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Abstract—We use observed transmission line outage data to5
make a Markovian influence graph that describes the probabilities6
of transitions between generations of cascading line outages. Each7
generation of a cascade consists of a single line outage or multiple8
line outages. The new influence graph defines a Markov chain and9
generalizes previous influence graphs by including multiple line10
outages as Markov chain states. The generalized influence graph11
can reproduce the distribution of cascade size in the utility data.12
In particular, it can estimate the probabilities of small, medium13
and large cascades. The influence graph has the key advantage14
of allowing the effect of mitigations to be analyzed and readily15
tested, which is not available from the observed data. We exploit16
the asymptotic properties of the Markov chain to find the lines most17
involved in large cascades and show how upgrades to these critical18
lines can reduce the probability of large cascades.

Q1

19

Index Terms—Cascading failures, power system reliability,20
mitigation, Markov, influence graph.21

I. INTRODUCTION22

CASCADING outages in power transmission systems can23

cause widespread blackouts. These large blackouts are24

infrequent, but are high-impact events that occur often enough to25

pose a substantial risk to society [1], [2]. The power industry has26

always analyzed specific blackouts and taken steps to mitigate27

cascading. However, and especially for the largest blackouts28

of highest risk, the challenges of evaluating and mitigating29

cascading risk in a quantitative way remain.30

There are two main approaches to evaluating cascading risk:31

simulation and analyzing historical utility data. Cascading sim-32

ulations can predict some likely and plausible cascading se-33

quences [3], [4]. However, only a subset of cascading mech-34

anisms can be approximated, and simulations are only starting35

to be benchmarked and validated for estimating blackout risk36

[5], [6]. Historical outage data can be used to estimate blackout37
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risk [2] and detailed outage data can be used to identify critical 38

lines [7]. However it is clear that proposed mitigation cannot 39

be tested and evaluated with historical data. In this paper, we 40

process historical line outage data to form a Markovian influence 41

graph that statistically describes the interactions between the 42

observed outages. The Markovian influence graph can quantify 43

the probability of different sizes of cascades, identify critical 44

lines and interactions, and assess the impact of mitigation on the 45

probability of different sizes of cascades. 46

A. Literature Review 47

We review the previous literature on influence graphs for 48

power grid cascading outages and related topics. There is in- 49

creasing interest in graphs to represent cascading outages, in 50

which the graph describes the interaction between outaged 51

components and is not the power grid topology. These graphs 52

of interactions have differences in how they are formed and 53

have different names, such as the influence graph, the interaction 54

graph, the correlation network, and the cascading faults graph. 55

The idea of a graph of interactions can be traced back to [8] which 56

has a stochastic process at each graph node that interacts with 57

different strengths along the graph edges joining to that node to 58

the other nodes. Rahnamay-Naeini [9] generalizes the model of 59

interacting and cascading nodes in [8] to include interactions 60

within and between two interdependent networks. This type 61

of interacting particle system model has some nice properties 62

allowing analysis, but remains a somewhat abstract model for 63

power system cascading because it is not known how to estimate 64

the model parameters from data. 65

Influence graphs in their present form were introduced by 66

Hines and Dobson [10], and further developed by Qi, Hines, and 67

Dobson [11], [12]. These influence graphs describe the statistics 68

of cascading data with networks whose nodes represent outages 69

of single transmission lines and whose directed edges represent 70

probabilistic interactions between successive line outages. The 71

more probable edges correspond to the interactions between line 72

outages that appear more frequently in the data. Cascades in the 73

influence graph start with initial line outages at the nodes and 74

spread probabilistically along the directed graph edges. Once the 75

influence graph is formed from the simulated cascading data, it 76

can be used to identify critical components and test mitigation of 77

blackouts by upgrading the most critical components [11]–[13]. 78

As well as outages of single lines, cascading data typically 79

includes multiple line outages that occur nearly simultaneously. 80
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When the states are single line outages, these multiple simulta-81

