
IE
EE P

ro
of

IEEE TRANSACTIONS ON SMART GRID 1

Enriching Load Data Using Micro-PMUs
and Smart Meters

Fankun Bu , Graduate Student Member, IEEE, Kaveh Dehghanpour , Member, IEEE, and

Zhaoyu Wang , Senior Member, IEEE

Abstract—In modern distribution systems, load uncertainty1

can be fully captured by micro-PMUs, which can record high-2

resolution data; however, in practice, micro-PMUs are installed3

at limited locations in distribution networks due to budgetary4

constraints. In contrast, smart meters are widely deployed but5

can only measure relatively low-resolution energy consumption,6

which cannot sufficiently reflect the actual instantaneous load7

volatility within each sampling interval. In this paper, we have8

proposed a novel approach for enriching load data for service9

transformers that only have low-resolution smart meters. The key10

to our approach is to statistically recover the high-resolution load11

data, which is masked by the low-resolution data, using trained12

probabilistic models of service transformers that have both high-13

and low-resolution data sources, i.e., micro-PMUs and smart14

meters. The overall framework consists of two steps: first, for the15

transformers with micro-PMUs, a Gaussian Process is leveraged16

to capture the relationship between the maximum/minimum load17

and average load within each low-resolution sampling interval of18

smart meters; a Markov chain model is employed to charac-19

terize the transition probability of known high-resolution load.20

Next, the trained models are used as teachers for the transform-21

ers with only smart meters to decompose known low-resolution22

load data into targeted high-resolution load data. The enriched23

data can recover instantaneous load uncertainty and significantly24

enhance distribution system observability and situational aware-25

ness. We have verified the proposed approach using real high-26

and low-resolution load data.27

Index Terms—Distribution system, load uncertainty, micro-28

PMU, smart meter, data enrichment.29

I. INTRODUCTION30

AS THE advanced metering infrastructure (AMI) has been31

widely deployed in distribution systems in recent years,32

utilities have gained access to large amounts of smart meter33

(SM) data [1]. To take advantage of this data, which is34

both spatially and temporally fine-grained, researchers and35

industry practitioners have performed time-series power flow36
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Fig. 1. A one-day real service transformer load curve with 1-second load
data and the corresponding hourly average load curve.

studies for optimizing network operation, expansion [2], [3], 37

and integrating renewable energy resources [4]. In many 38

cases, customer-level demands are aggregated to obtain 39

service transformer-level loads for performing power flow 40

studies [2], [5]. However, the problem is that in most cases, 41

SMs have a low sampling rate, e.g., one to four samples per 42

hour. Thus, the average demand measured at such low res- 43

olutions cannot faithfully represent the uncertainties of the 44

instantaneous load. As illustrated in Fig. 1 for an exemplary 45

transformer, the maximum 1-second load data has reached 46

values 40% times larger than the corresponding hourly SM 47

reading within the same sampling interval. Also, compared to 48

the hourly measurements, the instantaneous load shows a high 49

level of variability, which has not been captured by the SMs. 50

Therefore, recovering the masked high-resolution load data is 51

critical in enhancing distribution system situational awareness 52

and granularity of modeling. 53

To further demonstrate the usefulness of high-resolution 54

load data, we primarily focus on three specific applications. 55

First, accurate power flow analysis requires high-resolution 56

load data. Power flow analysis is critically important for util- 57

ities. It can provide voltage profiles, which can help utilities 58

plan new circuits, add customers, and track and fix voltage 59

problems. Since load is an essential component in distribu- 60

tion systems, high-resolution load profiles play a critical role 61

in obtaining power flow solutions with high fidelity. In con- 62

trast, the 15-min, 30-min, or 1-hour load data might cause 63

unacceptable errors [6], [7]. This is why most utilities take 64

conservative approaches in distribution system operation and 65

planning. Instead, taking full advantage of high-resolution load 66

data can free utilities from conservative measures. Second, 67

accurate voltage regulation analysis requires high-resolution 68
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load data. In many cases, utilities perform time-series power69

