3]. To address this issue, in this282

paper, a Markov matrix-based feature extraction method known283

as MTF is adopted to discover additional data features for event284

identification [14]. It should be noted that the feature extraction285

is a common theme as well in modeling any time-series data.286

Also, our MTF method is a general method that can be applied287

to any other PMU dataset for feature engineering.288

Basically, the MTF method encodes the temporal dependency289

and transition statistics of PMU data in a compact metric. Com-290

pared to traditional feature extraction methods, such as Fourier291

transform, wavelet transform, and multidimensional minimum292

volume enclosing ellipsoid, our feature extraction method offers293

two unique advantages: 1) The MTF method can preserve both294

temporal ordering and statistical dynamics of the PMU data,295

thus improving accuracy. 2) Using the MTF method, PMU296

data is converted into the image-like structure without requiring297

any spatial information of PMUs (i.e., topology), which pro-298

vides a basis for utilizing the recently-developed image-based299

deep learning techniques. In this work, based on the previous300

work [15], voltage magnitudes and frequency variations are 301

selected as event indicators because they are deemed to closely 302

correlated to power events. Hence, the input to the MTF method 303

is the voltage magnitude and frequency variation of each PMU. 304

Note that the MTF method can in principle be applied to the 305

remaining PMU measurements (i.e., voltage phase angles and 306

current phasor measurements). However, adding more inputs 307

does not necessarily improve the performance of the event 308

identification model due to the increased model complexity. 309

Let V j
i denotes the voltage magnitude data during event i 310

as recorded by the j’th PMU. The objective of the proposed 311

feature extraction method is to map this continuous signal V j
i = 312

{V j
i (k)|k ∈ N, V j

i (k) ∈ R} to a network G = (O,B), which 313

consists of a set of vertices O and a set of edges B connecting 314

different vertices. Since a direct mapping from continuous data 315

to a network with finite nodes is not possible, we utilize a 316

quantile-based approach to obtain a discretized dictionary for 317

V j
i [16]. Specifically, given a V j

i , we create q quantile bins 318

(states) S1, . . ., Sq and assign each V j
i (k), k = 1, . . ., n, to the 319

corresponding bins,2 (see Fig. 3). While different strategies can 320

be applied to assign V j
i to the bins, our quantile strategy ensures 321

that all bins in each data have the same number of points [16]. 322

Compared to other strategies, quantile mapping is more data- 323

specific and has shown the highest identification accuracy on our 324

dataset. Following this strategy, a weighted adjacency matrix 325

W ∈ Rq×q is developed by counting the transitions among 326

quantile bins similar to a first-order Markov chain. Each entry 327

of W is a non-negative real number representing a transition 328

probability that is determined as follows: 329

wSa,Sb
= Pr

{
V j
i (t) ∈ Sa|V j

i (t− 1) ∈ Sb

}
,

∀Sa ∈ {S1, . . ., Sq}, Sb ∈ {S1, . . ., Sq}.
(1)

After normalization by
∑

Sb
wSa,Sb

= 1, W becomes a stan- 330

dard Markov matrix that contains the transition probability 331

on the voltage magnitude axis. However, W fails to capture 332

the higher order temporal dependencies as it is based on a 333

first-order Markov chain. Hence, to preserve information across 334

the temporal dimension, we extend matrix W to a new matrix 335

M ∈ Rn×n by aligning each probability along the temporal 336

order, as follows [14]: 337

M =

⎡
⎢⎢⎣
m11 · · · m1n

...
. . .

...

mn1 · · · mnn

⎤
⎥⎥⎦ (2)

with 338

mk1,k2
= wSa,Sb

, V j
i (k1) ∈ Sa, V

j
i (k2) ∈ Sb, ∀k1, k2.