neous outages cause problems in obtaining well-defined Markov82

chain transitions between states. For example, if the outage of83

two lines causes an outage in the next generation, it is hard to84

tell which line caused the subsequent outage or whether the two85

lines caused the subsequent outage together. To address this, [12]86

assigns an equal share to the two lines. The resulting influence87

graph is then approximated to enable analysis. Qi [11] assumes88

that the subsequent outage is caused by the most frequent89

line outage. Improving on this assumption, Qi [14] considers90

the causal relationships among successive outages as hidden91

variables and uses an expectation maximization algorithm to92

estimate the interactions underlying the multiple outage data.93

In this paper, we solve this problem in a novel way by defining94

an additional state for each multiple line outage. Thus our new95

influence graph generalizes the interaction between single lines96

to multiple line outages, so we do not need to make assumptions97

or approximations when calculating the interactions between98

two single lines. This enables a Markov chain to be cleanly and99

clearly defined.100

Considering the different types of graphs of interactions more101

generally, there are three methods of quantifying interactions102

between components which are the edges in the graph of inter-103

actions. First, as explained in the preceding paragraph, in [10]–104

[12], the edge corresponds to the conditional probability of a105

single line outage given that the previous line has outaged. Sec-106

ond, in [15]–[17], the edge weight is calculated based on the line107

flow changes due to a single line outage applied to the base case108

using a DC load flow (In contrast to [10]–[12] and this paper, this109

implies that the edge weights do not change during the cascade.).110

In Merrill [16], the edge weight is obtained from the line outage111

distribution factors. In Zhang [15] and Ma [17], the directed112

edge weights are obtained from both the line flow changes and113

the remaining margin in the line the power is transferred to.114

Then Zhang [15] combines the directed edges to give undirected115

edges. On the other hand, Ma [17] retains the directed edges and116

also represents hidden failures by additional nodes. Third, in117

Yang [18], the edge corresponds to the correlation between any118

two lines. In [19], Carreras constructs a synchronization matrix119

from simulation data from the OPA model to identify the lines120

with higher overloading probabilities. Other papers [13], [14],121

[20]–[22] form their graph of interactions similarly to the above122

methods. In this paper, we base the influence graph edges on123

conditional probabilities. However, the edges are different than124

the edges in [10]–[12] as they directly correspond to transition125

probabilities in a rigorously defined Markov chain.126

Influence graphs describing the interactions between succes-127

sive cascading outages were developed using simulated data128

(Zhou [13] is the exception, but [13] differs from this paper129

because it applies the methods of [12] to utility data). But even130

for simulated cascade data, there remain challenges in extracting131

good statistics for the influence graph from limited data. Hines,132

Dobson and Qi [10]–[12] estimate the conditional probabilities133

of transitions with empirical probabilities. In this paper, we134

mitigate the limited historical cascading data by using a Bayesian135

method and carefully combining the sparser data of the later136

stages of cascading in a sophisticated way.137

Various measures are proposed for the identification of critical 138

components based on the influence graph. [11], [12], [17], 139

[23] form their specific measures based on their own influ- 140

ence/interaction graph. Ma [17] uses a modified page-rank al- 141

gorithm to find critical lines. Nakarmi [20] forms the influence 142

graph using methods of both [12] and [18], and proposes a 143

community-based measure to identify critical components. [20] 144

compares its measure with other centrality measures based on 145

network theory, and concludes that its method performs better 146

than other methods in most cases. In this paper, our influence 147

graph is a rigorous Markov chain, and the identification of criti- 148

cal lines is based on the asymptotic quasi-stationary distribution. 149

The quasi-stationary distribution has a clear interpretation of 150

specifying the probabilities that each of the lines is involved in 151

large cascades. 152

The graph of interactions also provides useful information 153

about mitigation actions in power system operation. Ju [21] 154

extends the interaction graph to a multi-layer graph, in which 155

the three layers reflect the number of line outages, load shed, 156

and electrical distance of the cascade spread, respectively. This 157

multi-layer graph is suggested to mitigate cascades in system 158

operation by providing the critical lines at different states of 159

cascades. Chen [22] proposes a dynamic interaction graph to 160

better support online mitigation actions than a static interaction 161

graph. During the propagation of a specific cascade, this dynamic 162

interaction graph removes the interactions involving already 163

outaged lines, and optimal power flow controls the power flow 164

on the critical lines indicated by the dynamic interaction graph. 165

The dynamic interaction graph model reduces the risk of large 166

cascades more than the static interaction graph. 167

As expected, the graph of interactions and any conclusions 168

drawn depend on the outage data from which the graph is formed. 169

If the outage data is simulated, the selection of initial system 170

states matters. For example, Nakarami [20] shows that different 171

system states lead to different influence graphs. In this paper, we 172

form our influence graph from fourteen years of public outage 173

data of a specific area, so that our influence graph reflects the 174

initial faults and states encountered over that period of time in 175

that power system area. The textbook [24] includes material on 176

both influence and interaction graphs. 177

Another related line of research is fault chains. A fault chain 178

as described in [25] is one cascading sequence of line outages. 179

Each initial line fault gives a fault chain of lines most stressed 180

at each step until outage or instability. Usually only the most 181

stressed or most likely next line outage is selected to form fault 182

chains. By taking each line in the system as the initial outage 183

of each fault chain, Wei [23] obtains a set of fault chains using 184

a branch loading index to select the most stressed next line to 185

outage. Each fault chain is expressed as a subgraph whose nodes 186

are transmission lines, and directed edges are branch loading 187

assessment indexes, and the union of the subgraphs forms a 188

cascading faults graph. The edge weights depend on the sum 189

of the branch loading indices, each scaled by the length of the 190

fault they are in. Then critical lines are identified according to 191

the in- or out-degree of the cascading faults graph. Luo [26] 192

also forms a cascading faults graph with weights depending on 193

load loss in the chain, and then uses hypertext-induced topic 194
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search to select critical lines. The edge weights of [23], [26]195

differ from those in influence graphs because they are not based196

on conditional probabilities. Li and Wu [27] combine simulated197

fault chains into a network and use reinforcement learning to198

explore, evaluate, and find chains most critical to load shed. In199

further work, Li and Wu [28] combine simulated fault chains200

into a state-failure network from which expected load shed can201

be computed for each state and failure by propagating load202

shed backwards accounting for the transition probabilities of203

the edges. The transition probabilities are estimated similarly to204

an influence graph by the relative frequency of that transition205

at that stage of the data. However, in contrast to the practice in206

influence graphs, the state transition data for the later stages is not207

combined together to get better estimates. Moreover, fault chains208

differ from this paper in only considering single line outages one209

after another.210

There are also approaches to modeling cascading with211

continuous-time Markov processes. Wang [29] drives line load-212

ings with generator and load power fluctuations to determine213

overloads and outages that change the Markov state and hence214

simulate the cascading. Rahnamay-Naeini [30] constructs, using215

simulated cascading data and fitted functional forms, a Markov216

process with states highly aggregated into 3 quantities, namely217

the number of failed lines, the maximum of the capacities of all218

of the preceding failed lines, and a cascade stopping index. The219

aggregated Markov process can model the time evolution of the220

cascade and the distribution of cascade size. In further work,221

Rahnamay-Naeini reduces the aggregated model to a discrete222

time Markov chain and generalizes it to model cyber and power223

interdependent network cascading interactions in [31] and to224

model operator actions interacting with cascading in [32].225

For another, independent perspective on the literature,226

Nakarmi’s review paper [33] surveys various methods of con-227

structing interaction graphs and the reliability analysis based on228

interaction graphs.229

B. Contributions of Paper230

The new influence graph generalizes and improves previous231

work in several ways. In particular, this paper232
� uses real data observed and routinely collected by utilities233

rather than simulated data.234
� obtains a clearly defined influence graph that solves the235

problem of multiple simultaneous outages by using addi-236

tional states with multiple outages. This generalized influ-237

ence graph rigorously defines a Markov chain.238
� mitigates the problems of limited cascading data with239