flow analysis to examine the actions of voltage regulation70

devices. Typical voltage regulation devices include voltage71

regulators and capacitors. The controller of these two types of72

devices usually has a time delay before executing a regulating73

order. By doing this, the voltage regulation devices can avoid74

unnecessary frequent reactions to fast and temporary voltage75

transients. The time delay is typically around 30 seconds.76

Therefore, to accurately capture the response of voltage regu-77

lation devices, the time resolution of load data for performing78

time-series power follow analysis should match the delay time79

of regulation devices’ controller [6], [8]. Third, high-resolution80

load data can facilitate photovoltaic (PV) integration. In most81

cases, utilities conservatively maintain customer voltages very82

close to the upper bound of the ANSI voltage range due to83

conservative considerations. Under this condition, even though84

the load increase may cause a voltage drop, the voltage will85

still be within the ANSI voltage range and satisfy voltage qual-86

ity requirements. However, under such conservative operation87

logics, new PV integration can cause over-voltages. To assess88

the impact of PV generation, one promising way is to uti-89

lize high-resolution (1-second or 1-min) PV generation data90

to perform power flow analysis, because low-resolution data91

might fail to capture PV output variations. Since the load varia-92

tions might not be negligible in some scenarios, it is necessary93

to combine high-resolution load data and PV output data to94

perform time-series power flow analysis [9], [10].95

There is only a limited number of previous works focus-96

ing on load data enrichment. In [8], a top-down method is97

presented to generate service transformer-level high-resolution98

load profiles. First, low-resolution substation load profiles99

are allocated to service transformers via scaling. Then, the100

allocated profiles are decomposed into high-resolution load101

data by aggregating typical load patterns stored in variabil-102

ity and diversity libraries. In [11], synthetic load datasets are103

created for four typical seasonal months using captured vari-104

ability from high-resolution service transformer load data. To105

develop rich load data, researchers have added random noise to106

load data for modeling load uncertainty, as presented in [12].107

In [13], a discrete wavelet transform (DWT)-based approach108

is proposed to parameterize intra-second variability of high-109

resolution transformer load data. To sum up, the primary110

limitations of previous load data enrichment methods are: the111

scaled substation load profiles allocated to service transformers112

differ from the actual load profiles since each transformer has a113

distinct load pattern [14], inaccuracy of adding random noise,114

and lack of specific methodology for applying the extracted115

load variability [7].116

Considering the shortcomings of previous works, in this117

paper, we have developed a novel bottom-up approach for118

enriching hourly load data for service transformers that only119

have SMs, by leveraging the high-resolution load data of ser-120

vice transformers with micro-PMUs and SMs. This concept is121

illustrated in Fig. 2, where the service transformer in the mid-122

dle with rich load data is utilized to perform load data enrich-123

ment for the other two service transformers with only SMs.124

Before proceeding to specific steps, we have observed that125

each low-resolution load observation corresponds to a segment126

Fig. 2. Schematic diagram of a radial distribution feeder with diverse sensors.

Fig. 3. Overall structure of the proposed load data enrichment approach.

of high-resolution load profile, as shown in Fig. 1. Therefore, 127

enriching one known low-resolution load observation comes 128

down to determining the maximum and minimum loads in the 129

corresponding high-resolution load profile segment and infer- 130

ring how the instantaneous load varies within those bounds. To 131

do this, the proposed approach exploits learned probabilistic 132

models that are trained using the high-resolution load data of 133

service transformers with micro-PMUs. Thus, the first stage is 134

to train probabilistic models using known high-resolution load 135

data of micro-PMUs. Specifically, a Gaussian Process is used 136

to capture the relationship between the maximum/minimum 137

bound and the average load. A Markov process is leveraged to 138

model the probabilistic transition of instantaneous load within 139

the bounds. These trained models for transformers with micro- 140

PMUs form a teacher repository. The second stage is to extend 141

the trained probabilistic models to the service transformers that 142

only have SMs, i.e., the students, for enriching low-resolution 143

load data. Specifically, the trained Gaussian Process models 144

are employed to estimate the unknown maximum/minimum 145

bound using the known low-resolution observation as the 146

input, and the trained Markov models are used to probabilis- 147

tically determine the variability of instantaneous load within 148

the estimated maximum and minimum bounds. In addition, the 149

load enrichment process in the second stage is performed using 150

a weighted averaging operation, where the weights are deter- 151

mined by evaluating the similarity between low-resolution load 152

data of the student and teacher transformers. Our approach 153

is not restricted to the condition that the teacher and stu- 154

dent transformers should have the same rating, loss, or served 155

customer number. The overall framework of our proposed 156

approach is illustrated in Fig. 3. 157

The primary contribution of our paper is that we have 158

proposed a novel bottom-up inter-service-transformer load 159

data enrichment approach using micro-PMUs and SMs. Our 160

method takes full advantage of the fine-grained spatial and 161

temporal granularity of SM and micro-PMU data. The rest 162

of the paper is organized as follows: Section II presents the 163

process of training teacher models using data from transform- 164

ers with micro-PMUs. Section III describes the procedure of 165

enriching load data for transformers with only SMs using 166
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Fig. 4. Observation from real high-resolution load data for a service
transformer.