So, the kth row of M represents the transition probabilities 339

between thek’th point and all data points. In this way,M encodes 340

the transition dynamics of the PMU data between different 341

time lags. This process is applied to the remainder of event 342

2Note that, S1, . . .Sq are different for different i, j. For simplicity, we omit
the indexes i, j here.
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Fig. 3. Illustration of the proposed encoding map of MTF. As shown in Fig. 3, the square matrix M can be interpreted as a network G, where mk1,k2
represents

weight of the edge between any two nodes k1 and k2. The nodes in different colors precisely match different time points of V j
i .

dataset including voltage magnitudes and frequency variations343

to obtain the MTF-based graph set, which are used for training344

our learning-based event identification model.345

IV. SPP-AIDED CNN-BASED EVENT IDENTIFIER346

In this section, we lay out our PMU-based event identification347

strategy. Considering that PMU-based models are developed to348

identify events and perform supervisory protection in real-time,349

high speed and accuracy are required [10]. Also, the robustness350

of the model should be considered because data quality problems351

are common in current PMUs. Several previous works have352

mentioned the impact of data quality problems in data-driven353

event identification task [2], [13]. Here, we also provide a basic354

statistical analysis, survival function, on our 20 TB PMU dataset355

to show the probability of occurrence of data quality problems.356

Specifically, the PMU status flag information and engineering357

intuition are leveraged to mark the data that has quality issues.358

The details are described in our data pre-processing procedure359

(Section II). Then, survival function is defined for the probability360

of missing data per PMU per day as follows:361

S(k) = Pr

{
number of missing data per PMU per day

total number of data per PMU per day
> k

}
.

(3)
As can be seen in Fig. 4 (a), PMUs show data quality issues more362

than 30% of time which is a non-negligible number. Moreover,363

the survival function of size of each individual data quality issue364

is obtained and plotted in Fig. 4 (b). It is clear that around 3% of365

data quality issues have more than 10 consecutive missing and366

bad data. Considering the extremely high sampling rate of the367

PMU, it is quite common to have consecutive missing and bad368

data due to long communication failure intervals or equipment369

malfunction.370

These statistical analysis results confirm the need for a robust371

event identification model that can work well under various372

data quality issues. For most of the existing PMU-based event373

identification models, data quality issues cause a data dimension374

imbalance problem since these models only accept inputs with375

fixed dimensions. In other word, the testing input dimension of376

the models should be exactly equal to that of the training data377

(i.e., if n-dimensional data is used for training, then the data-378

driven model allows forn-dimensional test inputs). In the offline379

training procedure, the data dimension imbalance problem can380

be solved by dropping data points and performing data imputa-381

tion techniques. It should be noted that our data pre-processing382

utilizes these solutions to address the data quality issues of383

the training dataset. However, in the online testing procedure,384

Fig. 4. Statistical analysis results about data quality problems using 20 TB
PMU data.

these solutions are not appropriate because data points cannot be 385

dropped, and it is hard to generate accurate artificial data points 386

for consecutive missing and bad data that is also common based 387

on our statistical analysis. Meanwhile, many system operators 388

avoid performing data imputation techniques for PMU data in 389

the industry since they prefer not to modify the PMU data. 390

Hence, to achieve reliable real-time event identification, we pro- 391

pose an SPP-aided CNN-based event classification method. As 392

shown in Fig. 5, this method constructs an end-to-end mapping 393

relationship between MTF-based graphs and the event types 394

using deep learning techniques. The proposed method offers 395

a unique advantage: the dimension of the testing data can be 396

different with that of the training data, which provides a natural 397

solution for the online PMU data quality problems. The rationale 398

behind this is that the fixed-size constraint of the learning-based 399

event identifier is removed by adopting a global pooling strategy, 400

SPP. 401

Here, consider a training set {V ,F ,L}, V := 402

{v(1), . . ., v(h)} and F := {f (1), . . ., f (h)} are the MTF-based 403

graphs based on the PMU-based voltage magnitude and the 404

frequency variation data, and L := {l(1), . . ., l(h)} is the 405

corresponding event label set from the event logs. Then, the 406

probability that the label l(i) of {v(i), f (i)} is equal to j can be 407
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Fig. 5. Proposed SPP-aided CNN-based event classifier. As can be seen, our
model is a multiple-layer architecture that consists of different layers. The input
of this mode is the MTF-based graphs and the outcome is the event type.

calculated by:408

Pr
{
l(i) = j|z(j)

}
=

exp
(
θj(v

(i), f (i))
)

∑o
c=1 exp(θc(v

(i), f (i))
(4)

where, o is the number of event types and θc(·) denotes the math-409

ematical model in the proposed SPP-aided CNN method. The410

learning parameters are obtained by minimizing the following411

cost function J :412

J := − 1

h

h∑
i=1

o∑
j=1

1{j = l(i)}ln
(

exp(θj(v
(i), f (i)))∑o

c=1 exp(θc(v
(i), f (i)))