several new methods; in particular, it combines Bayesian240

methods of estimation with elaborate methods of distin-241

guishing and combining different events. This better esti-242

mates the transition matrices of the influence graph while243

matching the increasing cascade propagation and retaining244

possibilities of analysis.245
� computes the probabilities of small, medium and large246

cascades, and these match the historical data statistics.247
� makes innovative use of the bootstrap to estimate the248

variance of the probabilities of small, medium and large249

cascades. This allows checking that the estimated proba- 250

bilities of small, medium and large cascades are accurate 251

enough to be useful. 252
� calculates critical lines most involved in large cascades 253

directly from the Markov chain as the quasi-stationary 254

distribution of the Markov chain. 255

All of these advances clearly distinguish this paper from the 256

previous work reviewed above. 257

II. FORMING THE MARKOVIAN INFLUENCE GRAPH FROM 258

HISTORICAL OUTAGE DATA 259

We use detailed historical line outage data consisting of 260

records of individual automatic transmission line outages that 261

specify the lines outaged and the outage times to the nearest 262

minute. We emphasize that this data is routinely recorded by 263

utilities worldwide, for example in the North American Trans- 264

mission Availability Data System. 265

The first step in building an influence graph is to take many 266

cascading sequences of transmission line outages and divide 267

each cascade1 into generations of outages as detailed in [34]. 268

Each cascade starts with initial line outages in generation 0, and 269

continues with subsequent generations of line outages 1,2,3, … 270

until the cascade stops. Each generation of line outages is a 271

set of line outages that occur together on a fast time scale of 272

less than one minute. Often there is only one line outage in 273

a generation, but protection actions can act quickly to cause 274

several line outages in the same generation. (Sometimes in a 275

cascading sequence an outaged line recloses and outages in a 276

subsequent generation. In contrast to [13], [34], here we neglect 277

the repeats of these outages.) 278

The influence graph represents cascading as a Markov chain 279

X0, X1, . . . , in whichXk is the set of line outages in generation 280

k of the cascade. We first illustrate the formation of the influence 281

graph from artificial cascading data with the simple example of 282

four observed cascades involving three lines shown in Fig. 1. The 283

first cascade has line 1 outaged in generation 0, line 3 outaged in 284

generation 1, line 2 outaged in generation 2, and then the cascade 285

stops with no lines (indicated by the empty set {}) outaged in 286

generation 3. All cascades eventually stop by transitioning to 287

and remaining in the state {} for all future generations. The five 288

states observed in the data are {}, {line 1}, {line 2}, {line 3}, 289

and {line 1, line 3}, where this last state is lines 1 and 3 outaging 290

together in the same generation, as in generation 1 of cascade 2. 291

Introducing the state {line 1, line 3} with two line outages avoids 292

the problems in previous work in accounting for transitions to 293

and from the simultaneous outages of line 1 and line 3. 294

We can estimate the probabilities of transitioning from state i 295

to state j in the next generation by counting the number of those 296

transitions in all the cascades and dividing by the number of oc- 297

currences of state i. For example, the probability of transitioning 298

from state {line 1} to state {line 3} is 1/3 and the probability of 299

1The grouping of line outages into cascades uses the simple method of [34]:
The grouping is done by looking at the gaps in start time between successive line
outages. If successive outages have a gap of one hour or more, then the outage
after the gap starts a new cascade. More elaborate methods of grouping real line
outages into cascades could be developed and applied.
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Fig. 1. Simple example forming influence graph from artificial data (real utility
data is shown in Fig. 2).

transitioning from state {line 2} to state {line 1, line 3} is 1/2.300

The probability of transitioning from state {line 1} to {}; that is,301

stopping after the single outage of line 1, is2/3. The probabilities302

of the edges out of each state sum to 1. By working out all303

the transition probabilities, we can make the network graph of304

the Markov chain as shown in Fig. 1. The transitions between305

states with higher probability are shown with thicker lines. In this306

generalized influence graph, the nodes are sets of line outages307

and the edges indicate transitions or interactions between sets308

of line outages in successive generations of cascading. The309

influence graph is different than the physical grid network and310

cascades are generated in the influence graph by moving along311

successive edges, selecting them according to their transition312

probabilities.313

In the general case, there are many states s0, s1, . . . , and we314

describe the transitions between them. Let P k be the Markov315

chain transition matrix for generation k. The P k matrix entry316

Pk[i, j] is the conditional probability that the set of outaged lines317

is sj in generation k + 1, given that the set of outaged lines is318

si in generation k; that is,319

Pk[i, j] = P[Xk+1 = sj | Xk = si]. (1)

The key task of forming the Markov chain is to estimate the320

transition probabilities in the matrixP k from the cascading data.321

If one supposed that P k does not depend on k, a straightforward322

way to do this would first construct a counting matrix N whose323

entry N [i, j] is the number of transitions from si to sj among324

all generations in all the cascades. Then P k would be estimated325

as326

Pk[i, j] =
N [i, j]

∑
j N [i, j]

. (2)

However, we find thatP k must depend onk in order to reproduce327

the increasing propagation of outages observed in the data [34].328

On the other hand, there is not enough data to accurately estimate329

P k individually for each k > 0. Our solution to this problem330

involves both grouping together data for higher generations331

and having P k varying with k, as well as using empirical332

Bayesian methods to improve the required estimates of cascade333

stopping probabilities. The detailed explanation of this solution334

Fig. 2. The gray network is the system network and the red network is
the influence graph showing the main influences between lines. The red edge
thickness indicates the strength of the influence.