the trained teacher models. In Section IV, case studies are167

analyzed, and Section V concludes the paper.168

II. CONSTRUCTING A REPOSITORY OF TEACHER169

TRANSFORMERS170

The first step in load data enrichment is to train infer-171

ence models based on high-resolution micro-PMU load data.172

In this section, inference model training includes two stages:173

load boundary inference model training, and load variability174

parameterization. Also, keep in mind that the inference model175

training process is performed for each service transformer with176

a micro-PMU.177

A. Training Load Boundary Inference Model178

Based on real high-resolution load data, we have observed179

that the average load over each low-resolution sampling180

interval, Pa, and the corresponding maximum/minimum load181

within that interval demonstrate a nonlinear relationship, as182

shown in Fig. 4. Note that P and P denote the upper and lower183

bounds of instantaneous load within each sampling interval,184

respectively. Considering this, the Gaussian Process regression185

(GPR) technique, which shows excellent flexibility in captur-186

ing nonlinearity, is leveraged to train load boundary inference187

models [15]. One primary reason for choosing GPR is that188

after running numerical tests, it demonstrated a relatively189

better performance when applied to our dataset than some190

other state-of-the-art nonlinear regression models, such as the191

Support Vector Machine model and the Polynomial regres-192

sion model. Note that other regression models with acceptable193

accuracy can also be integrated into our proposed framework194

for load data enrichment. The basic idea behind GPR is that195

if the distance between two explanatory variables is small, we196

have high confidence that the difference between correspond-197

ing dependent variables will be small as well. Specifically,198

using GPR, the upper bound of instantaneous load within the199

t’th hour, P(t), as a function of the hourly average load can200

be written as:201

P(t) = f (Pa(t)), (1)202

where, Pa(t) denotes the average load over the t’th hour.203

Unlike deterministic approaches, where f (Pa(t)) is assumed to204

yield a single value for each Pa(t), in GPR, f (Pa(t)) is a ran-205

dom variable. Intuitively, the distribution of f (Pa(t)) reflects206

the uncertainty of functions evaluated at Pa(t). In GPR, the 207

function f (Pa(t)) is distributed as a Gaussian process: 208

f (Pa(t)) ∼ GP(μ(Pa(t)), K(Pa(t), Pa(t
′))
)
, (2) 209

where, μ(Pa(t)) reflects the expected value of the maxi- 210

mum load inference function, and the covariance function 211

K(Pa(t), Pa(t′)) represents the dependence between the max- 212

imum loads during different hour intervals. In our problem, 213

the covariance function K(·, ·) is specified by the Squared 214

Exponential Kernel function expressed as: 215

K
(
Pa(t), Pa(t

′)
) = σ 2

f exp

(

−||Pa(t) − Pa(t′)||22
2λ2

)

, (3) 216

where, ||·||2 represents l2-norm, σf and λ are hyper-parameters, 217

which are determined using cross-validation. Intuitively, (3) 218

measures the distance between Pa(t) and Pa(t′), which can 219

also reflect the similarity between P(t) and P(t′), as shown 220

in Fig. 4. For each service transformer with a micro-PMU, 221

the average load and corresponding maximum load dur- 222

ing each hour interval are known and provide a training 223

dataset. Thus, applying (2) to the entire training dataset 224

consisting of N hourly average and maximum load pairs, 225

{(Pa(1), P(1)), . . . , (Pa(N), P(N))}, an N-dimensional joint 226

Gaussian distribution can be constructed as: 227

⎡

⎢
⎣

f (Pa(1))
...

f (Pa(N))

⎤

⎥
⎦ ∼ N (μμμ,���), (4) 228

where, 229

μμμ =
⎡

⎢
⎣

μ(Pa(1))
...

μ(Pa(N))

⎤

⎥
⎦, (5a) 230

��� =
⎡

⎢
⎣

K(Pa(1), Pa(1)) · · · K(Pa(1), Pa(N))
...

. . .
...

K(Pa(N), Pa(1)) · · · K(Pa(N), Pa(N))

⎤

⎥
⎦. (5b) 231

The joint Gaussian distribution formulated in (4) represents a 232

trained nonparametric maximum load inference model. Also, 233

the same procedure can be applied to the hourly average 234

and minimum load pairs, {(Pa(1), P(1)), . . . , (Pa(N), P(N)}, 235

to obtain a trained nonparametric minimum load inference 236

model. 237

In summary, for each service transformer with a micro- 238

PMU, we can obtain two trained GPR models for inferring 239

the maximum and minimum loads based on the corresponding 240

hourly average load measured at the low-resolution sampling 241

intervals. 242

B. Training Load Variability Inference Model 243

Given an hourly average load observation, simply determin- 244

ing load boundaries is not sufficient for load data enrichment. 245

We also have to learn how the load varies within these bounds. 246

It is observed from real high-resolution load data that when an 247

appliance is turned on, the load will jump to a certain level, as 248

shown in Fig. 5. This process can be modeled as the Markov 249

chain, which represents a system transitioning from one state 250
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Fig. 5. Load variations within a day captured by high-resolution data.

to another over time. Also, it is observed from Fig. 5 that once251

the load has transitioned to a certain level, it will stay almost252

invariant for a certain period of time. Therefore, the load state253

duration demonstrates statistical properties, and there exists a254

temporal correlation in state transition. Considering this, we255

have employed a second-order Markov model to capture the256

stochastic variability of the instantaneous load. Markov chains257

of second order are processes in which the next state depends258

on two preceding ones.259

Since load is continuous, the first step to parameterize a260

Markov chain process is to discretize high-resolution load261

measurements. Specifically, for the i’th high-resolution load262

observation during the t’th hour interval, the corresponding263

observed state is determined as:264

St(i) = ns, ns ∈ {1, . . . , Ns}, t = 1, . . . , N,265

if (ns − 1)
P(t) − P(t)

Ns
≤ Pt(i) − P(t) < ns

P(t) − P(t)

Ns
,266

(6)267

where, Ns represents the total number of the unique discrete268

states and Pt(i) is the i’th instantaneous load measurement269

during the t’th hour.270

Also, it is observed from real high-resolution load data271

that different load levels display different stochastic processes.272

Typically, an air-conditioner cyclically starts and stops in273

the order of minutes. In contrast, the baseload, which is274

often caused by lighting and electronic devices, shows signif-275

icantly longer cycles. In addition, the air-conditioning devices276

and baseload appliances show different average load levels277

over low-resolution sampling intervals due to different capaci-278

ties. Therefore, to capture the different transition processes,279

the discretized observation states need to be divided into280

multiple subsets according to the hourly average load mea-281

surements. Each subset is used to train a Markov chain282

model. Specifically, first, the entire collection of discretized283

observation states is split into Nd subsets according to the284

corresponding low-resolution load observation, Pa(t). The j’th285

subset is obtained as:286

DDDj = {St(i)}, i ∈ {1, . . . , N′}, t ∈ {1, . . . , N},287

Fig. 6. Representation of the 3D probability transition matrix.