)

(5)
where 1{j = l(i)} equals 1, if j equals l(0); otherwise, it is 0.413

Here, θ(·) consists of multiple convolutional, batch normaliza-414

tion, max-pooling, SPP, and the fully-connected layers. To help415

readers who are not familiar with machine learning, we provide416

the details of each typical layer as follows.417

Convolutional Layer: The key component of the convolu-418

tional layer is the convolution operation: ∗. Basically, this layer419

computes convolutions of the input with a series of filters, which420

can be mathematically described as follows [17]:421

φζ
g =

∑
u∈U

xu
g−1 ∗W ζ

g + bζg (6)

where, φζ
g is the latent representation of the ζ’th feature map422

of the g’th layer (the first feature map is the MTF-based graph423

{v(i), f (i)}); xu
g−1 is the u’th feature map of the previous layer424

Fig. 6. Illustrate of the different layers in the proposed model; (a) Convolu-
tional Layer; (b) Max-Pooling Layer; (c) SPP Layer (d) Fully-Connected Layer.

and U is the total number of feature maps; W ζ
g and bζg are the 425

kernel filter and the bias of the ζ’th feature map of the g’th 426

layer, respectively. Since all event signals have been regarded as 427

2-dimensional MTF-based graphs after the feature reformula- 428

tion, xu
g−1 ∗W ζ

g can be written as [18], 429

(xu
g−1 ∗W ζ

g )(i, j) =

U−1∑
δi=0

U−1∑
δj=0

xs
g−1(i− δi, j − δj)W

ζ
g (i, j)

(7)
where, i and j are the row and column indices of the MTF-based 430

graphs. Hence, the convolutional layer operates in a sliding- 431

window way to output the feature maps (see Fig. 6(a)) [19]. 432

The amount of horizontal and vertical movement in the sliding- 433

window is set to 1 here. For each convolutional layer, the size of 434

the output feature map is φζ
g ∈ R(p−q+1)×(p−q+1) where xu

g−1 435

and W ζ
g are p× p and q × q matrices, respectively. A typical 436

drawback of the convolutional layer is that the impact of the data 437

samples located on the border of data graph is much smaller than 438

those at the center. To tackle this, a padding strategy is used by 439

adding an additional layer to the border of the feature maps [20]. 440

Activation Layer: To make up for the limitation of linear 441

modeling in the convolutional layer, the outcomes of g’th convo- 442

lutional layer are passed to an activation layer. A nonlinear func- 443

tion, such as sigmoid, hyperbolic tangent, or rectified linear unit 444

(ReLU), is utilized to introduce nonlinearity to the model [18]. 445

In this work, ReLU is used for all activation layers except for 446

the output layer, as follows: 447

φζ
g = max(0, φζ

g). (8)

Unlike sigmoid and hyperbolic tangent activation functions, 448

ReLU is robust to the vanishing gradient, thus, allowing deep 449

models to learn faster and perform better [18]. 450

Batch Normalization Layer: A batch normalization layer is 451

added after the activation layer to avoid internal covariate shift, 452

which leads to an exponential increase in computation burden 453
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by requiring much lower learning rates [21]. Thus, the output of454

each activation layer is normalized by subtracting the batch mean455

and dividing by the batch standard deviation for each training456

mini-batch.457

Max-pooling Layer: After batch normalization, a max-458

pooling layer is utilized to summarize feature maps. Max-459

pooling can be considered as a sample-based discretization pro-460

cedure that takes the feature map from the previous layer: φζ
g ∈461

RNin×Nin and outputs a smaller matrix, denoted asNout ×Nout.462

This is achieved by dividing the input matrix into N2
out pooling463

regions Pi,j and selecting the maximum value [22]:464

Pi,j ⊂ {1, 2, . . ., Nin}2, ∀(i, j) ∈ {1, 2, . . ., Nout}2. (9)