is postponed to Section VI, and until Section VI we assume 335

that P k has already been estimated for each generation k from 336

the utility data. Forming the Markov chain transition matrix 337

from the data in this way makes the Markovian assumption 338

that the statistics of the lines outaged in a generation only 339

depend on the lines outaged in the previous generation. This 340

is a pragmatic assumption that yields a tractable data-driven 341

probabilistic model of cascading. 342

One way to visualize the influence graph interactions between 343

line outages in P k is to restrict attention to the interactions 344

between single line states, and show these as the red network 345

in Fig. 2. The gray network is the actual grid topology, and the 346

gray transmission lines are joined by a red line of the thickness 347

proportional to the probability of being in successive genera- 348

tions, if that probability is sufficiently large. The interactions in 349

Fig. 2 reflect a very wide range of mechanisms. The longer-range 350

mechanisms include redistributions of power due to line and 351

generator outages, remedial action schemes, and bad weather 352

across the grid. 353

Let the row vector πk be the probability distribution of states 354

in generation k. The πk entry πk[i] is the probability that the set 355

of outaged lines is si in generation k; that is, 356

πk[i] = P[Xk = si]. (3)

Then the propagation of sets of line outages from generation k 357

to generation k + 1 is given by 358

πk+1 = πkP k (4)
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and, using (4), the distribution of states in generation k depends359

on the initial distribution of states π0 according to360

πk = π0P 0P 1· · ·P k−2P k−1. (5)

III. ILLUSTRATIVE HISTORICAL OUTAGE DATA361

While our method applies generally to the detailed outage362

data routinely collected by utilities, we illustrate our method363

with a specific publicly available data set, which is the automatic364

transmission line outages recorded by a large North American365

utility over 14 years starting in 1999 [35]. We group the 9,741366

line outages into 6,687 cascades [34]. Most of the cascades367

(87%) have one generation because initial outages often do not368

propagate further. There are 614 lines and the observed cascades369

have 1094 subsets of these lines that form the 1094 states s0,370

s1, . . . , s1093. Among these 1094 states, 50% have multi-line371

outages. And among these multi-line outage states, about 20%372

are comprised of lines sharing no common buses. While in theory373

there are 2614 subsets of 614 lines, giving an impractically large374

number of states, we find in practice with our data that the375

number of states is less than twice the number of lines. Note376

that our statistical modeling approximates the power grid as377

unchanging over the time span of the data [36]. In practice a378

utility would have the records of changes to partially mitigate379

the effects of this approximation.380

IV. COMPUTING THE DISTRIBUTION OF CASCADE SIZES381

AND ITS CONFIDENCE INTERVAL382

We compute the distribution of cascade sizes from the Markov383

chain and check that it reproduces the empirical distribution384

of cascade sizes, and estimate its confidence interval with a385

bootstrap.386

We can measure the cascade size by its number of generations.387

Define the survival function of the number of generations in a388

cascade as389

S(k) = P[number of cascade generations > k] (6)

S(k) = 1− πk[0], where πk[0] is the probability that a cascade390

is in state s0 = {} in generation k and also the probability that391

the cascade stops at or before generation k. Hence392

S(k) = 1− πk[0] = πk(1− e0)

= π0P 0P 1· · ·P k−2P k−1(1− e0), (7)

where 1 is the column vector (1, 1, 1, . . ., 1)′, and e0 is the393

column vector (1, 0, 0, 0, . . ., 0)′. The initial state distribution394

π0 can be estimated directly from the cascading data.395

Then we can confirm that the influence graph reproduces the396

statistics of cascade size in the cascading data by comparing397

the survival functionS(k) computed from (7) with the empirical398

survival function computed directly from the cascading data as399

shown in Fig. 3. The Markov chain reproduces the statistics400

of cascade size closely, with a Pearson χ2 goodness-of-fit test401

p-value of 0.99.402

We use bootstrap resampling [37] to estimate the variance403

of our estimates of probabilities of cascade sizes. A bootstrap404

Fig. 3. Survival functions of the number of generations from real data and
from the Markov chain.

Fig. 4. Survival function of cascade sizes. Red crosses are from Markov chain,
and blue lines indicate the 95% confidence interval estimated by bootstrap.

sample resamples the observed cascades with replacement, re- 405

constructs the Markov chain, and recomputes the probabilities 406

of cascade sizes. Note that each bootstrap resampling amounts 407

to a different selection of the cascades observed in the data. The 408

variance of the probabilities of cascade sizes is then obtained 409

as the empirical variance of the bootstrap samples. We use 500 410

bootstrap samples to ensure a sufficiently accurate estimate of 411

the variance of the probabilities. 412

The risk of a given size of blackout is estimated as risk = 413

(estimated probability p̂ of that size of blackout) × (cost of 414

that size of blackout). Knowing the multiplicative uncertainty 415

in p̂ is useful. For example, if we know p̂ to within a factor of 416

2, then this contributes a factor of 2 to the uncertainty of the 417

risk. Therefore, it is appropriate to use a multiplicative form of 418

confidence interval for p̂ specified by a parameter κ. A 95% 419

multiplicative confidence interval for an estimated probability p̂ 420

means that the probability p satisfies P[p̂/κ ≤ p ≤ p̂ κ] = 0.95. 421

The confidence interval for the estimated survival function is 422

shown in Fig. 4. Since larger cascades are rarer than small 423

cascades, the variation increases as the number of generations 424

increases. 425

To apply and communicate the probability distribution of 426

cascade size, it is convenient to combine sizes together to get 427

the probabilities of small, medium, and large cascades, where 428

a small cascade has 1 or 2 generations, a medium cascade has 429

3 to 9 generations, and a large cascade has 10 or more genera- 430

tions. (The respective probabilities are calculated as 1− S(2), 431

S(2)− S(9), and S(9)). The 95% confidence intervals of the 432
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TABLE I
95% CONFIDENCE INTERVALS USING BOOTSTRAP