if F

(
(j − 1) × 100

Nd

)
≤ Pa(t) < F

(
j × 100

Nd

)
, (7) 288

where, F(·) is a function that returns percentiles of the entire 289

set of low-resolution load observations, and N′ is the total 290

number of discretized observation states in each low-resolution 291

sampling interval. 292

Then, for each subset DDDj, the stochastic process is parame- 293

terized by empirically estimating the transition probabilities 294

between discrete observed states in terms of a transition 295

matrix. A second-order Markov process consists of three 296

states: the previous state, the current state, and the next state. 297

Therefore, the stochastic transition matrix, PPPr, is a three- 298

dimensional (3D) array, as illustrated in Fig. 6. Each element 299

of PPPr, PrPrPr(x, y, z), represents the probability of moving to state 300

z under the condition that the previous state is x and the current 301

state is y. For each subset DDDj, elements of PPPr can be estimated 302

from the frequencies of posterior states. Assume DDDj takes on 303

the form of {S(i)}, i = 1, . . . , N′
s, where N′

s is the total num- 304

ber of observation states in DDDj, then the occurrence number at 305

(x, y, z) can be counted as: 306

nnn(x, y, z) =
N′

s−1∑

i=2

[
S(i − 1) == x and 307

S(i) == y and S(i + 1) == z
]
, (8) 308

where, [ · ] is the Iverson bracket which converts any logical 309

operation into 1, if the operation is satisfied, and 0 otherwise. 310

“==” stands for the “equal to” operator and “and” is the log- 311

ical and operator. Thus, the elements of transition probability 312

matrix are computed by: 313

PPPr(x, y, z) = nnn(x, y, z)
∑

z nnn(x, y, z)
, x, y = 1, . . . , Ns. (9) 314

For each subset DDDj, j = 1, . . . , Nd, (9) is performed to obtain 315

a 3D stochastic transition matrix. Moreover, for each service 316

transformer with a micro-PMU, the entire above-mentioned 317

procedure for parameterizing variability is conducted to obtain 318

Nd stochastic transition matrices. 319

III. ENRICHING LOAD DATA FOR TRANSFORMERS WITH 320

ONLY SMART METERS 321

A. Determining Teacher Weights 322

Recall that our goal is to recover the high-resolution load 323

data masked by the low-resolution load data. In this procedure, 324

we leverage teacher models of transformers with micro-PMUs 325

for service transformer with only SMs. Note that there might 326
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be more than one teacher transformer serving the same num-327

ber of customers as the student transformer supplies. Different328

teacher transformers have different load behaviors. Thus, it329

is necessary to determine the learning weights corresponding330

to particular teacher transformers. These weights are deter-331

mined by evaluating customer-level load similarity between332

the teacher and student transformers using low-resolution load333

data.334

Specifically, for the i’th customer served by a student trans-335

former, we can obtain a typical daily load pattern, PPPi, which336

reflects customer behavior and the total capacity of appli-337

ances [16]. Then, for a student transformer serving Nc cus-338

tomers, we can obtain Nc daily load patterns, {PPP1, . . . ,PPPNc}.339

Similarly, for a teacher transformer supplying Nk
c customers,340

we can obtain Nk
c daily load patterns. Since we have multiple341

teacher transformers, we can obtain a set of load pattern342

collections. The load pattern collection for the k’th teacher343

transformer is denoted by {PPPk
1, . . . ,PPPk

Nk
c
}, k = 1, . . . , Nt,344

where, Nt is the total number of teacher transformers. Then,345

load similarity between a student transformer and the k’th346

teacher transformer is evaluated as:347

W ′
k = 1

NcNk
c

Nc∑

i=1

Nk
c∑

j=1

||PPPi − PPPk
j ||, k = 1, . . . , Nt, (10)348

where, Nk
c denotes the number of customers served by the k’th349

teacher transformer. Thus, the teacher and student transform-350

ers do not necessarily serve the same number of customers.351

The W ′
k’s in (10) are then normalized for a more convenient352

mathematical representation:353

Wk = W ′
k∑Nt

k=1 W ′
k

. (11)354

In summary, the normalized similarity weights reflect the355

confidence of a student transformer to learn from multiple356

teacher transformers for load data enrichment.357

B. Enriching Load Data358

Using the normalized teacher weights, along with the359

load boundary and variability inference models derived in360

Section II, we can conduct poor load data enrichment for361

service transformers that only have SMs.362

1) Inferring Load Boundaries: In Section II-A, for each363

teacher transformer with high-resolution load data, we have364

obtained two GPR models for inferring the maximum and min-365

imum loads given the corresponding average load over each366

low-resolution sampling interval. These two models are non-367

parametric and expressed in (4). Specifically, the trained max-368

imum load inference model for the k’th teacher transformer is369

expressed as:370

⎡

⎢
⎣

Pk(1)
...