In our work, a 2× 2 max-pooling is used, as shown in Fig. 6 (b).465

Thus, Nin = 2Nout and Pi,j = {2i− 1, 2i} × {2j − 1, 2j}.466

The functions of the max-pooling layer generalize the results467

from the convolutional-normalization operation and reduce the468

model complexity while alleviating overfitting.469

SPP Layer: In the proposed model, an SPP layer is adopted to470

replace the last max-pooling layer for mitigating the fixed-size471

constraint of the proposed model [19]. Unlike the standard472

pooling operation, such as max-pooling layer, which performs473

a single pooling operation, the SPP layer maintains spatial in-474

formation by pooling in local spatial bins, as shown in Fig. 6(c).475

This figure provides an exemplary 3-level SPP layer. Suppose476

the last convolutional layer has r feature maps. In the first477

level, one bin is utilized to pool each feature map to become478

one value, thus, forming an r-dimensional vector. Then, four479

bins are leveraged to divide each feature map into 4 regions of480

equal size with a rectangular shape. The max-pooling strategy481

is applied to each region to form a 4× r-dimensional vector. In482

the final level, each feature map is pooled to have 16 values, and483

form a 16× r-dimensional vector. In general, the outputs of the484

SPP are r ·B-dimensional vectors, where B is the number of485

spatial bins, which is proportional to the MTF-graph size but is486

fixed. Basically, the SPP layer pools the features and generates487

fixed-dimensional outputs, which are then fed in to the last fully-488

connected layer. Hence, after the event identification is trained489

using the historical data and the corresponding event labels in490

offline, when PMU data quality problems (i.e., bad and missing491

data) occur in online, the related data points can be marked492

and then directly excluded. The remaining good-quality-data of493

arbitrary dimension can be assigned as the input of the proposed494

method. Moreover, while the conventional pooling operations495

use only a single window size, SPP utilizes multi-level spatial496

bins, which shows the better performance [23].497

Fully-connected Layer: The last layer of the proposed498

method is a fully-connected layer, which integrates information499

across all locations in all the feature maps from the SPP layer.500

In this fully-connected layer, the softmax activation function is501

applied to calculate probabilities of the input being in a particular502

event type.503

In the proposed SPP-aided CNN-based method, the adap-504

tive moment estimation (Adam) algorithm is used to update505

the weight and bias variables [24]. Adam is a combination of506

gradient descent with momentum and root mean square propaga- 507

tion algorithms. Compared to backpropagation algorithms with 508

constant learning rates (i.e., stochastic gradient descent), Adam 509

computes individual adaptive learning rates for each parameter 510

from estimates of first and second moments of the gradients [24], 511

which significantly increases the training speed. To calibrate the 512

hyperparameters of the proposed method, we utilize the random 513

search method to find the appropriate sets [25]. It should be noted 514

that the training procedure of the proposed model is an offline 515

process. Hence, the high computational burden of the random 516

search method does not impact the real-time performance of 517

our event identification model. Moreover, the dropout strategy 518

is utilized in our model to further reduce the risk of overfitting. 519

V. NUMERICAL RESULTS 520

To validate the effectiveness of the proposed event identifi- 521

cation method, we test it on the PMU dataset and the related 522

event log from interconnection B. This includes around 4800 523

known events that consist of line outage, XFMR outage, and 524

frequency event. Moreover, the same number of the 2-second 525

analysis-window in normal conditions have been added. Since 526

each event type was left entirely up to data providers and we 527

do not make any changes to the event log, the recorded line and 528

XFRM trip categories in interconnection B cannot be determined 529

as faults based on the current high-level description of the event 530

logs. Hence, fault is not added as an event type in this work. We 531

are trying to negotiate about the more detailed information of 532

events with the data providers. The future work will be done to 533

meet the gap once we acquire this information. 534

To ensure the generalization ability of the proposed method, 535

it is necessary to observe whether the trained model suffers 536

from an overfitting problem. To facilitate a better understanding, 537

we provide a simple explanation about the overfitting problem. 538

Overfitting refers to a method that can only model the training 539

data well. In other words, if a model is highly customized 540

for a specific training dataset, this model should suffer from 541

a severe overfitting problem. Hence, in this work, the event 542

dataset is randomly divided into two separate subsets for training 543

(80% of the total data) and testing (20% of the total data). 544

Moreover, to make the testing procedure more rigorous which 545

can demonstrate the proposed model works well on unforeseen 546

PMU data, we have appliedk-fold cross validation strategy andk 547

is selected as 5 in this work. The k-fold cross-validation strategy 548

is performed in a rolling-horizon manner with a sliding window 549

of PMU data. Specifically, the whole dataset is partitioned into k 550

disjoint folds and k − 1 folds are utilized for model development 551

and the remaining fold is used to validate the accuracy of the 552

trained model. This procedure is repeated until each of thek folds 553

has served for model validation. Then, the final accuracy of the 554

proposed model is obtained based on k-time model validations. 555

In other words, all data in the available dataset have been treated 556

as the unseen data for calculating the final accuracy of our model. 557

Based on the difference between the average training and testing 558

accuracy, we can determine whether the overfitting problem 559

arises. The case study is conducted on a standard PC with an 560

Intel(R) Xeon(R) CPU running at 4.10GHZ and with 64.0 GB 561
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TABLE II
THE STRUCTURE OF THE SPP-AIDED CNN-BASED MODEL