estimated probabilities of small, medium, and large cascades are433

shown in Table I. The probability of large cascades is estimated434

within a factor of 1.5, which is adequate for the purposes of435

estimating large cascade risk, since the cost of large cascades436

is so poorly known: estimates of the direct costs of cascading437

blackouts vary by more than a factor of 2.438

We now discuss tracking cascades by their number of gen-439

erations. The number of generations is the same concept as440

the number of tiers in commercial cascading software [38].441

Basic to cascading analysis is the grouping of line outages into442

successive generations within each cascade. This grouping is443

usually done by outage timing as in this paper, or by simulation444

loops naturally producing generations of outages. This paper445

is structured in terms of these generations, so that propagation446

is determined by the probability of a next generation (i.e. the447

cascade not stopping at the current generation), and cascade448

size is measured by number of cascade generations. In contrast,449

some previous papers [7], [12], [13], [34] are structured in terms450

of the line outages in the generations, so that, according to451

the branching process model [34], each line outage in each452

generation propagates independently to form line outages in453

the next generation. Then the propagation is determined by the454

number of line outages per line outage in the previous generation,455

and it is natural to use the total number of lines outaged as456

a measure of cascade size. While it is not yet clear which457

approach is better, there may be some advantages to tracking458

cascades by generations rather than line outages. Generations459

are simpler and more general than line outages, and can more460

easily encompass other outages significant in cascading such as461

transformer outages. Also, it may be that the statistics of the462

number of generations is more simply described, as in the Zipf463

distribution observed in utility data in [39].464

V. CRITICAL LINES AND CASCADE MITIGATION465

A. The Transmission Lines Involved in Large Cascades466

The lines eventually most involved in large cascades can be467

calculated from the asymptotic properties of the Markov chain.468

While all cascades eventually stop, we can consider at each469

generation those propagating cascades that are not stopped at470

that generation. The probability distribution of states involved471

in these propagating cascades converges to a probability distribu-472

tiond∞, which is called the quasi-stationary distribution.d∞ can473

be computed directly from the transition matrices (as explained474

in Appendix, d∞ is the left eigenvector corresponding to the475

dominant eigenvalue of the transition submatrix Q̄1+). That is,476

except for a transient that dies out after some initial generations,477

the participation of states in the cascading that continues past478

these initial generations is well approximated by d∞. Thus the479

high probability states corresponding to the highest probability480

Fig. 5. Quasi-stationary distribution of transmission lines eventually involved
in propagating cascades. Red dots are ten critical lines.

entries in d∞ are the critical states most involved in the latter 481

portion of large cascades. Sinced∞ does not depend on the initial 482

outages, the Markov chain is supplying information about the 483

eventual cascading for all initial outages. 484

We now find the critical lines corresponding to these critical 485

states by projecting the states onto the lines in those states. Let 486

�k be the row vector whose entry �k[j] is the probability that 487

line j outages in generation k. Then 488

�k[j] =
∑

i:j∈si
πk[i] or �k = πkR, (8)

where the matrix R projects states to lines according to 489

R[i, j] =

{
1; line j ∈ si

0; line j /∈ si
(9)

Then the probability distribution of lines eventually involved 490

in the propagating cascades that are not stopped is c∞ = d∞R 491

and the critical lines most involved in the latter portion of large 492

cascades correspond to the highest probability entries in c∞. 493

Fig. 5 shows the probabilities in c∞ in order of decreasing 494

probability. We identify the top ten lines as critical and as 495

candidates for upgrading to decrease the probability of large 496

cascades. 497

B. Modeling and Testing Mitigation in the Markov Chain 498

A transmission line is less likely to fail due to other line 499

outages after the line is upgraded, its protection is improved, or 500

its operating limit is reduced. These mitigations have the effect 501

of decreasing the probability of transition to states containing 502

the upgraded line, and are an adjustment of the columns of the 503

transition matrix corresponding to these states. The mitigation is 504

represented in the Markov chain by reducing the probability of 505

transition to the state s containing the upgraded line by (r/|s|)%, 506

where |s| is the number of lines in the state. The reduction is r% 507

if the state contains only the upgraded line, and the reduction is 508

less if the state contains multiple lines. 509

We demonstrate using the Markov chain to quantify the 510

impact of mitigation by upgrading the ten lines critical for 511

large cascades identified in Section V-A with r = 80%. The 512

effect of this mitigation on cascade probabilities is shown in 513

Fig. 6. It shows that upgrading the critical lines reduces the 514
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Fig. 6. Cascade size distribution before (red) and after (light green) mitigating
lines critical in propagating large cascades.

