
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 

 
1 

Abstract—Resilience problems from cyber-attacks on information 

communication technologies (ICT) exist under their wide usage. False 

data injection (FDI) judiciously designed by attackers may cause 

severe consequences such as uneconomic operation and blackouts, 

particularly multi-vector energy distribution systems (MEDS), which 

are closely linked and interdependent. This paper addresses the cyber 

resilient issues of an MEDS caused by FDI, considering the 

uncertainty from renewable resources. A novel two-stage 

distributionally robust optimization (DRO) is proposed to realize the 

day-ahead and real-time resilience improvement. The ambiguity set is 

based on both the Wasserstein distance and moment information. 

Compared to robust optimization which considers the worst case, 

DRO yields less-conservative solutions and thus provides more 

economic operation schemes. The Wasserstein metric-based 

ambiguity set enables to provide additional flexibility hedging against 

renewable uncertainty. Case studies are demonstrated on two 

representative MEDS networked with energy hubs, illustrating the 

effectiveness of the proposed cyber-secured model. The produced 

adaptive robust economic operation for MEDS can reduce load 

shedding and enhance system resilience against severe cyber-attacks.  

 

Index Terms—Cyber-attacks, energy hubs, distribution systems, 

load redistribution attacks, multi energy systems, real-time 

operation, resilience enhancement.  

NOMENCLATURE 

A. Indices and sets 

t, T Index and set for time periods.  

𝑏 , 𝐵  Index and set for electricity buses. 

𝑖𝑒, 𝐼𝑒 Index and set for traditional distributed 

generators (DG) . 

𝑖𝑔, 𝐼𝑔 Index and set for natural gas sources. 

j,  J Index and set for renewable DGs.  

𝑙𝑒, 𝐿𝑒 Index and set for power lines. 

𝑙𝑔, 𝐿𝑔 Index and set for gas pipelines. 

𝑘𝑒, 𝐾𝑒 Index and set for electric loads. 

𝑘𝑔, 𝐾𝑔 Index and set for gas loads. 

 

 

B. Parameters  

𝐾𝑃 Bus-generator incidence matrix. 

𝐾𝐷 Bus-load incidence matrix. 

𝑆𝐹 Shift factor matrix. 

𝛽 Attack injection level. 

𝜆𝑚
𝑠 , 𝜆𝑚

𝑟𝑒 Power price from day-ahead and real-time 

market.  

𝜆𝑖𝑒
𝑎 , 𝜆𝑖𝑒

𝑏 , 𝜆𝑖𝑒
𝑐  Cost coefficients for generation of traditional 

DG 𝑖𝑒.  

𝜆𝑖𝑔 Cost coefficient for output of natural gas source 

𝑖𝑔. 

𝜆𝑖𝑒
+ , 𝜆𝑖𝑒

−  Cost coefficient for up and down reserve of 

traditional DG 𝑖𝑒. 

𝜆𝑖𝑔
+ , 𝜆𝑖𝑔

−  Cost coefficient for up and down reserve of 

natural gas source  𝑖𝑔. 

𝜆𝑖𝑒
𝑟𝑒 , 𝜆𝑗

𝑟𝑒 Regulation cost coefficient for traditional DG 𝑖𝑒 

and renewable DG j. 

𝜆𝑘𝑒
𝑙𝑠 , 𝜆𝑘𝑔

𝑙𝑠  Penalty cost coefficient for power and gas load 

shedding.  

𝜔𝑗
𝑠(𝑡) Forecasted output of renewable DG j at time t. 

𝑅𝑖𝑒
+, 𝑅𝑖𝑒

− Maximum up and down reserve capacity of 

traditional DG 𝑖𝑒 at time t. 

𝑅𝑖𝑔
+ , 𝑅𝑖𝑔

−  Maximum up and down reserve capacity of 

natural gas source 𝑖𝑔 at time t. 

𝑃𝑖𝑒,𝑚𝑎𝑥, 

𝑃𝑖𝑒,𝑚𝑖𝑛 

Maximum and minimum active power output of 

traditional DG 𝑖𝑒.   

𝑃𝑖𝑔,𝑚𝑎𝑥, 

𝑃𝑖𝑔,𝑚𝑖𝑛 

Maximum and minimum output of traditional 

DG 𝑖𝑔.   

𝑄𝑖𝑒,𝑚𝑎𝑥, 

𝑄𝑖𝑒,𝑚𝑖𝑛 

Maximum and minimum reactive power output 

of traditional DG 𝑖𝑒.   

𝑉𝑏,𝑚𝑎𝑥
 ,𝑉𝑏,𝑚𝑖𝑛

  Maximum and minimum voltage limit. 

𝑥𝑙𝑒, 𝑟𝑙𝑒 Reactance and resistance of power line 𝑙𝑒. 

𝑉0 Reference voltage magnitude. 

𝑓𝑙𝑒,𝑚𝑎𝑥,

𝑞𝑓𝑙𝑒,𝑚𝑎𝑥 

Maximum active and reactive power flow of line 

𝑙𝑒. 

𝑓𝑙𝑔,𝑚𝑎𝑥, Maximum gas flow of line 𝑙𝑔. 

𝑃𝑟𝑙𝑔,𝑚𝑎𝑥, Maximum and minimum gas pressure of gas 

pipeline 𝑙𝑔.  
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𝑃𝑟𝑙𝑔,𝑚𝑖𝑛 

𝛾𝑙𝑔 Coefficient for Weymouth equation. 

𝑃𝑘𝑒,𝑡𝑄𝑘𝑒,𝑡, 𝑃𝑘𝑔,𝑡 Active and reactive power load and gas load at 

time t. 

𝑃𝑘𝑒,𝑚𝑎𝑥
𝑙𝑠 , 

𝑃𝑘𝑔,𝑚𝑎𝑥
𝑙𝑠  

Maximum power and gas load shedding at time 

t. 

𝜂𝑖𝑒,𝑡, 𝜂𝑖𝑔,𝑡 Participation factor for reserves of traditional 

DG and natural gas source at time t.  

𝜂𝑐𝑝𝑒 , 𝜂𝑐𝑝𝑒 Electric and heating efficiency for combined 

heat and power (CHP). 

𝜂𝐶𝑂𝑃,𝜂𝐺𝐹 Coefficient of performance of ground source 

heat pump (GSHP) and efficiency of gas furnace 

(GF). 

𝑃𝑐𝑝,𝑚𝑎𝑥
𝑖 , 𝑃𝑐𝑝,𝑚𝑖𝑛

𝑖 , 

𝑃𝐻𝑃,𝑚𝑎𝑥
𝑖 , 𝑃𝐻𝑃,𝑚𝑖𝑛

𝑖 , 

𝑃𝐺𝐹,𝑚𝑎𝑥
𝑖 , 𝑃𝐺𝐹,𝑚𝑖𝑛

𝑖  

Maximum and minimum input limits of CHP, 

GSHP and GF. 

𝑃𝐵𝑆,𝑚𝑎𝑥
𝑐ℎ , 𝑃𝐵𝑆,𝑚𝑖𝑛

𝑐ℎ , 

𝑃𝐵𝑆,𝑚𝑎𝑥
𝑑𝑐ℎ , 𝑃𝐵𝑆,𝑚𝑖𝑛

𝑑𝑐ℎ  

Maximum and minimum charging and 

discharging power for battery storage. 

𝑃𝐻𝑆,𝑚𝑎𝑥
𝑐ℎ , 𝑃𝐵𝑆,𝑚𝑖𝑛

𝑐ℎ , 

𝑃𝐻𝑆,𝑚𝑎𝑥
𝑑𝑐ℎ , 𝑃𝐻𝑆,𝑚𝑖𝑛

𝑑𝑐ℎ  

Maximum and minimum charging and 

discharging heat for heat storage. 

𝜂𝐵𝑆
𝑐ℎ , 𝜂𝐵𝑆

𝑑𝑐ℎ, 𝜂𝐻𝑆
𝑐ℎ , 

𝜂𝐻𝑆
𝑑𝑐ℎ 

Charging and discharging efficiency for battery 

and heat storage. 

𝐸𝐵𝑆,𝑚𝑎𝑥
 , 𝐸𝐵𝑆,𝑚𝑖𝑛

 , 

𝐸𝐻𝑆,𝑚𝑎𝑥
 , 𝐸𝐻𝑆,𝑚𝑖𝑛

 , 

Maximum and minimum remaining energy 

limits of battery and heat storage. 

𝐿𝑒,𝑡, 𝐿ℎ,𝑡 Electricity and heat load of energy hub system. 

 

C. Variables and functions 

𝐺, 𝐷, 𝐵𝑃, 𝑃𝐿 Generation vector of generator output, load 

demand, bus power injection and line flow. 

𝛥𝐺,Δ𝐷, 𝛥𝐵𝑃, 

𝛥𝑃𝐿 

Incremental vector of generator output, bus 

power injection and line flow. 

𝑃𝑚,𝑡
𝑠 ,𝑃𝑚,𝑡

𝑟𝑒  Power purchase from day-ahead and real-time 

market. 

𝑃𝑖𝑒,𝑡
𝑠 ,𝑃𝑖𝑒,𝑡

𝑟𝑒  Scheduled and regulated active power output of 

traditional DG 𝑖𝑒 at time t. 

𝑄𝑖𝑒,𝑡
𝑠 ,𝑄𝑖𝑒,𝑡

𝑟𝑒  Scheduled and regulated reactive power output 

of traditional DG 𝑖𝑒 at time t. 

𝑃𝑖𝑔,𝑡
𝑠 ,𝑃𝑖𝑔,𝑡

𝑟𝑒  Scheduled and regulated output of natural gas 

source 𝑖𝑔 at time t. 

𝑟𝑖𝑒,𝑡
+ , 𝑟𝑖𝑒,𝑡

−  Up and down reserve capacity of traditional DG 

𝑖𝑒 at time t. 

𝑟𝑖𝑔,𝑡
+ , 𝑟𝑖𝑔,𝑡

−  Up and down reserve capacity of natural gas 

source 𝑖𝑔 at time t. 

𝑉𝑏,𝑡
𝑠 , 𝑉𝑏,𝑡

𝑟𝑒 Scheduled and regulated voltage of bus b at time 

t. 

𝑓𝑙𝑒,𝑡
𝑠 , 𝑞𝑓𝑙𝑒,𝑡

𝑠   Scheduled active and reactive power flow.  

𝑓𝑙𝑒,𝑡
𝑟𝑒 , 𝑞𝑓𝑙𝑒,𝑡

𝑟𝑒  Regulated active and reactive power flow. 

𝑓𝑙𝑔,𝑡
𝑠 , 𝑓𝑙𝑔,𝑡

𝑟𝑒  Scheduled and regulated gas flow. 