of RAM and an Nvidia Geforce GTX 1080ti 11.0 GB GPU. The562

training computation time of the proposed model is around a few563

hours. However, since the training procedure is an offline pro-564

cess, the high computation burden of the training procedure does565

not impact the real-time performance of our event identification566

model. After the model is trained, we have tested the average567

testing time based on 5000 Monte Carlo simulations. In this568

work, the average testing time is around 1.4 ms. Even including569

the communication delays, our model is feasible in real-time, in570

accordance with the IEEE C37.118.2-2011 standard.571

A. Performance of the Proposed Method572

The detailed structure of the proposed classifier is presented in573

Table II. As can be seen, our model is a seven-layer architecture574

that includes multiple convolutional, activation, batch normal-575

ization, SPP, and fully-connected layers. Each row represents576

layers with specific layer type, the dimension of output feature577

map, and model complexity calculated with the number of578

hyperparameters. Based on this structure, the training and testing579

performances of the proposed method are shown in Fig. 7. As580

demonstrated in this figure, the training and testing accuracy581

converge to around 95.1% and 94.6%. The difference between582

these two values is small, which proves the generalization ability583

of the proposed model.584

Moreover, the performance of the proposed method for each585

event type is explained using confusion matrix shown in Fig. 8.586

In this figure, the rows correspond to the estimated type and587

the columns correspond to the true type. The diagonal and588

off-diagonal cells correspond to events that are correctly and589

Fig. 7. Training and testing results of the proposed model.

Fig. 8. Confusion matrix for interconnection B using the proposed model.

incorrectly classified, respectively. The value of each cell rep- 590

resents the accuracy of the specific event type. Here, two sta- 591

tistical indexes are utilized: the precision and the recall rates 592

are presented in the cells on the far right and the bottom of 593

the figure, respectively [12]. The cell in the bottom right of 594

the figure is the overall accuracy. As seen in this figure, the 595

worst-case precision and recall rates of the proposed method are 596

around 90.5% and 90.4% for the XFRM outage and line outage 597

classes, which still are acceptable values. It can be observed 598

that the accuracy of the proposed method for the XFRM outage 599

and line outage events is relatively lower than the rest. One 600

possible reason is that the event patterns of these two types of 601

events are some similarities, which is described in the confusion 602

matrix (see Fig. 8). Around 8.3% of line outage events are 603

inaccurately deemed to be XFRM outage events. As shown in 604

the figure, the false positive rate (system is inferred to have 605

an event while its actually state is normal operation) is pretty 606

low, meaning that our model is extremely unlikely to provide 607

inaccurate identification in the normal operation. When an event 608

occurs, in more than 90% of cases, our model will provide an 609

accurate event identification. Besides, in more than 99%of cases, 610

our model will at least provide a meaningful event warning for 611

system operators, which is important in emergency situations. In 612

contrast, the false negative rate (system is inferred to be operating 613

Amitendra
Sticky Note
Adjust the fonts, so that it does not touches the border line of the table
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Fig. 9. Sensitivity of event identification accuracy to the size of consecutive
bad/missing data.

Fig. 10. Sensitivity of event identification accuracy to the size of nonconsec-
utive bad/missing data.

Fig. 11. The performance of MTF feature extraction and SPP layer.

normally, while its actual status is that an event has occurred.)614

is only around 0.5%.615

In practice, operators are interested in knowing a single616

system-level classification outcome rather than multiple PMU-617

level outcomes. Hence, we have obtained and tested the system-618

level results by collecting the classification outcomes of all619

PMUs: for a specific event, if more than 90% of PMU-level620

outcomes are positive, the event is identified at the system-level,621

using the proposed method. In this case, the system-level accu-622

racy of our technique is around 91.07%.623

Considering that the proposed method is composed of three624

components: MTF, SPP, and CNN, we have tested the event625

identification accuracy for each component, as shown in Fig. 11.626

It is observed that the model that only includes MTF and CNN627

achieves similar accuracy with the proposed model. This indi-628

cates that the SPP strategy does not impact the identification629

performance; however, SPP is needed for resolving online data630

quality issues. Further, we compare the accuracy obtained by631

Fig. 12. Comparison results of four feature extraction methods.