Pk(N)

⎤

⎥
⎦ =

⎡

⎢
⎣

fk(Pa,k(1))
...

fk(Pa,k(N))

⎤

⎥
⎦ ∼ N (μμμk,���k). (12)371

To conduct load data enrichment, first, customer-level SM372

data are aggregated to obtain the load supplied by the stu-373

dent transformer, namely, {Pa,∗(1), . . . , Pa,∗(N)}. Note that374

Fig. 7. Detailed steps of enriching load data.

the transformer loss is approximated and added to the aggre- 375

gate load. Specifically, the total loss of a student transformer 376

supplying an aggregate load, Pa,∗(t), is estimated as follows: 377

Pl,∗(t) = Pnll,∗ + P2
a,∗(t)

P2
rate,∗

Pfll,∗, t = 1, . . . , N, (13) 378

where, Pnll,∗ and Pfll,∗ denote the no-load loss and full-load 379

loss, respectively. Prate,∗ denotes the kVA rating of the stu- 380

dent transformer. Pnll,∗, Pfll,∗, and Prate,∗ are typically provided 381

by transformer manufacturers. Note that the effect of reactive 382

power is ignored when estimating the loss because the reac- 383

tive power is typically small [7]. For conciseness, we assume 384

that Pa,∗(t) in the following sections has already included the 385

aggregate load and the corresponding total loss of the student 386

transformer. 387

Then, we assume the unknown upper bound of instan- 388

taneous load in terms of a function variable, Pk,∗(t) = 389

fk(Pa,∗(t)), t = 1, . . . , N, follows a Gaussian distribution. By 390

appending Pk,∗(t) at the end of (12), an (N + 1)-dimensional 391

Gaussian distribution can be formed as: 392

⎡

⎢⎢
⎢
⎣

Pk(1)
...

Pk(N)

Pk,∗(t)

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢
⎣

fk(Pa,k(1))
...

fk(Pa,k(N))

fk(Pa,∗(t))

⎤

⎥⎥
⎥
⎦

393

∼ N
([

μμμk

μμμ∗

]
,

[
���k ���k∗
���T

k∗ ���∗∗

])
, (14) 394

where, ���k∗ represents the training-test set covariances 395

and ���∗∗ is the test set covariance. In (14), observations 396

for {Pk(1), . . . , Pk(N)} are known and denoted by pppk = 397
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{pk(1)), . . . , pk(N))}. Thus, using the Bayes rule, the distri-398

bution of Pk,∗(t) conditioned on pppk is obtained as:399

Pk,∗(t)|pppk ∼ N (μ∗(t),�∗(t)), (15)400

where, μ∗(t) = ���T
k∗���

−1
k pppk and �∗(t) = ���∗∗ − ���T

k∗���
−1
k ���k∗.401

Note that μ∗(t) denotes the most probable value of the esti-402

mated upper bound of instantaneous load given the average403

load during each low-resolution sampling interval.404

Since we have Nt teacher transformers, we can obtain405

a total of Nt estimated maximum load candidates, namely,406

{μ1∗(t), . . . , μ
Nt∗ (t)}. Also, considering load similarity between407

the student transformer and teacher transformers, a weighted-408

averaging operation is performed on all the inferred maximum409

loads to calculate a final estimated upper bound of instanta-410

neous load:411

P∗(t) =
Nt∑

k=1

Wkμ
k∗(t), t = 1, . . . , N. (16)412

The same procedure introduced above is also applied to413

infer the unknown minimum load, P∗(t), using the known aver-414

age load over each low-resolution sampling interval. Once we415

have obtained the estimated load boundaries, then the trained416

probability matrices can be leveraged to infer load variability417

within each boundary.418

2) Inferring Load Variability: As introduced in419

Section II-B, each teacher transformer has Nd extracted420

transition matrices corresponding to different load levels.421

Therefore, the first step in inferring the unknown high-422

resolution load variability is to determine which transition423

matrix to use. In other words, we need to find the variability424

inference matrix corresponding to the load level that the425

low-resolution load measurement belongs to. This is achieved426

by splitting the known low-resolution load observations of427

student transformer into Nd subsets:428

PPPj∗ = {Pa,∗(t)}, t ∈ {1, . . . , N}, j = 1, . . . , Nd,429

if F

(
(j − 1) × 100

Nd

)
≤ Pa,∗(t) < F

(
j × 100

Nd

)
.430

(17)431

Then, the j’th stochastic transition matrix of each teacher432

transformer is selected for enriching the low-resolution load433

measurements in the j’th subset of the student transformer,434

PPPj∗. Moreover, considering that there is more than one teacher435

transformer, i.e., for each subset PPPj∗, we have Nt transition436

matrices to use. Thus, before proceeding to instantaneous437

load variability inference, a weighted averaging process sim-438

ilar to the load boundary estimation is conducted to obtain a439

comprehensive transition modal:440

PPPj
r∗ =

Nt∑

k=1

WkPPP
j,k
r , j = 1, . . . , Nd, (18)441

where, PPPj,k
r stands for the transition matrix for the k’th teacher442

transformer based on the j’th subset of observation states,443

DDDk
j . Then, for each low-resolution load measurement to be444

enriched, Pj
a,∗(t), the final targeted transition matrix, PPPj

r∗, and445

the inferred load boundary, {Pj
∗(t), Pj∗(t)}, are leveraged to446

generate the targeted high-resolution load data. Specifically, 447

assume the previous state is Sj
t,∗(i − 1), and the current state 448

is Sj
t,∗(i), our goal is to determine the next state, Sj

t,∗(i + 1), 449

where, i = 1, . . . , N′, stands for the sequence number of states 450

within the t’th low-resolution sampling interval. To do this, 451

first, a random value at i, U∗(i), is generated from the uni- 452

form distribution within the interval (0, 1). Then, the state at 453

(i + 1) is determined by: 454

Sj
t,∗(i + 1) = z∗, i = 2, . . . , N′ − 1, 455

if
z∗−1∑

z=1

PPPj
r∗
(

Sj
t,∗(i − 1), Sj

t,∗(i), z
)