𝑓𝑙𝑔,𝑡
𝑖𝑛𝑖, 𝑓𝑙𝑔,𝑡

𝑡𝑒𝑟 Gas flow from initial node and to terminal node 

of pipeline 𝑙𝑔 at time t. 

𝜔𝑗,𝑡
𝑠  Scheduled renewable generation at time t. 

𝑃𝑟𝑙𝑔,𝑡
𝑠 , 𝑃𝑟𝑙𝑔,𝑡

𝑟𝑒   Scheduled and regulated gas pressure of gas 

pipeline 𝑙𝑔 at time t.  

𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 

,

𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑡𝑒𝑟 

 

Scheduled gas pressure of initial and terminal 

nodes of pipeline 𝑙𝑔 at time t. 

𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖 

,

𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒,𝑡𝑒𝑟 

 

Regulated gas pressure of initial and terminal 

nodes of pipeline 𝑙𝑔 at time t. 

𝑃𝑘𝑒,𝑡
𝑙𝑠 , 𝑄𝑘𝑒,𝑡

𝑙𝑠  Power load shedding at time t. 

𝑃𝑘𝑔,𝑡
𝑙𝑠  Gas load shedding at time t. 

𝑓𝑙𝑒,𝑡
 𝑖𝑛𝑗
, 𝑓𝑙𝑔,𝑡
 𝑖𝑛𝑗

 Power and gas flow injection to EHSs. 

𝑃𝐶𝑂𝑃,𝑡
𝑖 , 𝑃𝐶𝑂𝑃,𝑡

𝑜 , Power input and heat output of GSHP. 

𝑃𝐺𝐹,𝑡
𝑖 , 𝑃𝐺𝐹,𝑡

𝑜  Gas input and output of gas furnace. 

𝑃𝑐𝑝 ,𝑡
𝑠,𝑖 , 𝑃𝑐𝑝𝑒,𝑡

𝑠,𝑜 , 𝑃
𝑐𝑝ℎ,𝑡
𝑠,𝑜

 Gas input and power and heat output of CHP. 

𝑃𝐵𝑆,𝑡
𝑐ℎ , 𝑃𝐵𝑆,𝑡

𝑑𝑐ℎ, 

𝑃𝐻𝑆,𝑡
𝑐ℎ , 𝑃𝐻𝑆,𝑡

𝑑𝑐ℎ 

Charging and discharging power and heat of 

battery and heat storage. 

𝐸𝐵𝑆,𝑡
 , 𝐸𝐻𝑆,𝑡

  Remaining energy of battery and heat storage. 

𝑣𝑒,𝑡
 , 𝑣𝑔,𝑡

  Dispatch factors of power and gas. 

 

D. Uncertainty Modelling 

x, y  Vectors of first and second stage variables. 

𝐸ℙ[𝑄(𝑥, 𝜉)] The expectation of the second-stage objective 

function result.  

𝜉, 𝜉† Random variables in the candidate and empirical 

distributions 

ℙ, ℙ̂ Set of random variables in the candidate and 

empirical distributions 
S Wasserstein ambiguity set. 

𝜂 Wasserstein distance. 
A Lifted Wasserstein ambiguity set. 

𝜑 Auxiliary variable to limit the distribution 

distance. 

𝜇  Mean value of random variable 𝜉. 

𝑄𝐿𝐷𝑅(𝑥, 𝜉, 𝜑, �̃�) Second-stage objective function with linear 

decision rule.  

𝜏, 𝜓, 𝜆  Dual variables. 

I. INTRODUCTION 

N recent years, the high integration of information and 

communication technologies (ICTs) is significant for better 

decision making and control of power systems, but they also 

increase the risks of cyber-attacks [1].  Attackers impose these 

low frequency and high impact cyber-attacks on the generation, 

transmission and demand side of the energy system, causing 

uneconomic operation and reliability issues, e.g., overloading and 

even load shedding. As a common type of cyber-attacks, false 

data injection (FDI) brings challenges to state estimators and 

mislead system operators by falsified data. The 2015 Ukraine 

power grid cyber-attack caused 30 substations switched off and 

225,000 customers were not able to use electricity for up to 6 

hours [2-4]. The grid control system in Utah, U.S. was disabled 

due to FDI on 5 March, 2019 [5].  

The existing literature of FDI attacks focuses on i) mimicking 

stealthy designed FDI attacks and assessing impacts [6-8] and ii) 

designing strategies to defend or mitigate the impact on power 

grid [9, 10]. In terms of attack modelling, a bilevel optimization 

model is proposed to maximize the targeted and overall 

transmission branches [6]. Three types of cyber-topology FDI 

attacks, i.e., line-addition attack, line-removal attack and line-

switching attack are established and solved by metaheuristic 

methods [7]. A relaxed incomplete information of power 

networks is used to attack AC state estimation [8]. As for 

I 
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defencing and mitigation strategies of cyber-attacks, game theory 

[11-13], state estimation [14-16] and filter based FDI detection 

methods [17-19] have been widely used in previous literature. A 

game-theoretic analysis is proposed for cyber switching attacks 

to describe the interactions between electric power utility and 

attackers [13]. An interval state estimation is developed for 

detecting cyber-attacks and nonlinear electric load data is 

extracted by deep learning algorithms [15]. Kalman filter with a 

novel distributed dynamic state estimator is employed to improve 

the attack detection of the power grid [18].  

State estimation plays a vital role in detecting and filtering bad 

measurement data. However, malicious FDI attacks are 

judiciously designed to pass the detection [8]. Load redistribution 

(LR) is a particular type of FDI, which is launched by false load 

data to consequently affect the operation actions, causing 

economic loss and physical damages to devices due to wrong 

operation decisions. The mask of LR attacks is the key to evade 

detection, i.e., the residue of bad data detection can be avoided by 

a well-designed LR attack, proved by [20, 21]. LR attacks could 

manipulate falsified measurement vector and affect operation 

schedule. Therefore, mitigating the uneconomic operation 

considering potential LR attacks is necessary.  

On the other hand, due to the lower fuel cost and lower 

pollutant emissions of gas-fired generators, the interdependency 

of electricity and gas systems is significantly increasing. System 

operations for multi-vector energy distribution systems (MEDS) 

are widely investigated. An MEDS model for Great Britain is 

developed in [22], where deterministic method, two-stage 

stochastic method, multistage stochastic method and perfect 

foresight method are widely used and compared to handle wind 

uncertainty. A day-ahead scheduling model is proposed for an 

MEDS which incorporates combined heat and power (CHP) 

units, energy conversion devices and responsive loads [23]. In 

[24], a stochastic optimization (SO) based MEDS is designed to 

achieve the optimal coordination of energy converters with high 

energy efficiency for smart cities. Combining the advantages of 

robust optimization (RO) and SO, reference [25] applies 

distributionally robust optimization (DRO) to a security-based 

optimal power flow in distribution systems considering electric 

vehicle aggregators.   

Additionally, the increasing level of renewable energy 

resources has brought non-optimality and infeasibility due to its 

perturbation. The uncertain nature of renewable generation poses 

severe challenges on MEDS operation. References [22], [26] and 

[25] have tackled the randomness of renewable generation by SO, 

RO and DRO respectively. SO requires the explicit uncertain data 

distributions with large samples and can yield accurate and 

economic results. However, the dataset is not always sufficiently 

large which will inevitably cause errors when assigning 

distributions. RO deals with uncertainties using the worst-case 

scenario by uncertainty set, which has a very low probability and 

thus is too conservative. DRO combines the advantages of SO 

and RO [27]: i) compared with SO, it does not require a large 

number of uncertain data samples and ii) compared with RO, it 

minimizes the worst-distributed scenario with less-conservative 

solutions.  

From the attacker’s point of view, the aim is to maximize the 

impact of LR attacks on the power grid but, from the operator’s 

point of view, the impact should be minimized. The resilience of 

MEDS against the attacks is becoming vital, particularly with 

increasing fluctuating renewables integrated. In summary, there 

are four main problems in the existing literature: i) The mitigation 

schemes for uneconomic operation caused by cyber-attacks have 

been only investigated on power systems but never implemented 

on MEDS; ii) The presence of renewable uncertainties have never 

been incorporated with cyber-attacks simultaneously; iii) The 

mitigation scheme for uneconomic operation from RO is too 

conservative with massive load shedding; iv) Existing research 

only investigates single-stage mitigation schemes for 

uneconomic operation, unable to fully express the impact of 

cyber-attacks and renewable uncertainties in real-time scenarios. 

Therefore, to address the above problems and fill the research 

gap, this paper mitigates the resilience impacts of MEDS caused 

by random, masked and hard-detectable LR attacks. A two-stage 

DRO model is developed to mitigate the uneconomic operation 

of MEDS caused by LR attacks, where renewable uncertainty is 

also considered. The interaction among the two-stage model 

enables a flexible adjustment in an iterative manner. The first 

stage determines an initial day-ahead operation plan before the 

realization of renewable generation uncertainties without 

considering LR attacks. The second stage minimizes real-time 

recourse costs based on the real renewable generation and 

potential LR attacks. A conditional Wasserstein metric-based 

ambiguity set is designed to hedge against the LR attacks and 

renewable uncertainty. Fig. 1 briefly presents the proposed two-

stage framework. Based on the affine recourse approximation, the 

robust counterpart is obtained. This proposed two-stage 

distributionally robust resilience improvement for MEDS 

operation under cyber-attacks is defined as DR-RIM for 

simplicity. Compared to RO which considers extreme LR attacks 

in a very low probability, this DR-RIM mitigates the 

conservatism and thus produces lower operation cost.  

The LR attacks will lead to the LR deviations and further 

impact on the economic operation and energy imbalance. When 

there is a generation-load imbalance due to LR attacks, either 

excessive generation or load shedding will be caused. The former 

consequence yields uneconomic operation decisions and the 

latter consequence will cause load shedding. Therefore, the 

unpredictable LR attacks will inevitably cause economic and 

physical losses. The proposed cyber-resilient energy 

 

Fig. 1.  The proposed two-stage optimization framework.  
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management enables to provide a day-ahead initial operational 

plan and an optimal load shedding strategy as the emergency 

response under LR attacks. Moreover, the DR-RIM algorithm is 

sufficiently robust since the DRO approach considers the worst-

case attack distribution. 

Based on the previous works of the authors [28, 29], this paper 

aims at addressing a more crucial cyber-resilient problem for 

energy systems, i.e., distribution systems in urban areas are more 

vulnerable to cyber-attacks. Instead of conducting cyber-attacks 

on transmission systems, which has been extensively studied in 

academia with effective protective measures, it is also highly 

probable that the adversaries manipulate cyber-attacks on 

distribution systems. The existing research has focused on 

investigating the attack design and detection for energy 

distribution systems. Nevertheless, there is a lack of research on 

resilience improvement for energy system operation schemes. 