Fig. 13. Comparison results of six event identification models.

sending the PMU data before and after the MTF-based feature 632

extraction to the model respectively. As described in the figure, 633

utilizing the MTF-based feature extraction model, identification 634

accuracy has been increased a lot. This result proves that the 635

MTF-based feature extraction is valuable and can improve the 636

identification accuracy. Moreover, to further evaluate the perfor- 637

mance of the MTF, we have conducted numerical comparisons 638

with several commonly-used feature extraction techniques for 639

PMU data, PCA, wavelet transformation, and multidimensional 640

minimum volume enclosing ellipsoid [11], [15], [26]. The result 641

is shown in Fig. 12. To ensure a fair comparison between the four 642

feature extraction methods, CNN is utilized to perform event 643

identification for all feature extraction methods. It is observed 644

that through the Markov-based feature extraction, the accuracy 645

of event identification can be considerably improved. 646

B. Method Comparison 647

We have conducted numerical comparisons with three previ- 648

ous event identification models: k-nearest neighbors (kNN) [27], 649

support vector machine (SVM) [10], and random forest 650

(RF) [28]. Further, two state-of-the-art classification methods, 651

light gradient boosting machine (LGBM), and gradient boosting 652

decision tree (GBDT), have also been compared with our meth- 653

ods in terms of event identification accuracy [29]. As described 654

in Fig. 13, the testing accuracy of the proposed method is around 655

94%. On the other hand, kNN, SVM, RF, LGBM, and GBDT, 656

show the testing accuracy of {81.8, 79.1, 76.7, 85.3, 88.1}, re- 657

spectively. Hence, based on this PMU dataset, the proposed 658

method shows a better accuracy for event identification com- 659

pared to the previous works. 660
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C. Sensitivity Analysis661