probability of large cascades by 45%, while the probability of515

medium cascades is slightly decreased and the probability of516

small cascades is slightly increased.517

To show the effectiveness of the method of identifying critical518

lines, we compare the mitigation effect of upgrading critical519

lines and upgrading ten random lines. Randomly upgrading ten520

lines only decreases the probability of large cascades by 11%521

on average.522

So far we have only considered upgrading the lines critical for523

propagating large cascades. Now, in order to discuss this miti-524

gation of large cascades in a larger context, we briefly consider525

and contrast a different mitigation tactic of upgrading lines that526

are critical for initial outages. Since initial outages are caused by527

external causes such as storm, lightning, or misoperation, they528

often have different mechanisms and different mitigations than529

for propagating outages. A straightforward method to identify530

lines critical for initial outages selects the ten lines in the data531

with the highest frequencies of initial outage [13]. Upgrading532

these ten lines will reduce their initial outage frequencies and533

hence reduce the overall cascade frequency. In the Markov chain,534

this upgrading is represented by reducing in the first generation535

the frequency of states s that contain the critical lines for initial536

outages by r/|s|%, where r = 80%. The main effect is that537

by reducing the initial outage frequencies of the critical lines538

by 80%, we reduce the frequency of all cascades by 19%. In539

addition, this mitigation will change the probabilities of states540

π0 after renormalizing the frequencies of states. It turns out for541

our case that there is no overlap between critical lines for initial542

outages and for propagation.543

Changing the initial state distribution π0 has no effect on544

the distribution of cascade sizes in the long-term. However, it545

directly reduces the frequency of all cascades. In contrast, mit-546

igating the lines critical for propagating large cascades reduces547

the probability of large cascades relative to all cascades but has548

no effect on the frequency of all cascades. (Note that Fig. 6549

shows the distribution of cascade sizes assuming that there is550

a cascade, but gives no information about the frequency of all551

cascades.)552

In practice, a given mitigation measure can affect both the ini-553

tial outages and the propagation of outages into large cascades.554

The combined mitigation effects can also be represented in the555

influence graph by changing both the initial state distribution556

and the transition matrix, but here it is convenient to discuss 557

them separately. 558

This paper aims to select the lines critical for large cascades 559

and quantify the impact on cascade probability of generic up- 560

grades to these lines. Once the critical lines are selected, an en- 561

gineering process of much wider scope is required to determine 562

the possible approaches to upgrade each of the lines, quantify the 563

benefits other than reducing large cascades and balance the costs 564

and feasibilities of the upgrading approaches against the total 565

benefits of upgrading. One part of this process is that for each 566

line, the percentage reduction in outage probability for the best 567

approach to line upgrade is estimated and the Markov chain is 568

used to quantify the corresponding reduction in large, medium, 569

and small cascade probabilities. However, cascade mitigation 570

is only one of the many factors to be considered in justifying 571

upgrade. Evaluating and costing specific upgrading approaches 572

for specific lines requires utility expertise, including details of 573

the line construction and right of way, maintenance history, and 574

operation. 575

VI. ESTIMATING THE TRANSITION MATRIX 576

The Markov chain has an absorbing first state s0 = {}, indi- 577

cating no lines outaged as the cascade stops and after the cascade 578

stops. Therefore the transition matrix has the structure 579

P k =

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0

uk Qk

⎤

⎥
⎥
⎥
⎦

(10)

where uk is a column vector of stopping probabilities; that is, 580

uk[i] = Pk[i, 0]. Qk is a submatrix of transition probabilities 581

between transient states which contains the non-stopping prob- 582

abilities. The first row of P k is always e′0, so the transition 583

probabilities to be estimated are uk and Qk for each generation 584

k. The rows and columns of P k are indexed from 0 to |S| − 1 585

and the rows and columns of Qk are indexed from 1 to |S| − 1, 586

where |S| is the number of states. 587

As summarized in Section II after (1), we need to both 588

group together multiple generations to get sufficient data and 589

account for variation with generation k. The statistics of the 590

transition from generation 0 to generation 1 are different than 591

the statistics of the transitions between the subsequent gen- 592

erations. For example, stopping probabilities for generation 0 593

are usually larger than stopping probabilities for subsequent 594

generations [13]. Also, the data for the subsequent generations 595

is sparser. Therefore, we construct from counts of the number 596

of transitions from generation 0 to generation 1 a probability 597

transition matrix P̄ 0, and construct from the total counts of 598

the number of transitions from all the subsequent generations a 599

probability transition matrix P̄ 1+. Specifically, we first use the 600

right-hand side of (2) to construct two corresponding empirical 601

transition matrices, and then we update stopping probabilities 602

by the empirical Bayes method and adjust non-stopping proba- 603

bilities to obtain P̄ 0 and P̄ 1+. Finally, we adjust P̄ 0 and P̄ 1+ 604

to match the observed propagation rates to obtain P k for each 605

generation k. 606
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A. Bayesian Update of Stopping Probabilities607

The empirical stopping probabilities are improved by an608

empirical Bayes method [40], [41] to help mitigate the sparse609

data for some of these probabilities. Since the method is applied610

to both P̄ 0 and P̄ 1+, we simplify notation by writing P̄ for611

either P̄ 0 or P̄ 1+.612

The matrix of empirical probabilities obtained from the tran-613

sition counts N [i, j] is614

P̄ counts[i, j] =
N [i, j]

∑
j N [i, j]

(11)

We construct P̄ from P̄
counts in two steps. First, Bayesian615

updating is used to better estimate stopping probabilities and616

form a matrix P̄
bayes. Second, the non-stopping probabilities617

in P̄
bayes are adjusted to form the matrix P̄ to account for the618

fact that some independent outages are grouped into cascading619

outages when we group outage data into cascades.620

We need to estimate the probability of the cascade stopping621

at the next generation for each state encountered in the cascade.622

For some of the states, the stopping counts are low, and cannot623

give good estimates of the stopping probability. However, by624

pooling the data for all the states we can get a good estimate of625

the mean probability of stopping over all the states. We use this626

mean probability to adjust the sparse counts in a conservative627

way. In particular, we form a prior that maximizes its entropy628

subject to the mean of the prior being the mean of the pooled629

data. This maximum entropy prior can be interpreted as the prior630

distribution that makes the least possible further assumptions631

about the data [42], [43].632

1) Finding a Maximum Entropy Prior: Assuming the stop-633

ping counts are independent with a common probability, the634

stopping counts follow a binomial distribution. Its conjugate635

prior distribution is the beta distribution, whose parameters are636

estimated using the maximum entropy method.637

Let stopping counts Ci be the observed number of transitions638

from state si to s0 (i = 1, . . . , |S| − 1). Then Ci = N [i, 0]. Let639

ni =
∑|S|−1

j=0 N [i, j] be the row sum of the counting matrix N .640

The stopping counts Ci follow a binomial distribution with641

parameter Ui, with probability mass function642

fCi|Ui
(ci|ui) = ni!

ci!(ni − ci)!
ucii (1− ui)

ni−ci (12)

The conjugate prior distribution for the binomial distribution is643

the beta distribution. Accordingly, we use the beta distribution644

with hyperparameters β1, β2 for the stopping probability Ui:645

fUi
(ui) = B(β1, β2)u

β1−1
i (1− ui)

β2−1 (13)

where B(β1, β2) =
Γ(β1+β2)
Γ(β1)Γ(β2)

. Alternative parameters for the646

beta distribution are its precision m = β1 + β2 and its mean647

μ = β1

β1+β2
. The entropy of the beta distribution is648

Ent(m,μ) = lnB(mμ,m(1− μ))− (mμ− 1)ψ(mμ)

− (m(1− μ)− 1)ψ(m(1− μ)) + (m− 2)ψ(m) (14)

where ψ(x) is the digamma function.649

Fig. 7. Stopping probabilities before and after Bayesian updating.