Furthermore, even though DRO has been broadly applied in 

energy system problems, the modelling of ambiguity sets directly 

influences the computational performance, which should be 

critically investigated. The proposed Wasserstein-based DRO is 

essentially different from the moment-based DRO. The former 

technique utilizes the statistical moment information whilst the 

latter technique defines the uncertain distributions via the 

nominal distribution and distribution closeness. The detailed 

improvement and contributions based on our previous works are 

given below:  

1) The existing works are designed for risk mitigation of multi-

energy systems in the transmission level. However, a resilience 

improvement scheme is particularly desired for multi-energy 

systems in the distribution level. Energy distribution and 

transmission systems are fundamentally different in terms of the 

functionality, structure, scale, equipment, etc. Energy distribution 

systems are integrated with large-scale renewable generators. The 

renewable fluctuation challenges the system operation 

considerably regarding the supply-demand balance and voltage 

rise/drop. In addition, distribution systems are required to 

maintain the dynamic balance of both active and reactive power 

via controlling the voltage regulating devices. Thus this paper 

targets at addressing the resilience impact caused by stealthy-

designed FDI considering the unique characteristics of MEDS.   

2) A Wasserstein metric-based ambiguity set is adopted to 

characterize the FDI and random renewable generation for 

deriving the true probability distribution. The existing papers of 

the authors apply moment-based ambiguity sets with identical 

moments [28, 29], such as mean, variance and covariance of the 

distributions. Furthermore, the structural properties of the 

distributions cannot be modelled, e.g., shape and modality of 

empirical distributions. Instead of utilizing traditional moment-

based ambiguity sets based on statistical moment information, the 

metric-based ambiguity sets specify the closeness of uncertain 

distributions with empirical distributions based on statistical 

metrics, e.g., KL divergence and Wasserstein metric. The 

proposed Wasserstein metric-based ambiguity set is more 

suitable for characterizing FDI than moment-based ambiguity 

sets. Since there is a low frequency of FDI attacks manipulated 

on energy systems, which affects the historical data availability. 

Therefore, compared to the moment-based ambiguity sets, the 

proposed Wasserstein metric-based ambiguity set with less 

reliance on FDI historical data provides a more feasible FDI 

handling solution.  

The main achievements of this paper are as follows:  

1) Existing literature has not investigated the impact of LR 

attacks on MEDS, which is studied in this paper to fill 

the gap. The energy interdependencies among power, 

gas and heat are extensively modelled.  

2) Both LR attacks and renewable uncertainties are 

modelled by DRO method. Compared to SO, DRO only 

requires moment information, which is easy to obtain 

from historical data; compared to RO, DRO considers 

additional statistical information to resolve the 

conservatism of RO. The innovative conditional 

Wasserstein metric-based ambiguity set enables to 

flexibly control the distance among the reference and 

candidate probability distributions.  

3) Compared to bilevel and trilevel optimization models, a 

two-stage adaptive robust uneconomic operation 

mitigation scheme is proposed, which incorporates both 

day-ahead and real-time operation and is more practical 

for systems.  

The rest of this paper is organized as follows. Section Ⅱ models 

LR attacks. Section Ⅲ presents the objective function and 

constraints of the DR-RIM. The methodology regarding DRO 

and reformulations are presented in section Ⅳ. Section Ⅴ 

demonstrates case studies and the performance of the DR-RIM. 

Section Ⅵ concludes this paper.  

II. MODELLING OF LOAD REDISTRIBUTION ATTACKS 

LR attacks are launched by false load data to affect system 

operation schedules. The tempered load meter reading deviates 

from the real reading and thus system operators make decisions 

based on the falsified load demand [18-21]. Consequently, this 

can cause economic loss and physical damages to equipment. 

This section firstly proposes how attack manipulators can evade 

the detection by state estimation and then presents the modelling 

of LR attacks.  

This work is based on [20, 21], assuming that the system 

estimator utilizes DC state estimation (DSSE). Previous research 

has investigated designing risk mitigation strategies under the 

assumption that the adversary can evade DSSE. However, in real 

practice, as the approximation of AC state estimation (ASSE), 

DSSE is not accurate to monitor state variables in distribution 

systems due to the low x/r ratio [30-32]. This work aims to design 

a multi-energy management model under FDI attacks, 

concentrating on investigating the multi-energy coordination, 

DRO approach for modelling FDI, and two-stage mitigation 

framework. The extensively cited and accepted works [20, 21] 

provides the fundamental mitigation model for this proposed 

paper. Nevertheless, building the accurate risk mitigation model 

with ASSE background will be the future work.  

A. State estimation  

State estimation is a powerful tool to detect FDI by processing 

raw data measurements, but a successful FDI can be undetectable 

by an adversary’s stealthy design [8, 31, 33, 34]. The nonlinear 

relationship between state variable 𝑥 and measurement 𝑧 is given 

in (1), where ℎ(𝑥) denotes the nonlinear vector function of 𝑥 and 

𝑒  is the error measurement. Based on DC state estimation, 
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equation (1) can be transformed into (2), where 𝐻 represents the 

Jacobian matrix.  

𝑧 = ℎ(𝑥) + 𝑒  (1) 

𝑧 = 𝐻𝑥 + 𝑒  (2) 

After the realization of FDI, the measurement vector 𝑧 

becomes 𝑧𝑏𝑎𝑑 = 𝑧 + 𝑎 , and the estimated state vector can be 

represented as  �̂�𝑏𝑎𝑑 = �̂� + 𝑐 where 𝑎 is the attack vector and 𝑐 
is the resulted deviation vector of state variable after FDI attacks. 

Accordingly, to determine the estimated state variable, �̂�𝑏𝑎𝑑 can 

be formulated as (3), where 𝑊  represents the diagonal error 

matrix.  

�̂�𝑏𝑎𝑑 = (𝐻
′𝑊𝐻)−1𝐻′𝑊𝑧𝑏𝑎𝑑  (3) 

The largest normalized residual (LNR) can be used to detect 

and identify measurement errors by (4). If the residual is less than 

a threshold 𝜀, then the state estimate is valid without FDI.  

𝐿𝑁𝑅 = ‖𝑧 − 𝐻�̂� ‖ ≤ 𝜀  (4) 

Then, equation (5) representing LNR is given based on (3) and 

(4). Finally, equation (6) is obtained.  

𝐿𝑁𝑅 = ‖𝑧 + 𝑎 − 𝐻((𝐻′𝑊𝐻)−1𝐻′𝑊𝑧𝑏𝑎𝑑)‖  (5) 

𝐿𝑁𝑅 = ‖𝑧 − 𝐻�̂� + (𝑎 − 𝐻𝑐)‖  (6) 

If 𝑎 is the linear combination of 𝐻 and 𝑐, i.e., 𝑎 = 𝐻𝑐, then 

𝐿𝑁𝑅 = ‖𝑧 − 𝐻�̂�‖  has no change of residual. Therefore, a 

successful FDI attack is launched which can evade detection. 

Traditional bad data detection easily fails when the FDI vector 

Δ𝑧  is the multiplication of Jacobian matrix and amount of 

changes Δ𝑥: 

𝛥𝑧 = 𝑎 = 𝐻𝑐 = 𝐻𝛥𝑥 (7) 

B. LR Modelling 

The original bus power injection and line flow are illustrated 

in (8) and (9), where 𝐾𝑃  and 𝐾𝐷  are bus-generator incidence 

matrix and bus-load incidence matrix respectively. 𝑆𝐹 is the shift 

factor matrix which approximates the change in active power 

flow. Due to LR attacks, (10) and (11) show the incremental 

matrices of 𝐵𝑃 and 𝑃𝐿 [18-21].  

𝐵𝑃 = 𝐾𝑃 ∙ 𝐺 − 𝐾𝐷 ∙ 𝐷 (8) 

𝑃𝐿 = 𝑆𝐹 ∙ 𝐵𝑃 (9) 

Δ𝐵𝑃 = 𝐾𝑃 ∙ Δ𝐺 − 𝐾𝐷 ∙ Δ𝐷 (10) 

Δ𝑃𝐿 = 𝑆𝐹 ∙ Δ𝐵𝑃 (11) 

To model successful LR attacks, the following assumptions are 

normally considered: 

1. The attack on the output measurement of generators is 

ignored because the attack can be detected and corrected 

easily. Therefore, Δ𝐺 = 0. 

2. Zero injection buses which have neither loads nor generators 

connected are not attackable.  

3. Load measurements can be attacked. 

4. Branch flow measurements can be changed since load 

measurement is attackable.  

Based on above assumptions, (10) and (11) are reformulated as 

(12). 

Δ𝑃𝐿 = −𝑆𝐹 ∙ 𝐾𝐷 ∙ Δ𝐷 (12) 

∑Δ𝐷

 

= 0 (13) 

−𝛽𝐷 ≤ Δ𝐷 ≤ 𝛽𝐷 (14) 

Equation (13) shows the stealthy LR designed by the adversary, 

which increases and decreases some loads simultaneously to 

maintain the total load unchanged. The LR deviation is limited in 

(14) with the attack injection level (AIL) 𝛽 , which is used to 

ensure the attack magnitude for a load measurement is not beyond 

the limit and thus to lower the risk of being suspected. 𝛽 ranges 

from 0% to 100%. 

Constraint (15) shows that the initial power flow should be 

between line capacity. Due to LR attacks, the branch flow 

deviation Δ𝑃𝐿 should be considered and eliminated in (16). 

𝑃𝐿 ≤ 𝑃𝐿 ≤ 𝑃𝐿 (15) 

𝑃𝐿 + 𝑆𝐹 ∙ 𝐾𝐷 ∙ Δ𝐷 ≤ 𝑃𝐿 ≤ 𝑃𝐿 + 𝑆𝐹 ∙ 𝐾𝐷 ∙ Δ𝐷 (16) 

As a special case of FDI attacks, load measurement can be 

attacked according to [20, 21] by enforcing the sum of load attack 

vector to be zero in (17). Equation (18) constraints the attack 

deviation by AIL 𝛽.  

∑Δ𝑃𝑘𝑒,𝑡
 

= 0 (17) 

−𝛽𝑘𝑒𝑃𝑘𝑒,𝑡 ≤ Δ𝑃𝑘𝑒,𝑡 ≤ 𝛽𝑘𝑒𝑃𝑘𝑒,𝑡 (18) 

III. TWO-STAGE MITIGATION FOR UNECONOMIC OPERATION 

The proposed MEDS contains a distribution system in multi-

energy vectors connected with energy hubs. To mitigate the 

uneconomic operation of MEDS caused by LR attacks, a two-

stage mitigation scheme is proposed. The overall illustration is 

shown in Fig. 2.  