To demonstrate the sensitivity of the proposed event identifi-662

cation accuracy to the size of missing data, we have calculated663

the average performance of our method under various sizes664

of missing/bad data. For each percentage of missing/bad data,665

1000 Monte Carlo simulations are conducted to obtain the666

average accuracy. Here, we consider two different data quality667

issues: consecutive and nonconsecutive data quality issue. In668

real-time event identification, consecutive data quality issue669

is more challenging compared to nonconsecutive data quality670

issue. The reason is that data with the nonconsecutive data671

quality issue can keep a portion of the critical information (i.e.,672

event patterns). This information can still be used for accurate673

event identification. For the consecutive data quality issue, it674

is likely that all event information is lost within a time period.675

As the length of consecutive data quality issue increases, the676

probability for loss of event information significantly increases.677

Hence, we can expect performance degradation with the increase678

of consecutive missing/bad data. For each experiment, we have679

randomly selected a time-stamp as the start time for the data680

quality issue. Then, n consecutive data points after this time-681

stamp are removed, where n is determined by the percentage682

of bad/missing data. Here, we gradually increase n from 0 to683

50% of the data samples. The result is shown in Fig. 9. As684

is presented in the figure, the model accuracy drops as the685

percentage of missing data increases from 0% to 20%. This686

result is expected. It is clear that no event identification model687

can provide a good estimate when event information is missing.688

Then, when n continues to increase to 50%of the data sample, the689

accuracy of the proposed model is stabilized around 65%. These690

results demonstrate that the proposed learning-based method691

can still provide meaningful results with 50% data loss. Note692

that the 50% consecutive bad/missing data is an extremely rare693

case.694

Moreover, we have tested the robustness of our method for695

nonconsecutive data quality issues. In each experiment, we have696

randomly selected n independent data points as the missing/bad697

data points. The result is shown in Fig. 10. It can be observed698

that the nonconsecutive data quality issues are much easier699

to handle using the proposed method. As is described in the700

figure, the model accuracy slightly drops as the percentage of701

missing data increases from 0% to 20%. Even if 20% of the702

data points are treated as nonconsecutive missing data points,703

the proposed model can still reach an average accuracy of 83%.704

It should be noted that in practice most of the data quality issues705

are nonconsecutive. The consecutive data quality issue can be706

considered as the worst-case scenario. Last but not least, unlike707

the previous data-driven methods that rely on data imputation708

techniques to introduce robustness, our solution addresses online709

data quality issues by eliminating the fixed-size input constraint710

of the learning process. In comparison, our method can handle711

consecutive data quality issues without any additional computa-712

tional burden in real-time. Meanwhile, based on discussions with713

our industry partners, many system operators avoid performing714

data imputation techniques for PMU data since they prefer not715

to modify the PMU data. Hence, our method provides a good716

Fig. 14. Comparison of estimated event type and actual event type in AC-
TIVSg500 case study.

solution for system operators to deal with online data quality 717

issues, especially for consecutive data quality issues. 718

D. ACTIVSg500 Test Case 719

This subsection further explores the performance of the pro- 720

posed method using a benchmark synthetic power system with 721

artificial PMU data generated by simulated events. Specifically, 722

this synthetic PMU dataset is generated by the Siemens Power 723

System Simulator for Engineering (PSS/E). The Illinois 500-bus 724

system, known as the ACTIVSg500 test case, is utilized to 725

demonstrate the results. The detailed description and parameters 726

of this power system can be obtained from [30]. To be consistent 727

with the available real-world PMU dataset, the sampling rate of 728

PMUs is set to be 60 recordings per second. PMUs are placed 729

at buses 22, 66, 187, 308, and 500 to record voltage phasor and 730

frequency. Three types of events described are simulated: line 731

fault events, line trip events, and generator loss events. More 732

precisely, we have simulated 350 events, including 150 line 733

fault events, 150 line trip events, and 50 generator trip events at 734

different locations with the same pre-event system condition. We 735

have applied the aforementioned strategy to obtain the training 736

and testing data. In this case study, the average testing accuracy 737

converges to about 98.7%. Fig. 14 shows the estimated and actual 738

labels for 20 events. As can be seen, the proposed method is 739

able to accurately classify the event types. From a statistical 740

perspective, based on this synthetic PMU dataset, the proposed 741

method offers classification accuracy of 100% for line fault, 97% 742

for line trip, and 98.2% for generator trip. Also, the Area under 743

the Curve (AUC) index is employed to assess the classification 744

performance of our method [31]. In this case, the proposed 745

SPP-aided CNN-based method achieves an AUC value of 0.98. 746

The comprehensive case study including the real-world dataset 747

and the synthetic dataset helps to demonstrate the generalization 748

of the proposed approach. 749

E. Cost of Misclassification 750

In this subsection, we analysis the cost of misclassification 751

caused by the proposed model. It should be noted that we have 752

developed a data-driven event analyzer rather than a protection 753

module. The goal of our data-driven model is to enhance sit- 754

uational awareness by identifying system vulnerabilities (i.e., 755

relay misoperations) in real-time. Hence, in normal operation, 756
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data-driven event identification models are treated as supervi-757

sory monitoring, which will not provide input to digital relays758

and or interfere with relay operation. In the worst-case scenario,759

if the trained model provides an incorrect estimation, the relay760

protection will still operate despite the loss of selectivity [10].761

When SCADA is dysfunctional, as was the case during the762

2003 North American large-scale blackout, data-driven models763

will still work, thus maintaining partial system awareness. Such764

strategies can reduce the risk of misclassification caused by765

the proposed model (i.e., inadvertent operations). Moreover,766

our method introduces robustness against data quality issues in767

real-time operation, which prevents the misclassification caused768

by missing and bad data. Since the historical relay operations769

are not available, we cannot exactly quantify the cost of mis-770

classification at this stage. We leave it for future work once they771

are available. More comprehensive results will be provided.772

VI. CONCLUSION773

In this paper, we have presented a novel two-stage learning-774

based method for real-time event identification to enhance the775

situational awareness of power systems using PMU data. Com-776

parisons with previous methods show that our method achieves777

more accurate event identification outcomes. Moreover, this778

approach shows robustness against data quality problems in779

online operation, which highly improves the practical applicabil-780

ity in real-world systems. The proposed method is successfully781

validated on a large-scale PMU dataset and the real event logs.782
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