We want to estimate hyperparameters β1, β2 to make the 650

beta distribution have maximum entropy subject to the mean 651

being the average stopping probability of the pooled data û = 652

(
∑|S|−1

i=1 ci)/(
∑|S|−1

i=1 ni). Then we can obtain hyperparameters 653

β1, β2 by finding the m > 0 that maximizes Ent(m, û) and 654

evaluating β1 = mû and β2 = m(1− û). The hyperparameters 655

used for P̄ bayes
0 are (β1, β2) = (2.18, 0.32), and the hyperpa- 656

rameters for P̄ bayes
1+ are (β1, β2) = (1.10, 0.93). 657

2) Updating the Observed Data Using the Prior: The pos- 658

terior distribution of the stopping probability Ui is a beta distri- 659

bution with parameters ci + β1, ni − ci + β2. We use the mean 660

of the posterior distribution as a point estimate of the stopping 661

probability: 662

P̄ bayes[i, 0] = E(Ui|Ci = ci) =
ci + β1

ni + β1 + β2
(15)

Fig. 7 shows a comparison between the empirical stopping 663

probabilities and the updated stopping probabilities. Black dots 664

are the empirical probabilities sorted in ascending order (if two 665

probabilities are equal, they are sorted according to the total 666

counts observed). Red dots are the updated stopping probabil- 667

ities. As expected, the empirical probabilities with the fewest 668

counts move towards the mean the most when updated. As the 669

counts increase, the effect of the prior decreases and the updated 670

probabilities tend to the empirical probabilities. 671

Equation (15) forms the first column of P̄
bayes. Then 672

the nonstopping probabilities in the rest of the columns of 673

the P̄ counts matrix are scaled so that they sum to one minus the 674
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TABLE II
PROPAGATIONS OF GENERATIONS k = 0 TO 17

stopping probabilities of (15) to complete the matrix P̄
bayes:675

P̄ bayes[i, j] =
1− P̄ bayes[i, 0]

∑|S|−1
r=1 P̄ counts[i, r]

P̄ counts[i, j], j > 0 (16)

This Bayesian updating is applied to form P̄
bayes
0 for the first676

transition and P̄
bayes
1+ for the subsequent transitions.677

B. Adjust Nonstopping Probabilities for Independent Outages678

The method explained in Section II that groups outages into679

cascades has an estimated 6% chance that it groups independent680

outages into cascading outages [36]. These 6% of outages occur681

independently while the cascading of other outages proceeds and682

do not arise from interactions with other outages. The empirical683

data for the nonstopping probabilities includes these 6% of684

outages, and we want to correct this. Therefore, the non-stopping685

probabilities are modified by shrinking the probabilities in tran-686

sition matrix by 6%, and sharing this equally among all the states.687

That is,688

P̄ [i, j] = 0.94P̄ bayes[i, j] +
0.06

|S| − 1
(1− P̄ bayes[i, 0]) (17)

where P̄ bayes indicates the transition matrices after the Bayesian689

update of Section VI-A. Notice that P̄ is a probability matrix690

since
∑

j P̄ (i, j) = 1 for each i. A benefit is that this adjustment691

makes the submatrix Qk have non-zero off-diagonal entries,692

making P̄ irreducible.693

C. Adjustments to Match Propagation694

The average propagation ρk for generation k [34] is estimated695

from the data using696

ρ̂k =
Number of cascades with > k + 1 generations

Number of cascades with > k generations

=
S(k + 1)

S(k)
=

πk+1(1− e0)

πk(1− e0)
(18)

An important feature of the cascading data is that average697

propagation ρk increases with generation k as shown in Table II.698

To do this, we need to form transition matrices for each of these699

generations that reproduce this propagation. We define a matrix700

Ak to adjust P̄ 0 and P̄ 1+ so that the propagation inP k matches701

the empirical propagation for each generation up to generation702

8. For generation 9 and above, the empirical propagation for703

each generation is too noisy to use individually and we combine704

those generations to obtain a constant transition matrix. That705

is, P 0 = P̄ 0A0, P 1 = P̄ 1+A1, . . . , P 8 = P̄ 1+A8, P 9+ =706

P̄ 1+A9+. Then the transition matrices for all the generations are707

P 0,P 1,P 2,P 3,P 4,P 5,P 6,P 7,P 8,P 9+,P 9+,P 9+, . . ..708

The matrix Ak has the effect of transferring a fraction of 709

probability from the transient to stopping transitions and has the 710

following form: 711

Ak =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 . . . 0

ak 1− ak . . . 0
...

. . .

ak 0 . . . 1− ak

⎞

⎟
⎟
⎟
⎟
⎠

(19)

ak is determined from the estimated propagation rate ρ̂k as 712

follows. Using (18), we have 713

ρ̂k =
πkP̄Ak(1− e0)

πk(1− e0)
= (1− ak)

1− πkP̄ e0
1− πke0

(20)