▪ The first-stage optimization is a day-ahead operation which 

is implemented under the normal operation without meter 

reading being tampered.  

▪ The second stage takes corrective action on the adjustment 

of the generation of traditional DGs, natural gas sources, 

electricity purchase from the upper day-ahead market and 

implement load shedding.  

 

Fig. 2.  The proposed two-stage cyber-resilience energy management 

framework.  

 

Fig. 3.  The proposed energy hub model.  
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Specifically, this two-stage DR-RIM includes i) stage one: 

day-ahead operation that schedules traditional DGs and gas 

sources and ii) stage two: real-time operation that reschedules 

traditional DGs and gas sources as well as considering load 

shedding, based on random LR attacks and renewable 

uncertainty. ‘Regulation’ is used to describe regulation actions on 

generation outputs conducted by the system operator. The 

objective functions and constraints are presented and explained 

in section A-C. 

Note that in the day-ahead operation, forecasting is done with 

the third-party vendors [35, 36]. Day-ahead operation conducts 

initial system operational planning for the following day based on 

the limited information of the uncertainties, e.g., uncertainties of 

renewable generation and load demand [37]. High-quality 

forecasting significantly improves the controllability of power 

system dispatch, supporting system operators with cost-effective 

operation schemes, enhanced system reliability and minimized 

renewable power curtailment via preparing to anticipate up- and 

down-reserves. However, the delivery of the forecast information 

can also be cyber-attacked [38]. By now, there is no existing 

literature focusing on modelling the cyber-attacked forecast 

information exchange between the forecast authorities and 

system operators, which is beyond the scope of this paper. This 

paper targets at mitigating the cyber risks caused by LR attacks. 

The risk mitigation model for transferring the renewable forecast 

information will be incorporated in future work.  

To mitigate the disruption caused by FDI, the proposed DR-

RIM conducts cyber-resilient measures at both the day-ahead and 

real-time stages. During the day-ahead stage, the reserve capacity 

of controllable DGs and gas sources is prepared for emergency 

response under potential FDI attacks, which is modelled in 

constraints (22)-(25). At the real-time stage, the optimal load 

shedding program is adopted to properly prioritize critical 

demand areas and implement load shedding at certain areas. The 

corresponding constraints are presented in (49)-(52). Meanwhile, 

the adjustive actions of generation and energy flow dispatch are 

made, which are given in constraints (46).  As a consequence,  the 

security of the overall system is maintained.  

A. DR-RIM Objective Function 

The first-stage objective function is shown in (19), including i) 

power purchase cost from the day-ahead market, ii) generation 

cost of traditional DGs and gas sources and iii) reserve cost of 

traditional DGs and gas sources. It should be noted that the 

proposed reserve capacity of traditional DGs and gas sources are 

prepared for LR attacks and renewable uncertainties.  

𝛤1 = min ∑ 𝜆𝑚
𝑠 𝑃𝑚,𝑡

𝑠 + 𝜆𝑖𝑒
𝑎

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇

𝑃𝑖𝑒,𝑡
𝑠 2

+ 𝜆𝑖𝑒
𝑏 𝑃𝑖𝑒,𝑡

𝑠

+ 𝜆𝑖𝑒
𝑐 + 𝜆𝑖𝑔𝑃𝑖𝑔,𝑡

𝑠 + 𝜆𝑖𝑔𝑃𝑖𝑔,𝑡
𝑠

+ 𝜆𝑖𝑒
+ 𝑟𝑖𝑒,𝑡

+ + 𝜆𝑖𝑒
− 𝑟𝑖𝑒,𝑡

− + 𝜆𝑖𝑔
+ 𝑟𝑖𝑔,𝑡

+

+ 𝜆𝑖𝑔
− 𝑟𝑖𝑔,𝑡

−  

 

(19) 

The second-stage objective function is shown in (20) including 

i) the power purchase cost from real-time market if power 

purchased from the day-ahead market is not sufficient or the 

penalty cost for excessive power purchased from the day-ahead 

market, ii) the penalty cost for renewable power deviation, iii) 

regulated generation cost of traditional DGs and gas sources and 

iv) load shedding cost of power and gas loads. 

𝛤2 = min ∑ 𝜆𝑚
𝑟𝑒|𝑃𝑚,𝑡

𝑟𝑒 − 𝑃𝑚,𝑡
𝑠 |

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇,𝑘𝑒∈𝐾𝑒,𝑘𝑔∈𝐾𝑔

+ 𝜆𝑗
𝑟𝑒|𝜔𝑗,𝑡

𝑠 − 𝜉𝑗,𝑡|

+ 𝜆𝑖𝑒
𝑟𝑒|𝑃𝑖𝑒,𝑡

𝑠 − 𝑃𝑖𝑒,𝑡
𝑟𝑒 | +𝜆𝑖𝑔

𝑟𝑒 |𝑃𝑖𝑔,𝑡
𝑠

− 𝑃𝑖𝑔,𝑡
𝑟𝑒 | + 𝜆𝑘𝑒

𝑙𝑠 𝑃𝑘𝑒,𝑡
𝑙𝑠 + 𝜆𝑘𝑔

𝑙𝑠 𝑃𝑘𝑔,𝑡
𝑙𝑠  

 

(20) 

B. Day-ahead Operation 

The actual distribution systems are inherently unbalanced 

since the three-phase line configuration is asymmetric, connected 

with unbalanced three-phase loads. In addition, the proliferating 

DG connections aggravate the imbalance. Many research has 

considered the impacts of unbalance in the distribution system 

management and control [30, 39, 40]. However, this paper studies 

the risk mitigation scheme against cyber-attacks on a simplified 

distribution system. Since the main focus of this paper is to 

provide a cyber-resilient multi-energy management model with 

the two-stage corrective approach. Indeed, modelling a cyber-

resilient energy management model in an unbalanced distribution 

system is more practical with enhanced computational accuracy, 

which should be considered in the future extension of this work.  

In the first stage, the day-ahead operation scheme is based on 

the renewable output forecast and load before LR attacks. The 

system constraints are as follows (21)-(45). Constraint (21) limits 

power purchase from the day-ahead market. The reserve capacity 

of traditional DGs and gas turbines are shown in (22)-(23).  

Constraints  (24)-(25) ensure that generation output is within the 

predefined limit considering reserve. The reactive power output 

is limited in (26). In distribution systems, the linearized DistFlow 

equation is widely used for both active and reactive power flows, 

which are shown in (27)-(30). Constraints (31) and (32) ensure 

the balancing conditions for active and reactive power at each 

node. Gas pressure is constrained in (33) and (34). It should be 

noted that in radial gas networks, the higher pressure is always on 

 
Fig. 4. Illustration of the overall methodology.  
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initial nodes and the gas flow direction is from initial nodes to 

terminal nodes. Thus, constraint (34) is considered. Weymouth 

equation is shown in (35), which characterizes the relationship 

between gas flow and pressure. Equation (36) constrains gas flow 

and nodal power balance of gas networks, presented in (37).    

The proposed energy hubs contain CHP, ground source heat 

pump (GSHP) and gas furnace. Fig. 3 presents the proposed 

energy hub structure. The technical constraints of energy hubs are 

given in (38)-(45). The energy conversion constraints are 

presented in (38)-(40), followed by the input limit of conversion 

technologies in (41). Constraints (42)-(44) regulate the charging 

and discharging process of ESS. Finally, the inner energy balance 

constraint of energy hubs is given in (45).  

0 ≤ 𝑃𝑚,𝑡
𝑠 ≤ 𝑃𝑚,𝑚𝑎𝑥  (21) 

0 ≤ 𝑟{∙},𝑡
+ ≤ 𝑅{∙}

+ , {∙} = 𝑖𝑒 , 𝑔𝑡 (22) 

0 ≤ 𝑟{∙},𝑡
− ≤ 𝑅{∙}

− , {∙} = 𝑖𝑒 , 𝑔𝑡 (23) 

𝑃{∙},𝑡
𝑠 + 𝑟{∙},𝑡

+ ≤ 𝑃{∙},𝑚𝑎𝑥, {∙} = 𝑖𝑒 , 𝑔𝑡 (24) 

𝑃{∙},𝑚𝑖𝑛 ≤ 𝑃{∙},𝑡
𝑠 − 𝑟{∙},𝑡

− , {∙} = 𝑖𝑒 , 𝑔𝑡 (25) 

𝑄𝑖𝑒,𝑚𝑖𝑛 ≤ 𝑄𝑖𝑒,𝑡
𝑟𝑒 ≤ 𝑄𝑖𝑒,𝑚𝑎𝑥  (26) 

𝑉𝑏,𝑚𝑖𝑛
 ≤ 𝑉𝑏,𝑡

𝑠 ≤ 𝑉𝑏,𝑚𝑎𝑥
  (27) 

𝑉𝑏
𝑠,𝑖𝑛𝑖 − 𝑉𝑏

𝑠,𝑡𝑒𝑟 = (𝑓𝑙𝑒,𝑡
 𝑠 𝑟𝑙𝑒 + 𝑞𝑓𝑙𝑒,𝑡

 𝑠 𝑥𝑙𝑒)/𝑉0 (28) 

0 ≤ 𝑓𝑙𝑒,𝑡
 𝑠 ≤ 𝑓𝑙𝑒,𝑚𝑎𝑥

𝑠  (29) 

0 ≤ 𝑞𝑓𝑙𝑒,𝑡
 𝑠 ≤ 𝑞𝑓𝑙𝑒,𝑚𝑎𝑥

𝑠  (30) 

∑ 𝑃𝑖𝑒,𝑡
𝑠 +

𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑠 + ∑ 𝑓𝑙𝑒,𝑡

𝑠,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒𝑗∈𝐽

= ∑ 𝑃𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

 

(31) 

∑ 𝑄𝑖𝑒,𝑡
𝑠 +

𝑖𝑒∈𝐼𝑒

∑ 𝑞𝑓𝑙𝑒,𝑡
𝑠,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑞𝑓𝑙𝑒,𝑡
𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

= ∑ 𝑄𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

 (32) 

 

𝑃𝑟𝑙𝑔,𝑚𝑖𝑛
2   

≤ 𝑃𝑟𝑙𝑔,𝑡
𝑠2 ≤ 𝑃𝑟𝑙𝑔,𝑚𝑎𝑥

 2  (33) 

𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 ≥ 𝑃𝑟𝑙𝑔,𝑡

𝑠,𝑡𝑒𝑟  
 (34) 