≤ U∗(i) 456

<

z∗∑

z=1

PPPj
r∗
(

Sj
t,∗(i − 1), Sj

t,∗(i), z
)
. (19) 457

Note that the generated Sj
t,∗(i)’s are discrete state samples, 458

therefore, they need to be transformed to specific load samples: 459

Pj
t,∗(i) = Pj∗(t) +

Sj
t,∗(i)

(
P

j
∗(t) − Pj∗(t)

)

Ns
, 460

i = 1, . . . , N′. (20) 461

Since there is more than one low-resolution time interval, 462

the above procedure is conducted for each low-resolution 463

load observation. Also, since the low-resolution load observa- 464

tions are grouped into multiple subsets, the entire procedure 465

introduced above is conducted through all subsets of low- 466

resolution load measurements. The detailed steps for load data 467

enrichment for a student service transformer is illustrated in 468

Fig. 7. 469

IV. CASE STUDY 470

In this section, we have validated the proposed load data 471

enrichment approach using real high- and low-resolution load 472

data [17]. 473

A. Dataset Description 474

The dataset includes real 1-second load data for eight 475

service transformers and hourly SM energy data for 185 476

customers. Among these customers, 36 are supplied by the 477

8 transformers with high-resolution load data (with micro- 478

PMUs), and the remaining 149 customers are fed by the other 479

34 service transformers with low-resolution load data (with 480

only SMs). To verify the performance of load data enrich- 481

ment, the utility has also installed extra measuring devices to 482

record 1-second load data for the service transformers with 483

only SMs [17]. The time range of the dataset is two months. 484

In practice, micro-PMUs might have higher sampling rates 485

than one sample per second, however, there is no fundamental 486

difference in verifying the performance of our approach. 487

B. Enriching Low-Resolution Load Measurements 488

Fig. 8 shows one-day actual and enriched 1-second load 489

data for a service transformer. As can be seen, the enriched 490

curve can accurately follow the actual basic load pattern. Note 491

that our goal is not to force the enriched 1-second data to 492
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Fig. 8. One-day actual and enriched 1-second load curves.

Fig. 9. The estimated maximum and minimum loads against the correspond-
ing actual values.

exactly track the actual load. Instead, our method is designed493

to restore the statistical properties of instantaneous load given494

known low-resolution load observations obtained from hourly495

SM data.496

One critical step of our proposed approach is to determine497

the masked maximum and minimum loads given a known498

average load observation on an hourly basis. Thus, it is of499

significance to examine the performance of the load boundary500

inference process. To do this, we have employed the coef-501

ficient of determination, R2, for fitness evaluation, which is502

defined as:503

R2 = 1 −
∑N

i=1(yi − ŷi)
2

∑N
i=1(yi − y)2

, (21)504

where, yi denotes the real maximum/minimum instanta-505

neous load, ŷi denotes the corresponding inferred maxi-506

mum/minimum instantaneous load, and y = 1
N

∑N
i=1 yi. Fig. 9507

illustrates the effectiveness of load boundary estimation, and508

it can be seen that the estimated bound shows a linear rela-509

tionship with the actual bound. The R2 values for the upper510

and lower bounds are 0.80 and 0.83, respectively. This can511

also corroborate the accuracy of our proposed method. To512

fully evaluate the performance of our approach on load bound-513

ary inference, we have also computed relevant error metrics514

based on the high-resolution load in Fig. 8. The error metrics515

include the absolute error (AE) and the root mean square error516

(RMSE), and the results are summarized in Table I. The error517

metrics demonstrate that our method can accurately recover518

the unknown upper and lower bounds of the instantaneous519

load.520

TABLE I
COMPUTED ERROR METRICS OF INFERRING LOAD BOUNDARY

Fig. 10. Distributions of the actual and enriched 1-second load in Fig. 8.

Fig. 11. Percentiles of the actual and enriched 1-second loads in Fig. 8.

Note that our final goal is to recover the statistical prop- 521

erties of the high-resolution load within each low-resolution 522

sampling interval. Therefore, the performance of our proposed 523

approach needs to be evaluated from the perspective of statis- 524

tics. Fig. 10 illustrates the distributions of the actual and 525

enriched load samples on the load curves shown in Fig. 8. 526

It demonstrates that the enriched load distribution closely 527

matches the actual load distribution. In comparison, the non- 528

enriched load curve, which only includes 24 load observations, 529

cannot sufficiently form a satisfactory distribution. In addi- 530

tion, to quantitatively assess load enrichment performance, we 531

have examined the differences between the actual and enriched 532

load values corresponding to different percentiles, as shown 533

in Fig. 11. We have also evaluated the difference between 534

the percentiles of the enriched load and the actual load. The 535

computed maximum, minimum, median absolute errors of the 536

percentiles are 2.7, 0.31, and 1.5, respectively. The RMSE is 537

1.6. Therefore, the differences are small, which also proves 538

the effectiveness of our proposed approach from a statistical 539

perspective. 540

It is also of interest to examine the results obtained using 541

our proposed load data enrichment framework with a first- 542

order Markov chain model. Fig. 12 presents the actual high- 543

resolution load curve and the enriched load curve based on 544

a first-order Markov model. To assess the different effects 545

of the first- and second-order Markov models on load vari- 546

ation inference, we have constructed the distributions of load 547

state duration, as shown in Fig. 13, where, D denotes the 548

load state duration. By comparing Figs. 13(b) and 13(c) with 549
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Fig. 12. One-day actual and enriched 1-second load curves (1st-order Markov
model).