and we solve (20) to obtain ak for each generation k. 714

VII. DISCUSSION AND CONCLUSION 715

We process observed transmission line outage utility data to 716

form a generalized influence graph and the associated Markov 717

chain that statistically describe cascading outages in the data. 718

Successive line outages, or, more precisely, successive sets of 719

near simultaneous line outages in the cascading data correspond 720

to transitions between nodes of the influence graph and tran- 721

sitions in the Markov chain. The more frequently occurring 722

successive line outages in the cascading data give a stronger 723

influence between nodes and higher transition probabilities. The 724

generalized influence graph introduces additional states corre- 725

sponding to multiple line outages that occur nearly simultane- 726

ously. This innovation adds a manageable number of additional 727

states and solves some problems with previous influence graphs, 728

making the formation of the Markov chain clearer and more 729

rigorous. 730

One of the inherent challenges of cascading is the sparse data 731

for large cascades. We have used several methods to partially 732

alleviate this when estimating the Markov chain transition ma- 733

trices, including combining data for several generations, conser- 734

vatively improving estimates of stopping probabilities with an 735

empirical Bayes method, accounting for independent outages 736

during the cascade, and matching the observed propagation 737

for each generation. The combined effect of these methods is 738

to improve estimates of the Markov chain transition matrices. 739

Although some individual elements of these transition matri- 740

ces are nevertheless still poorly estimated, what matters is the 741

variability of the results from the Markov chain, which are the 742

probabilities of small, medium and large cascades. We assess 743

the variability of these estimated probabilities with a bootstrap 744

and find them to be estimated to a useful accuracy. This assess- 745

ment of variability is necessary for getting useful estimates of 746

large cascade probability because large cascades are rare, and 747

probability estimates for rare events have the potential to be so 748

wildly variable that they are useless. 749

The Markov chain only models the statistics of successive 750

transitions in the observed data. Also, there is an inherent limi- 751

tation of not being able to account for transitions and states not 752

present in the observed data. That is, the common transitions 753

and states and some of the rarer transitions and states will be 754
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present in the data and will be represented in the Markov model,755

while the rarer transitions and states not present in the data756

will be neglected. However, the Markov chain can produce, in757

addition to the observed cascades, combinations of the observed758

transitions that are different than and much more extensive than759

the observed cascades. The Markov chain approximates the760

statistics of cascading rather than reproducing only the observed761

cascades.762

We exploit the asymptotic properties of the Markov chain to763

calculate the transmission lines most involved in the propagation764

of larger cascades, and we show with the Markov chain that765

upgrading these lines can significantly reduce the probability of766

large cascades. Since a large cascade of line outages with many767

generations is very likely to shed substantial load, mitigating768

large cascades will also mitigate blackouts with large amounts769

of load shed.770

A Markov chain driven by real data incorporates all the causes,771

mechanisms, and conditions of the cascading that occurred,772

but does not distinguish particular causes of the interactions.773

However, once the lines critical to large cascades have been774

identified with the influence graph, the causes related to outage775

of those particular lines can be identified by analyzing event776

logs and cause codes. Also, the overall impact on cascading of777

factors such as loading and weather can be studied by dividing778

the data into low and high loading or good and bad weather and779

forming influence graphs for each case.780

While the Markov model is driven by historical data in this781

paper, the Markov model is not limited to historical data. The782

Markov model could be driven by simulated cascades or a783

combination of simulated and historical cascades. Moreover, if784

the probabilities of specific cascading interactions between line785

outages are available, these probabilities could be combined into786

the entries of the Markov transition matrices. The Markov chain787

is applied here to cascading transmission line outages, but the788

formulation would apply generally to process real or simulated789

data for the cascading outage of components within or between790

networked infrastructures.791

We show how to estimate the Markov chain from detailed792

outage data that is routinely collected by utilities. Being driven793

by observed data has some significant advantages of realism.794

In particular, and in contrast with simulation approaches, no795

assumptions about the detailed mechanisms of cascading need to796

made. Since the Markov chain driven by utility data has different797

assumptions than simulation, we regard the Markov chain and798

simulation approaches as complementary. The Markov chain799

driven by observed data offers another way to find critical lines800

and to test proposed mitigations of cascading by predicting the801

effect of the mitigation on the probabilities of small, medium,802

and large cascades.803

APPENDIX804

DERIVING THE QUASI-STATIONARY DISTRIBUTION d∞805

The quasi-stationary distribution can be derived in a standard806

way [44], [45]. Let dk be a vector with entry dk[i] which is the807

probability that a cascade is in nonempty state si at generation808

k given that the cascade is propagating, that is 809

dk[i] =
P[Xk = si]

P[Xk �= s0]
=

πk[i]

1− πk[0]
, i = 1, . . ., |S|

Then the quasi-stationary distribution is d∞ = limk→∞ dk. 810

Diagonal entries of Q̄1+ corresponding to P̄ 1+ are all zero 811

and all other entries are positive. According to the Perron- 812

Frobenius theorem [46], Q̄1+ has a unique maximum modu- 813

lus eigenvalue μ, which is real, positive and simple with left 814

eigenvector v′. By normalizing v′, we make v′ a probability 815

vector. We write w for the corresponding right eigenvector. 816

Moreover, 0 < μ < 1 and μ is strictly greater than the modulus 817

of the other eigenvalues of Q̄1+. Suppose the cascade starts 818

with probability distributionπ0 (note thatπ0[0] = 0). According 819

to (5), the probability of being in state i at generation k is 820

πk[i] = (π0P 0P 1· · ·P k−2P k−1)[i] = (π0P
(k−1))[i]. In par- 821

ticular, the probability that the cascade terminates by generation 822

k is πk[0] = π0P
(k)[0] = π0P

(k)e0. Then for i = 1, . . . , |S|, 823

dk+1[i] =
πk+1[i]

1− πk+1[0]
=

(π0P
(k))[i]

1− π0P (k)e0
=

(π0P
(k))[i]

π0P (k)(1− e0)

The first row of P k is always [1 0 · · · 0]. Since π0[0] = 824

0, let π0 = [0 π̄0]. Then π0P
(k)(1− e0) = π̄0Q

(k)1 and 825

(π0P
(k))[i] = (π̄0Q

(k))[i] for i = 1, . . . , |S|. And Q(k) = 826

Q̄0Q̄
k−1
1+

∏k
m=0(1− αm), so that d∞ = limk→∞ dk+1 is 827

d∞ = lim
k→∞

p̄0Q
(k)

p̄0Q
(k)1

= lim
k→∞

p̄0Q̄0Q̄
k−1
1+

∏k
m=0(1− αm)

p̄0Q̄0Q̄
k−1
1+

∏k
m=0(1− αm)1

=
p̄0Q̄0μ

k−1wv′

p̄0Q̄0μ
k−1wv′1

= v′

where Q̄(k−1) → μk−1wv′ as k → ∞. Therefore, the dominant 828

left eigenvector of Q̄1+ is d∞. 829

For our data, the top three eigenvalues in modulus are μ = 830

0.502 and −0.136± 0.122 i with corresponding moduli 0.502 831

and 0.381. 832
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