𝑓𝑙𝑔,𝑡
𝑠 |𝑓𝑙𝑔,𝑡

𝑠 | =  𝛾𝑙𝑔 (𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡

𝑠,𝑡𝑒𝑟2
 
) (35) 

0 ≤ 𝑓𝑙𝑔,𝑡
 𝑠 ≤ 𝑓𝑙𝑔,𝑚𝑎𝑥

 𝑠  (36) 

∑ 𝑃𝑖𝑔,𝑡
𝑠

𝑖𝑔∈𝐼𝑔

+ ∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 −

𝑙𝑔∈𝐿𝑔

∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑡𝑒𝑟  

𝑙𝑔∈𝐿𝑔

= ∑ 𝑃𝑘𝑔,𝑡
𝑘𝑔∈𝐾𝑔

 (37) 

𝑃{∙},𝑡
𝑠,𝑜 = 𝜂{∙}𝑃{∙},𝑡

𝑠,𝑖 , {∙} = 𝐶𝑂𝑃, 𝐺𝐹 (38) 

𝑃𝑐𝑝𝑒,𝑡
𝑠,𝑜 = 𝜂𝑐𝑝𝑒𝑃𝑐𝑝 ,𝑡

𝑠,𝑖
 (39) 

𝑃
𝑐𝑝ℎ,𝑡

𝑠,𝑜 = 𝜂𝑐𝑝ℎ𝑃𝑐𝑝 ,𝑡
𝑠,𝑖

 (40) 

𝑃{∙},𝑚𝑖𝑛
𝑖 ≤ 𝑃{∙},𝑡

𝑖 ≤ 𝑃{∙},𝑚𝑎𝑥
𝑖 , {∙} = 𝑐𝑝 , 𝐶𝑂𝑃, 𝐺𝐹 (41) 

𝑃{∙},𝑚𝑖𝑛
𝑠,𝑐ℎ/𝑑𝑐ℎ

≤ 𝑃{∙},𝑡
𝑠,𝑐ℎ/𝑑𝑐ℎ

≤ 𝑃{∙},𝑚𝑎𝑥
𝑠,𝑐ℎ/𝑑𝑐ℎ

, {∙} = 𝐵𝑆,𝐻𝑆  (42) 

𝐸{∙},𝑡
𝑠 = 𝐸{∙},𝑡−1

𝑠 +∑ 𝑃{∙},𝑡
𝑠,𝑐ℎ𝜂{∙}

𝑐ℎ −
𝑡

1
𝑃{∙},𝑡
𝑠,𝑑𝑐ℎ/𝜂{∙}

𝑑𝑐ℎ, {∙}

= 𝐵𝑆, 𝐻𝑆  

(43) 

𝐸{∙},𝑚𝑖𝑛 ≤ 𝐸{∙},𝑡
𝑠 ≤ 𝐸{∙},𝑚𝑎𝑥

 , {∙} = 𝐵𝑆, 𝐻𝑆  (44) 

[
𝐿𝑒,𝑡 + 𝑃𝐵𝑆,𝑡

𝑠

𝐿ℎ,𝑡 + 𝑃𝐻𝑆,𝑡
𝑠 ] = (45) 

[
1 − 𝑣𝑒,𝑡

𝑠 𝑣𝑔,𝑡
𝑠 𝜂𝐶𝐻𝑃𝑒(1 − 𝑣𝑒,𝑡

𝑠 )

𝑣𝑒,𝑡
𝑠 𝜂𝐶𝑂𝑃 𝑣𝑔,𝑡

𝑠 (𝜂𝐶𝐻𝑃ℎ + 𝜂𝐶𝐻𝑃𝑒𝑣𝑒,𝑡
𝑠 𝜂𝐶𝑂𝑃 + 𝜂𝐺𝐹 − 𝑣𝑔,𝑡

𝑠 𝜂𝐺𝐹)
]

× [
𝑓𝑙𝑒,𝑡
 𝑠,𝑖𝑛𝑗

𝑓𝑙𝑔,𝑡
 𝑠,𝑖𝑛𝑗] 

C. Real-time Operation  

In the second stage, corrective operation schemes are 

deployed, considering LR attacks and renewable output 

deviations from the forecasting. The corrective actions for 

addressing the potential impacts from LR attacks consist of i) the 

power purchase adjustment in the real-time market, ii) the penalty 

for renewable power output deviation to reduce the renewable 

power shortage or curtailment, iii) generation adjustment for 

traditional DGs and natural gas sources due to LR attacks and the 

renewable fluctuation and iv) load shedding to maintain the 

system balance in both power and gas systems.  

Equation (46) is the regulated output of generators, gas 

turbines. Equations (47)-(48) model the stealthy designed LR on 

power system. The load shedding is given in (49). The new 

balancing conditions of power and gas systems are presented in 

(50)-(52).  

𝑃{∙},𝑡
𝑠 − 𝑟{∙},𝑡

− ≤ 𝑃{∙},𝑡
𝑟𝑒 ≤ 𝑃{∙},𝑡

𝑠 + 𝑟{∙},𝑡
+ , {∙} = 𝑖𝑒 , 𝑔𝑡 (46) 

∑ Δ𝑃𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

= 0 
(47) 

−𝛽𝑘𝑒𝑃𝑘𝑒,𝑡 ≤ Δ𝑃𝑘𝑒,𝑡 ≤ 𝛽𝑘𝑒𝑃𝑘𝑒,𝑡 (48) 

0 ≤ 𝑃{∙},𝑡
𝑙𝑠 ≤ 𝑃{∙},𝑚𝑎𝑥

𝑙𝑠 , {∙} = 𝑘𝑒 , 𝑘𝑔 (49) 

∑ 𝑃𝑖𝑒,𝑡
𝑟𝑒 +

𝑖𝑒∈𝐼𝑒

∑𝜉𝑗,𝑡 + ∑ 𝑓𝑙𝑒,𝑡
𝑠,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒,𝑡
𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒𝑗∈𝐽

= ∑ 𝑃𝑘𝑒,𝑡 + Δ𝑃𝑘𝑒,𝑡 − 𝑃𝑘𝑒,𝑡
𝑙𝑠

 

𝑘𝑒∈𝐾𝑒

 

 

(50) 

∑ 𝑄𝑖𝑒,𝑡
𝑟𝑒 + ∑ 𝑞𝑓𝑙𝑒,𝑡

𝑟𝑒,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑞𝑓𝑙𝑒,𝑡
𝑟𝑒,𝑡𝑒𝑟  

𝑙𝑒∈𝐿𝑒𝑖𝑒∈𝐼𝑒

= ∑ 𝑄𝑘𝑒,𝑡

 

𝑘𝑒∈𝐾𝑒

 

 

(51) 

∑ 𝑃𝑖𝑔,𝑡
𝑟𝑒

𝑖𝑔∈𝐼𝑔

+ ∑ 𝑓𝑙𝑔,𝑡
𝑟𝑒,𝑖𝑛𝑖 −

𝑙𝑔∈𝐿𝑔

∑ 𝑓𝑙𝑔,𝑡
𝑟𝑒,𝑡𝑒𝑟  

𝑙𝑔∈𝐿𝑔

= ∑ 𝑃𝑘𝑔,𝑡
𝑘𝑔∈𝐾𝑔

− 𝑃𝑘𝑔,𝑡
𝑙𝑠  

(52) 

The rest of the second-stage constraints are not listed due to 

space limitation. Apart from (46)-(52), the constraints of the 

second stage are the same as the first-stage constraints when the 

superscript ‘s’ is replaced by ‘re’, which denotes the regulated 

decision variables.  

 

IV. SOLUTION PROCEDURES VIA DISTRIBUTIONALLY ROBUST 

OPTIMIZATION 

    This section proposes the solutions procedures of the DRO-

based energy management model for counteracting cyber-

attacks. To begin with, a compact matrix formulation is made for 

describing the two-stage optimization framework. Section B 

proposes the DRO ambiguity set. A set of distributions containing 

the true distributions of FDI attacks and renewable generation are 

constructed. The decision is made based on the worst-case 

distribution, which leads to a mildly conservative energy 

management program. The Wasserstein metric considers 
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distributions that are close to the empirical distribution. The 

radius 𝜂  can be adjusted by the system operator to balance 

between the risk and computational efficiency. Finally, the 

distributionally robust counterpart of the reformulated problems 

is derived. 

A. Compact Matrix Formulation 

The illustration of the overall methodology is given in Fig. 4. 

For clear presentation and notation brevity, the original problem 

is given as a compact matrix formulation. The first-stage problem 

is given in (53) and (54), where the first-stage variables are 

represented by vector x. Objective (53) represents (19)-(20) and 

constraint (54) represents (21)-(45) in the first stage. The second-

stage objective 𝑄(𝑥, 𝜉)  is the wait-and-see adaptive objective 

given the here-and-now decision x. 

min
𝑥∈𝑋

𝑐𝑇𝑥 + sup
ℙ∈Ω  

𝐸ℙ[𝑄(𝑥, 𝜉)] (53) 

s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℝ𝑉1 , 𝑏 ∈ ℝ𝐶1  , 𝐴 ∈ ℝ𝐶1×𝑉1 (54) 

The second-stage problem is shown in (55) and (56) and y 

denotes the second-stage variables. Constraints (21)-(45) with 

superscript ‘re’ and (46)-(52) are summarized as (56). Vector 

ℎ(𝜉) is composed of the constant vector ℎ0 and uncertain vector 

ℎ𝑖
𝜉
. 

𝑄(𝑥, 𝜉) = min
𝑦
𝑓′𝑦 , 𝑦 ∈ ℝ𝑉2 (55) 

s.t. 𝐵𝑥 + 𝐶𝑦 ≤ ℎ(𝜉), 𝑦 ∈ ℝ𝑉2 , ℎ ∈ ℝ𝐶2  , 𝐵 ∈

ℝ𝐶2×𝑉1 , 

 𝐶 ∈ ℝ𝐶2×𝑉2 , 𝐷 ∈ ℝ𝐶2×𝑖 

(56) 

ℎ(𝜉) = ℎ0 + ℎ𝑖
𝜉
𝜉𝑖 (57) 

B. DRO Ambiguity Set  

According to the data-driven setting with empirical 

distribution ℙ̂ = 1/𝑆 ∑ 𝛿�̂�𝑠∈𝑆 , the Wasserstein metric between 

the candidate and empirical distributions is given in (58) [41]. 

The Wasserstein metric for measuring the similarity of two 

distributions is given in Fig. 5. The random variables in the 

candidate and empirical distributions are denoted as 𝜉  and 𝜉† , 

respectively. The distance metric is represented by 𝜌(𝜉, 𝜉†). 