Fig. 13. Distributions of load state duration corresponding to the actual load
and the enriched loads.

Fig. 14. Percentiles of load state duration corresponding to the actual load
and the enriched loads.

Fig. 13(a), respectively, we can see that Fig. 13(b) is more sim-550

ilar to Fig. 13(a) than Fig. 13(c). This means that our proposed551

method can recover the load variation with relatively higher552

fidelity compared with the method with a first-order Markov553

model. This can also be corroborated by Fig. 14, where,554

the percentiles of load state duration corresponding to our555

proposed method are closer to the percentiles corresponding556

to the actual load.557

C. Robustness to PV Integration558

In modern distribution systems, PV integration is common559

for utilities. Therefore, it is necessary to test the performance560

of our load data enrichment approach under the condition561

of PV integration. Specifically, three scenarios are considered562

where in all scenarios, both the teacher transformer and the563

student transformer supply six customers. In the first scenario,564

three of the six customers supplied by the teacher transformer565

have installed PVs, and the ratio of the peak PV generation566

to the peak load of the teacher transformer is 44%. In the567

second scenario, only the student transformer supplies three568

PV-installed customers, and the ratio of the peak PV genera-569

tion to the peak load of the student transformer is 32%. In the570

third scenario, the teacher and student transformers both have571

Fig. 15. Robustness of our proposed approach to small-scale PVs.

three PV-installed customers, and the ratios of the peak PV 572

generation to the peak loads of the teacher and student trans- 573

formers are 40% and 34%, respectively. The enrichment results 574

corresponding to the three foregoing scenarios are shown in 575

Fig. 15. It is demonstrated that the proposed approach can still 576

achieve accurate high-resolution load data enrichment when 577

the teacher and/or student transformers serve PV-installed cus- 578

tomers. Quantitatively, for the first scenario, the maximum, 579

minimum, and median absolute errors between the percentiles 580

of the enriched load and the actual load are 1.91, 0.23, and 581

0.96, respectively. For the second scenario, the three computed 582

error metrics are 3.24, 1.85, and 2.40, respectively. For the 583

third scenario, the three computed error metrics are 3.24, 1.85, 584

and 2.40, respectively. In summary, the error metrics demon- 585

strate that our proposed load data enrichment framework can 586

adapt to PV integration. 587

D. Performing Time-Series Power Flow Studies 588

To thoroughly examine the performance of our proposed 589

approach, we have conducted time-series power flow studies 590

by separately feeding the actual and enriched loads into a real 591

distribution system [18]. The one-line topology of the real dis- 592

tribution system is shown in Fig. 16. Bus voltages obtained 593

from power flow analysis, which are critical to distribution 594

system operators, are used to evaluate our proposed approach. 595

Specifically, we compare the distributions of bus voltages and 596

voltage ramps obtained from power flow studies based on the 597

actual and enriched high-resolution load data, respectively. The 598

reason for assessing voltage ramp is that voltage ramp is sig- 599

nificant for renewable energy integration [8]. The voltage ramp 600
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Fig. 16. One-line diagram of a real distribution system.

Fig. 17. Distributions of voltage and voltage ramp during a certain hour
interval for Bus 57.