𝑑(ℙ, ℙ̂) = inf
 
𝐸ℚ[𝜌(𝜉, 𝜉

†)] , 𝜉~ℙ, 𝜉†~ℙ̂ (58) 

The ambiguity set considering the Wasserstein distance is 

presented in (59), where 𝜂 is the radius of the ball set. The set of 

all the possible distributions is denoted as 𝑷.  

S = {ℙ ∈ 𝑷(ℝ𝑖  )|
𝜉~ℙ

𝑑(ℙ, ℙ̂) ≤ 𝜂
} 

 

(59) 

 

 

With the lifted representation of the Wasserstein ambiguity set, 

(59) can be written as (60). The ambiguity set  S   is equivalent to 

the marginal uncertain distribution of 𝜉 under ℙ. 

 

A  =

{
 

 
ℙ ∈ 𝑷(ℝ𝑖  × ℝ𝑗  )||

(𝜉, �̃�)~ℙ

𝐸ℙ[𝜌(𝜉, 𝜉𝑠)|�̃� ∈ 𝑺] ≤ 𝜂𝑠
ℙ[(𝜉 ∈ 𝑺)|�̃� = 𝑠] = 1

ℙ[�̃� = 𝑠] = 1/𝑆 }
 

 
 

 

(60) 

 

 

The explicit conditional Wasserstein-based ambiguity set is 

given in (61), where the scenarios are distinguished by �̃� , 

representing the support of 𝜉  is different based on different 

scenarios. The ambiguity set in (61) ensures i) the uncertain 

variables 𝜉 , 𝜑  and �̃� are within the distribution; ii) the 

expectation of uncertain variable 𝜉  is 𝜇𝑠 ; iii) the auxiliary 

variable 𝜑 is used to ensure limited the distribution distance and 

iv) 𝜉 and 𝜑 are limited within the lifted support set Ξ.  
A =

{
  
 

  
 

ℙ ∈ 𝑷(ℝ𝑖  ×ℝ𝑗  )

|

|

((𝜉, 𝜑), �̃�)~ℙ

𝐸ℙ[𝜉|�̃� ∈ 𝑺] = 𝜇𝑠
𝐸ℙ[𝜑|�̃� ∈ 𝑺] ≤ 𝜂𝑠

Ξ = {(𝜉, 𝜑) ∈ ℝ𝑖 × ℝ𝑗 ∶  𝐺𝑥 + 𝐻𝑦 ≤ 𝑟 }

ℙ[(𝜉, 𝜑)|�̃� ∈ 𝑺] = 1

ℙ[�̃� ∈ 𝑺] = 1 }
  
 

  
 

 

 

(61) 

 

 

C. Approximation via Linear Decision Rule 

    Equation (62) is obtained as is equivalent to 𝑄(𝑥, 𝜉), where 

𝑦(𝜉)  is the adaptive recourse function as shown in (63). 

Determining the worst-case expectation 𝑄(𝑥, 𝜉) =
sup
ℙ∈Ω  

𝐸ℙ[𝑄(𝑥, 𝜉)]  is generally intractable since all the possible 

realizations pertaining to the uncertainties are involved [42]. 

Employing the LDR in (64) can address the problem [43], which 

approximates 𝑦(𝜉) by linear affine functions of 𝜉 and 𝜑.   

𝑄(𝑥, 𝜉) = sup
ℙ∈Ω  

𝐸ℙ[𝑄(𝑥, 𝜉)] = sup
ℙ∈Ω  

𝐸ℙ[𝑓
′𝑦(𝜉)] (62) 

 𝑦(𝜉) ∈ arg min{𝑓′𝑦:  𝐵𝑥 + 𝐶𝑦 ≤ ℎ(𝜉)}, 𝑦 ∈

ℝ𝑉2 , ℎ ∈ ℝ𝐶2  , 𝐵 ∈ ℝ𝐶2×𝑉1 , 𝐶 ∈ ℝ𝐶2×𝑉2 , 𝐷 ∈ ℝ𝐶2×𝑖 

(63) 

 𝑦𝑛(𝜉, 𝜑) = 𝑦𝑛
0 + ∑ 𝑦𝑛

𝜉
𝜉∈�̃� 

𝜉 + ∑ 𝑦𝑛
𝜑

𝜑∈�̃� 𝜑 (64) 

    The approximation of function 𝑄(𝑥, 𝜉) can be obtained when 

the recourse decision 𝑦(𝜉) is replaced by the LDR expression in 

(65), which is denoted as 𝑄𝐿𝐷𝑅(𝑥, 𝜉).  
𝑄𝐿𝐷𝑅(𝑥, 𝜉, 𝜑, �̃�) = min sup

ℙ∈Ω  

𝐸ℙ[𝑓
′𝑦(𝜉, 𝜑, �̃�)] (65) 

s.t. 𝐵𝑥 + 𝐶𝑦(𝜉, 𝜑, �̃�) ≤ ℎ(𝜉), ∀(𝜉, 𝜑) ∈ Ξ (66) 

D. Dual Reformulation and Distributionally Robust 

Counterpart 

In order to convert the original ‘min sup’ framework of the 

second stage into ‘min’ and thus mixed with the first-stage 

objective, a dual reformulation for the inner maximation problem 

is made [44] in (67)-(70), where 𝜓 and 𝜆 are dual variables.  

𝑄𝐿𝐷𝑅
 = min 𝜏 + 𝜓𝜂𝑠 + 𝜆𝜇𝑠 (67) 

s.t.    𝜏 + 𝜉′𝜆 + 𝜑′𝜓 ≥ 𝑓′𝑦(𝜉, 𝜑, �̃�), ∀(𝜉, 𝜑) ∈ Ξ (68) 

𝐵𝑥 + 𝐶𝑦(𝜉, 𝜑, �̃�) ≤ ℎ(𝜉), ∀(𝜉, 𝜑) ∈ Ξ (69) 

𝜓 ≥ 0,𝜓 ∈ ℝ𝑗 , 𝜏 ∈ ℝ , 𝜆 ∈ ℝ𝑖 (70) 

The proof of (67)-(70) is given below. Firstly, the conic 

representation of (67)-(70) is given: 

𝑄Ⅰ
∗
 
=min F (71) 

 
Fig. 5.  Wasserstein metric for measuring two distributions. 
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s.t.   (𝑭,−𝜓,−𝜆)′(1, 𝜂, 𝜇) ≥ 0            ∀(1, 𝜂, 𝜇) ∈ 

K (𝐵) 

(72) 

(𝜏 − 𝑓′𝑦(𝜉, 𝜑, 𝑠), 𝜆, 𝜓)′(1, 𝜉, 𝜑) ≥

0       ∀(1, 𝜉, 𝜑) ∈ K (𝐶) 

(73) 

(𝐵𝑥 − ℎ0, 𝐶𝑦𝜉𝑠 − ℎ𝜉 , 𝐶𝑦𝜑𝑠)
′
(1, 𝜉, 𝜑) ≥ 0 

∀(1, 𝜉, 𝜑) ∈ K (𝐶) 

(74) 

The below formulation is derived based on the dual cone, 

where are dual multipliers for representing the original 

expressions in implicit and compact forms.   

𝑄Ⅱ
∗ = min F (75) 

s.t.   (𝑭,−𝜓⏟
𝛬

, −𝜆⏟
𝛱

) ∈ K (𝐵) 
(76) 

(𝜏 − 𝑓′𝑦(𝜉, 𝜑, 𝑠)⏟          
𝛩

, 𝜆⏟
𝛷

, 𝜓⏟
𝛹

) ∈ K (𝐶) 
(77) 

(𝐵𝑥 − ℎ0, 𝐶𝑦𝜉𝑠 − ℎ𝜉⏟      
𝑀

, 𝐶𝑦𝜑𝑠⏟  
𝜗

) ∈ K (𝐶) 
(78) 

Based on the conic duality, the dual representation of (75)-(78) 

is: 

𝑄Ⅲ
∗ = max (𝛩𝑓′𝑦0𝑠 + (𝛩𝑓′ − 𝑀𝐶)𝑦𝜉𝑠 +

(𝛩𝑓′ − 𝜗𝐶)𝑦𝜑𝑠 + ℎ0 − 𝐵𝑥 − 𝐶𝑦0𝑠 + ℎ𝜉𝑀)  

(79) 

s.t.   𝛩 = −𝜏,  (80) 

   𝛱 − 𝛷 ≥ 0,  (81) 

   𝛬 = 𝛹 (82) 

The slaters condition is satisfied based on the assumption made 

in Theorem 1.4.2 of [45]: i) a strictly feasible solution can be 

obtained from (79)-(82) and ii) according to the duality theory, 

the strong duality holds and 𝑄Ⅲ
∗ = 𝑄𝐿𝐷𝑅

   is derived. Accordingly, 

problems (67)-(70) are solvable. The reformulated (67)-(70) is a 

robust linear program, which can be written as the distributionally 

robust counterpart in (83)-(90).  

𝑄𝐿𝐷𝑅 = min 𝜏 + 𝜓𝜂𝑠 + 𝜆𝜇𝑠 (83) 

s.t.    𝜏 − 𝑓′𝑦0𝑠 + 𝜒0
′𝑟 ≥ 0 (84) 

𝜒0𝑠
′ 𝐺𝑠𝑖 =∑𝑞𝑛𝑦𝑛𝑖

𝜉𝑠
− 𝜆𝑖

𝑛

, ∀𝑖 ∈ 𝐼, ∀𝑠 ∈ 𝑆 (85) 

𝜒0𝑠
′ 𝐻𝑠𝑗 =∑𝑞𝑛𝑦𝑛𝑗

𝜑𝑠
− 𝜓𝑗 , ∀𝑗 ∈ 𝐽

𝑛

, ∀𝑠 ∈ 𝑆 (86) 

𝜒𝑚𝑠
′ 𝐺𝑠𝑖 =∑𝐶𝑚𝑛𝑦𝑛𝑖

𝜉𝑠
−

𝑛

ℎ𝑚𝑖
𝜉
, ∀𝑖 ∈ 𝐼, ∀𝑠 ∈ 𝑆 (87) 

𝜒𝑚𝑠
′ 𝐻𝑠𝑗 =∑𝐶𝑚𝑛𝑦𝑛𝑗

𝜑𝑠

𝑛

, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (88) 

𝐵𝑚
′ 𝑥 + 𝐶𝑚

′ 𝑦0𝑠 − ℎ𝑚
0 + 𝑟′𝜒𝑚𝑠

  , ∀𝑠 ∈ 𝑆 (89) 

𝜓 ≥ 0, 𝜒0
 ≥ 0, 𝜒𝑚

 ≥ 0, 𝜏 ∈ ℝ , 𝜆 ∈ ℝ𝑖 , 𝜓 ∈ ℝ𝑗 (90) 

The new dual variables are represented as 𝜒0
  and 𝜒𝑚

 , 

respectively. Accordingly, the tractable approximation of the 

original DR-RIM is derived in (83)-(90).  

V. CASE STUDIES 

The extensive case studies of DR-RIM are tested in three 

MEDSs with different scales, i.e., a modified IEEE 33-bus 

distribution system, a 69-bus distribution system and a 123-bus 

distribution system connected with 20-node gas systems. Both 

the power and gas systems are in radial topology and 8 cases are 

studied for each system. The three case studies are implemented 

in MATLAB and solved by MOSEK on a PC with 16GB RAM 

 
Fig. 6.  Modified IEEE 33-bus  system. 

TABLE Ⅰ 

PARAMETERS OF NATURAL RESOURCES 

 

Node No. 
𝑃𝑖𝑔,𝑚𝑖𝑛 

(kcf/h) 

𝑃𝑖𝑔,𝑚𝑎𝑥 

(kcf/h) 
𝜆𝑖𝑔 

1 0 35.31 2.2 

8 0 70.63 2 

 

TABLE Ⅱ 

 GENERATOR PARAMETERS 

 

Bus 

No. 

𝑃𝑖𝑒,𝑚𝑎𝑥 

(MW) 

𝑃𝑖𝑒,𝑚𝑖𝑛 

(MW) 

𝑅𝑖
+, 𝑅𝑖

− 

(MW) 
𝑎𝑖 𝑏𝑖 𝑐𝑖 

 

13 1.2 0.3 0.2 0.1 50 62 

23 1.2 0.3 0.2 0.1 50 62 

28 1.0 0.1 0.2 0.15 65 86 
 

 

TABLE Ⅲ 

ECONOMIC PERFORMANCE 

 

Economic result Case 1 Case 2 Case 3 Case 4 

First-stage cost ($) 191760 202590 209565 189390 

Expected Second-

stage cost ($) 
0 0 0 7730 

Total cost ($) 191760 202590 209565 197120 

Economic result Case 5 Case 6 Case 7 Case 8 

First-stage cost ($) 191302 203331 215339 232939 

Expected Second-

stage cost ($) 
9645 9688 9753 13818 

Total cost ($) 200947 213019 225092 246757 

 

TABLE Ⅳ 

FCR FOR CASE 3-8 

 

FCR Line 1-2 Line 6-7 Line 28-29 

Case 3 65% 42% 37% 

Case 4 63% 31% 34% 

Case 5 63% 31% 34% 

Case 6 63% 33% 35% 

Case 7 64% 36% 37% 

Case 8 65% 37% 38% 
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and an Intel Core i7 CPU with 1.5GHz.  The proposed model is 

verified using the following 8 cases: 

Case 1: Single-stage MEDS operation without considering LR 

attacks or renewable uncertainty.  

Case 2: Case 1 considering LR attacks (β=5%) by using RO. 

Case 3: Case 2 considering renewable uncertainty (β=5%). 

Case 4: Two-stage DR-RIM considering LR attacks (β=5%).  

Case 5: Case 4 considering renewable uncertainty (β=5%).  

Case 6: Case 5 with β=10%.  

Case 7: Case 5 with β=15%. 

Case 8: Case 5 with β=20%. 

A. Studies on Modified IEEE 33-Bus Distribution System 

The MEDS is first conducted in a modified IEEE 33-bus 

system with the connection of a 20-node gas system, which is 

shown in Fig. 6. The power system has 3 traditional DGs 

connected to buses 13, 23 and 28. The 20-node gas network 

contains 2 gas resources. Two energy hubs are interconnected 

between power and gas systems. Tables Ⅰ and Ⅱ present the 

parameters for gas sources and traditional DGs respectively.  

Each load is equipped with a meter and thus the applied MEDS 

is equipped with 45 load meters. The attacker enables to evade 

detection and launch stealthy designed LR attacks. This paper 

assumes that the attacker has the full knowledge of the network 

topology and technical parameters [20, 21], which means all the 

buses are exposed to LR attacks. 

1) Studies on Economic Performance 

The economic performance of all cases presented in Table Ⅲ 

is analysed first. Case 1 yields the lowest total cost among all 8 

cases, i.e., 191760$. However, by using DRO under the two-stage 

scheme, cases 4 and 5 have lower first-stage cost than case 1, i.e. 

189390$ and 191302$. The reason is that under LR attacks and 

renewable uncertainty, dispatching sufficient generation in the 

 
Fig. 7.  Active power load shedding for modified IEEE 33-bus system. 

 

 
Fig. 8.  Gas load shedding for modified IEEE 33-bus system.  

 

 

 
Fig. 9. Total operation cost comparison with UO. 

 

 
Fig. 10. Load shedding cost comparison with UO. 

 

TABLE Ⅴ 

ECONOMIC PERFORMANCE OF MEDS-69 

 

Economic result Case 1 Case 2 Case 3 Case 4 

First-stage cost ($) 594470 607542 612958 592018 

Expected Second-

stage cost ($) 
0 0 0 12022 

Total cost ($) 594470 607542 612958 604040 

Economic result Case 5 Case 6 Case 7 Case 8 

First-stage cost ($) 595850 604306 613015 622850 

Expected Second-

stage cost ($) 
13580 14634 15795 16820 

Total cost ($) 609430 618940 628810 639670 

 
Fig. 11.  Active power load shedding for modified IEEE 69-bus system. 

 
Fig. 12.  Gas load shedding for modified IEEE 69-bus system. 
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first stage will lead to significant load shedding cost in the second 

stage. Thus, DR-RIM prefers to dispatch less generation in the 

first stage and the unmet demand will be satisfied through the 

redispatch in the second stage, to avoid high load shedding costs. 

The total cost of case 2 is higher than that of case 1 since LR 

attacks are modelled. When considering both LR attacks and 

renewable uncertainties, the cost of case 3 is 3.4% higher than 

that of case 2. Compared with cases 2 and 3, there are cost 

reduction of 5470$ and 8618$ respectively for cases 4 and 5, 

implying the less conservatism of DRO. From cases 5 to 8, with 

increasing AIL from 5% to 20%, there are 6%, 12% and 22% of 

the cost increase. It should be noted that the second-stage cost 

grows smoothly from cases 5 to 8, which indicates that under the 

AIL of 15%, the LR attacks have less impact on load shedding 

than high AIL, i.e. 20%.  

2) Studies on Load Shedding 

 Shedding on active power load shedding (APLS) and gas load 

shedding (GLS) are analyzed under different AILs and load bases. 

The total power load (32MWh) at the first time period is set as 1 

p.u. and defined as load base. Apart from considering AIL, the 

impact of load base on load shedding is also investigated in the 

case of uncertain load variations during high consumption 

periods or special events.  s. 6-7 show the general increasing trend 

of load shedding with the increase of either AIL or load base. As 

shown in Fig. 7, the APLS is only up to 5MWh at the maximum 

load base when no LR attacks are imposed. However, under 25% 

of AIL, the APLS ranges from 12MWh to 22MWh, which 

reaches up to 42% of the total load. GLS in Fig. 8 shows the 

different changing speed with respect to different AILs and load 

bases. When the load base is low, i.e., under 40 MWh, GLS 

increases slowly.  When the load base is high, GLS increases 

smoothly until when AIL is above 20% and increases 

significantly. In addition, GLS is not sensitive when AIL is 

between 10% and 20%.  

3) FDI Impact on Flow Variation 

In cases 3-8, the impact of LR attacks and renewable 

uncertainties on active power flow is given in TABLE Ⅳ. Lines 

1-2, 6-7 and 29-29 are chosen for analysis as they are main 

branches. A flow capacity ratio (FCR) is defined as the 

percentage of flow over its capacity. In general, from cases 3-8, 

with increasing AIL, FCR changes smoothly. The reason is that 

although LR attacks cause the changes of load measurement, LR 

attacks cause some load to increase but some load to decrease. 

The overall load increment is zero, which can deceive operators 

and thus the influence on flow is low. 

 Line 1-2 is the most important branch in the system which 

transmits a large amount of power from the upper-level network, 

whose FCR is also the highest. There is a small FCR increase 

when AIL increases from cases 5-8, i.e., from 63% to 65%. Case 

3 solved by RO has similar FCR with case 5 solved by DRO for 

line 1-2. For line 6-7, compared with case 5, RO in case 3 yields 

12% more FCR due to the strong robustness. In addition, 

compared with line 1-2 and line 28-29, increasing AIL in cases 

5-8 causes more sensitive FCR increase.  

4) Cyber-Resilience Enhancement Compared with Uneconomic 

Operation 

    To verify the effectiveness of the proposed strategy for 

uneconomic operation (UO), a new comparison between the DR-

RIM and normal UO is investigated and results are in Figs. 9 and 

10. UO is defined as system operation conducted by system 

operator without effective countermeasures under LR attacks, i.e. 

load measurement on each bus has been falsified and the 

operation scheme is not adjusted when false data injections are 

launched successfully, wrong decisions would be made. This 

could cause extra cost compared to the normal case with correct 

load measurement, where the operational decisions are made to 

securely operate the system while minimizing operation cost. To 

model UO, 1000 load variation samples are generated via 

Gaussian distribution with μ=0 and σ=0.02. For example, at 8:00, 

the attacked load measurements show 80% of the predicted day-

ahead load demand. Generation and energy flow schemes are 

determined based on this and yield smaller generation output. 

Nevertheless, in the real world, the total load level is 100% of the 

predicted day-ahead load demand, which results in a large 

amount of load shedding, causing economic loss. By contrast, 

DR-RIM considers the worst distribution of potential LR attacks 

and mitigates the risk. Intuitively, the second-stage inner min-

max framework of DR-RIM considers LR attacks rather than trust 

the attacked load measurements. 

    Fig. 9 presents the total operation cost from DR-RIM and UO 

models. The costs of UO scheme under all the AIL are always 

higher than that of DR-RIM. When AIL is 5%, the cost from DR-

RIM is $200947 while the cost from UO is $203470. Under the 

highest considered AIL, the cost difference between the two is 

$4327. In Fig. 10, UO yields higher load shedding cost compared 

TABLE Ⅵ 

ECONOMIC PERFORMANCE OF MEDS-123 

 

Economic result Case 1 Case 2 Case 3 Case 4 Case 5 

First-stage cost 

($) 
1083956 1226523 1163208 1156059 1245230 

Expected 

Second-stage 

cost ($) 

27784 0 30174 29830 37045 

Total cost ($) 1111740 1226523 1193382 1185889 1282275 

 

 
Fig. 13.  Cost increase compared with Case 1.  

 
Fig. 14.  The impact of Wasserstein distance on the expected result. 

TABLE Ⅶ 

COMPUTATIONAL EFFICIENCY  IN SECONDS 

 

Sample size 50 100 200 300 500 1000 

W-DRO 25 65 221 731 1928 5402 

M-DRO 55 103 317 902 2418 11025 

 

 

 

 

   

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%

Case 2 Case 3 Case 4

C
o
st

 r
ed

uc
ti

o
n

Case No.

First-stage cost

Second-stage cost

Total cost

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

3.50E+04

4.00E+04

4.50E+04

5.00E+04

0% 10% 20% 30% 40% 50%

E
xp

ec
te

d
 s

ec
o
n

d
-s

ta
ge

 c
o

st
 (

$
)

Wasserstein distance



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 

 
12 

with DR-RIM under all considered AIL. Similarly, the cost 

difference increases with growing AIL. The load shedding cost 

from UO is 1.85 times of that from DR-RIM when AIL is 5% 

while the ratio increases to 2.15 times when AIL is 20%.    

B. Studies on a Modified IEEE 69-Bus Distribution System 

In addition, the proposed DR-RIM is tested in a modified IEEE 

69-bus system connected with a 20-node gas system, namely the 

MEDS-69 system. Four traditional DGs are connected to bus 6, 

30, 47 and 60. Two renewable DGs are connected to buses 16 and 

36.  

1) Studies on Economic Performance  

The economic performance of the modified IEEE 69-bus 

system is presented in TABLE Ⅴ. In case 1, deterministic 

optimization yields the lowest total cost (594470$). RO is applied 

for case 2 and 3, whose economic results are more conservative 

compared with case 4 and 5 applied by DRO. When renewable 

power uncertainty is additionally considered, there is 

5416$ additional cost of case 3 compared with case 2. For case 4 

and 5 whose LR attacks and renewable uncertainty are captured 

by DRO, case 5 yields 5390$ more total cost than case 4. When 

the AIL increases from 5% to 20%, both the day-ahead and real-

time corrective cost increase. The total cost of case 8 is 

30240$ higher than that of case 5.  

2) Studies on Load Shedding 

APLS and GLS are studied when AIL varies from 0% to 25% 

and load base varies from 200MWh to 300MWh. Same as Fig. 

11 and 7 tested by the modified IEEE 33-bus system, with the 

increase of AIL or load base, the power and gas load shedding 

both increase. In Fig. 12, The APLS ranges from 91MWh to 

105MWh when load base is 200MWh and the level of the range 

increases dramatically when load base is 300MWh, which ranges 

from 162MWh to 184MWh. The maximum APLS reaches at 

184MWh under LR attack with 25% of AIL and 300MWh of load 

base. In Fig. 12, GLS shows uneven growth under different load 

bases, i.e., it increases slowly when load base is under 270 MWh 

while shows a rapid growth above 270MWh. When both the AIL 

and load base are at the highest level, GLS reaches 309kcf.  

C. Studies on a Modified IEEE 123-Bus Distribution System 

To analyse the scalability of the DR-RIM, a case study is 

conducted in a larger system, namely the MEDS-123 system. The 

MEDS-123 test system consists of 9 traditional DGs and 5 

renewable DGs [46, 47]. To compare with the state-of-the-art 

optimization approach mitigating FDI, the proposed model is 

verified using the following cases:  

Case 1: The proposed DR-RIM with β=5% and 𝜂=5% .  

Case 2: Case 1 solved by RO.  

Case 3: Case 1 solved by M-DRO.  

Case 4: Case 1 with 𝜂=10%.  

Case 5: Case 1 with 𝜂=50% . 

TABLE Ⅵ shows the economic performance of the 5 cases. 

The cost reduction of Case 1 compared with Cases 2-4 is given in 

Fig. 13. Note that the proposed Wasserstein metric-based DRO is 

denoted as W-DRO and the moment-based DRO is denoted as 

M-DRO [28]. All the cases are conducted when β=5%. Cases 2 

and 3 are designed for testing the FDI mitigation model via 

different optimization methods. To test the effect of the 

Wasserstein radius on the algorithm performance, Cases 4 and 5 

are employed. Compared with Case 2 and 3, Case 1 shows 9% 

and 7% less total operation cost. The increase of the radius scales 

up the ambiguity set, which directly leads to the larger FDI 

variation with higher operation costs. Compared with Case 1, 

Cases 4 and 5 result in $74149 and $170535. In Fig. 14, the 

influence of the Wasserstein distance on the second-stage 

expected cost is quantified. When 𝜂 reaches 40%, the operation 

cost is almost fixed at $37000. The computational time of W-

DRO and M-DRO is shown in TABLE Ⅶ. The computational 

efficiency is decreasing with the growth of the sample size. It 

should be noted that the M-DRO utilizes the constraint generation 

algorithm in an iterative manner, which determines the end of the 

algorithm by an optimality gap. M-DRO shows higher 

computational time compared with W-DRO. When the sample 

size is 1000, M-DRO yields 204% of the computational time 

compared with the proposed W-DRO.  

D. Result Discussion  

In the case studies, the proposed DR-RIM is tested on three 

system topologies, namely, IEEE 33-bus MEDS, IEEE 69-bus 

MEDS, and IEEE 123-bus MEDS. Through the extensive 

simulation tests on economic performance, FCR, load shedding, 

and the computational time, the proposed DR-RIM with 

Wasserstein metric-based ambiguity set is proved with more 

computationally efficient and more resilient against cyber-attacks. 

For notation brevity, R-RIM and M-RIM are used for describing 

the robust/moment-based resilience improvement for MEDS 

operation under cyber-attacks [9, 10, 28]. 

 In section A-1, cases 2 and 3 employ RO to mimic the worst-

case FDI attack as the traditional methods [9, 10]. Cases 4 and 5 

are set particularly for comparing the reduced operation cost with 

cases 2 and 3 modelled by R-RIM. As discussed in section A-1, 

R-RIM shows 2.8% and 4.3% higher total operation cost than 

DR-RIM. In Figs. 9 and 10 of section A-4, DR-RIM is compared 

with UO (operation conducted by system operator without 

effective countermeasures under LR attacks). The results of Figs. 

9 and 10 show that DR-RIM yields less operation cost than UO. 

In particular, when AIL is 20%, the load shedding cost of UO is 

115% higher than that of DR-RIM. In TABLE Ⅴ of section B-1, 

the less conservatism of DR-RIM is again proved over R-RIM. 

In section C, case 1 is the benchmark case modelled by DR-RIM. 

Cases 2 and 3 apply RO and M-DRO, respectively. In TABLE 

Ⅵ, it shows that case 1 results in 9% and 7% less operation cost 

compared with cases 2 and 3. In Fig. 13, the bar chart 

demonstrates again the advantage on the economic performance 

of DR-RIM over R-RIM and M-RIM. In addition to the reduced 

objective results, the proposed DR-RIM shows the reduced 

computational time over M-RIM. When the sample size is 1000, 

the DR-RIM and M-RIM require 5402 and 11025 seconds for 

TABLE Ⅷ 

PERFORMANCE COMPARISON UNDER THREE TEST SYSTEMS 

 

Economic result 33-C5 33-C8 69-C5 69-C8 123-C1 123-C2 123-C3 

First-stage cost ($) 191302 232939 595850 622850 1083956 1226523 1163208 

Expected Second-stage 

cost ($) 
9645 13818 13580 16820 27784 0 30174 

Total cost ($) 200947 246757 609430 639670 1111740 1226523 1193382 
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computation, respectively. Since R-RIM relies on the iterative 

decomposition method, namely constraint generation algorithm. 

Overall, section Ⅴ is mainly used to demonstrate the proposed 

DR-RIM performs better than R-RIM and M-RIM in terms of 

optimized objective results and computational time.  

In TABLE Ⅷ, the economic performance comparison of DR-

RIM tested in three test systems is given. Note that 33-C5 

represents case 5 of test in the 33-bus MEDS. And the rest of the 

headers follows the same notation rule. 33-C5, 69-C5, and 123-

C1 are used to compare the performance with β=5%. 33-C8 and 

69-C8 are presented to demonstrate the performance with β=20%. 

When β=5%, DR-RIM yields averagely 13.9% lower result than 

that of β=20%. It can also be observed that with the increase of 

the system scale, the operation cost increases, e.g., the total 

operation cost of 33-C8, 69-C8, and 123-C1 are $246757, 

$639670, and $1111740, respectively. 123-C1, 123-C2, and 123-

C3 are used to investigate the less robustness of W-DRO, i.e., 

123-C1 yields 9.4% and 6.8% lower results than those of 123-C2 

and 123-C3.  

VI. CONCLUSION 

This paper proposes a novel DR-RIM approach for a 

hierarchical day-ahead and real-time operation and emergency 

response framework for MEDS under potential LR attacks. The 

proposed method can effectively mitigate uneconomic operation 

for MEDS under LR attacks and renewable uncertainties in both 

day-ahead and real-time schemes. The MEDS system resilience 

is ensured and operation cost is reduced, facilitating the resilience 

and affordability of the energy trilemma.  

 Through extensive simulations, the key findings are as 

follows: 

▪ DRO outperforms RO by providing less-conservative 

results, working as a more economical method to deal with 

LR attacks and renewable uncertainties.  

▪ The second-stage reschedule provides a corrective scheme 

to minimize operation costs and meanwhile ensures the 

system resilience through APLS and GLS. 

▪ APLS is more sensitive than GLS with the increasing AIL 

because power load is much higher than gas load.  

▪ Renewable generation uncertainty is essential to be 

considered with LR attacks simultaneously since it 

fluctuates and can averagely cause 3% more total cost.  

▪ The operation cost is sensitive to the increase of AIL.  e.g., 

from case 5 to case 8, a 15% increase of AIL causes 22% 

additional operation cost.  

There are several limitations which require further research. 

Most prominently, in addition to the load meter readings, the 

other meter readings in MEDS are also exposed to cyber-attacks, 

e.g., gas pressure, voltage magnitude, etc. Therefore, we aim to 

apply a more complete and specified cyber-resilience operation 

model to counteract more complex cyber-attacks. Furthermore, 

the impact of cyber-attacks on voltage and power quality should 

be investigated for ensuring the system stability and security. 

Load shedding is considered as an effective measure to secure the 

entire system while sacrificing the non-critical load connections. 

Demand-side management will be incorporated into the cyber-

resilience scheme to investigate its functionality to mitigate the 

impact of cyber-attacks.  
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