�V is defined as the difference between the current voltage601

value and the last voltage value.602

Fig. 17 illustrates the distributions of voltages and voltage603

ramps during a certain hour interval for Bus 57 in the real604

distribution system. In Fig. 17(a), it is observed that the empir-605

ical probability density function (PDF) of voltage based on the606

actual high-resolution load data can closely fit that based on607

the enriched high-resolution load data. For comparison, we608

have also performed a snapshot flow study using the average609

load over the same hour interval. The per-unit voltage for Bus610

57 is 1.0124, which is a single value without statistical prop-611

erties. Therefore, the voltage distribution in Fig. 17(a) fully612

proves the capability of our proposed approach for recovering613

statistical characteristics masked by the low-resolution aver-614

age load measurements. This capability can further enhance615

distribution system observability and situational awareness. A616

similar conclusion can be drawn for the voltage ramp, whose617

distribution is shown in Fig. 17(b). As can be seen, the two618

voltage ramp distributions corresponding to the real rich load619

data and the enriched load data closely match each other. In620

comparison, the single bus voltage value based on the hourly621

average load cannot demonstrate probabilistic properties. It is622

important to point out that voltage distribution also depends on623

the specific structure of distribution systems in addition to spe-624

cific load observations. For example, if a distribution system625

has very short line segments and a strong connection with a626

transmission system, then the bus voltage deviation might not627

be significant. In contrast, for a weak grid-connected distri-628

bution system with long line segments, the loads can have a629

strong impact on bus voltages.630

E. Performance Comparison 631

It is of significance to compare our approach with other 632

methods presented in previous works. We primarily focus on 633

comparing our approach with an allocation-based methodol- 634

ogy introduced in [8] and a noise-based technique presented 635

in [12], which are two primary load data enrichment 636

approaches in previous works. 637

1) Comparison With the Allocation-Based Method: The 638

allocation-based method involves two steps. First, a low- 639

resolution substation- or feeder-level load profile is scaled 640

to obtain service transformer-level load profiles, according 641

to transformer capacity or peak load. Then, the scaled low- 642

resolution load profile is enriched using a variability library, 643

which is constructed by applying the discrete wavelet trans- 644

form algorithm to known high-resolution transformer-level 645

load measurements. An alternative to scaling low-resolution 646

load profile is to obtain a load pattern obtained by scal- 647

ing known typical load profiles of other transformers, as 648

presented in [8]. For conciseness, we refer to the techniques 649

presented in [8] as the allocation-based method. The perfor- 650

mances of our approach and the allocation-based approach 651

are shown in Figs. 18(a) and 18(b), respectively, where the 652

actual and enriched load curves on a certain day are presented. 653

In Fig. 18(a), we can observe that the basic pattern of the 654

enriched 1-second load can flexibly follow the actual load 655

variation, despite load uncertainty. The superior performance 656

of our approach results from two aspects, the fine spatial gran- 657

ularity of SM data and the design of load boundary inference 658

process. In comparison, the allocation-based load enrichment 659

approach fails to accurately track the basic load pattern, as 660

demonstrated in Fig. 18(b). 661

The performance of the allocation-based method can also 662

be evaluated by examining the R2 values computed for the 663

load bounds, as shown in Fig. 19. We can observe that the 664

R2 values are negative, which means that the estimated maxi- 665

mum/minimum bound offers a poor estimation of the variation 666

of the actual maximum/minimum bound. The unsatisfying 667

performance of the allocation-based approach can also be 668

viewed by observing the two scatter plots in Fig. 19, where, 669

most scatters are located above the upper-right diagonal line, 670

indicating an overestimation of the actual load bounds. 671

To further evaluate the performance of our approach and 672

the benchmark methods, we have also computed the cumu- 673

lative probability of the actual and enriched load presented 674

in Fig. 18. The empirical cumulative distribution functions 675

(ECDFs) are illustrated in Fig. 21, where, we can observe 676

that the ECDF corresponding to our method is much closer 677

to the ECDF of the actual load than the ECDF correspond- 678

ing to the allocation-based method. To quantitatively assess 679

the similarity between the two ECDFs, we have computed 680

the two-sample Kolmogorov-Smirnov (KS) statistic for each 681

method, using the following equation: 682

D = sup
P

|Fa(P) − Fe(P)|, (22) 683

where, sup denotes the supremum of the set of distances. 684

Fa(P) denotes the ECDF of the actual high-resolution load, 685

and Fe(P) denotes the ECDF of the enriched load. Intuitively, 686
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Fig. 18. The actual high-resolution load curve and the enriched load curves.

Fig. 19. The estimated maximum and minimum load bounds obtained from
the allocation-based method against the corresponding actual values.

D measures the largest pairwise absolute distance between the687

ECDFs of the actual load and the enriched load. In Fig. 21, we688

can observe that the two-sample KS statistic for our method689

is 0.14, which is significantly smaller than the statistic for the690

allocation-based method, which is 0.40.691

2) Comparison With the Noise-Based Method: The basic692

idea of the noise-based approach is to add Gaussian noise to a693

typical or known low-resolution load profile. Fig. 18(c) shows694

the actual 1-second load curve and the enriched load curve695

obtained by the noise-based approach. One primary shortcom-696

ing of the noise-based approach is that it can not faithfully697

capture the cyclicity of the load state. This shortcoming can698

be observed in Fig. 18(c), where, the enriched load curve clut-699

ters the plot and does not present a clear duration of load state.700

The unsatisfactory performance of the noise-based approach701

can also be corroborated by Fig. 20, where, the negative R2
702

values demonstrate poor explanations of the inferred maxi-703

mum/minimum load bound on the actual load bound. The704

Fig. 20. The estimated maximum and minimum load bounds obtained from
the noise-based method against the corresponding actual values.

Fig. 21. Cumulative probability distributions of the actual load and the
enriched load in Fig. 18.

TABLE II
COMPUTED ERROR METRICS BASED ON LOAD CURVES IN FIG. 18

computed D value for the noise-based method is 0.32, which 705

is greater than 0.14, as shown in Fig. 21. This demonstrates 706

that our method has a better performance than the noise-based 707

method in terms of the two-sample KS statistic. 708

To quantitatively compare the aforementioned three 709

approaches, we have also computed the normalized mean 710

absolute error (nMAE) and the normalized root mean square 711

error (nRMSE) based on the load curves in Fig. 18. 712

Specifically, nMAE and nRMSE are computed as follows: 713

nMAE =
∑nt

t=1 |P(t)−P̂(t)|
nt

Pmax
× 100%, (23) 714

nRMSE =

√∑nt
t=1(P(t)−P̂(t))2

nt

Pmax
× 100%, (24) 715

where, nt is the total number of samples in a day with a 716

resolution of 1 second, i.e., 86400. P(t) and P̂(t) denote 717

the actual and estimated loads at time t, respectively. Pmax 718

denotes the peak of the actual load. The computed error met- 719

rics are summarized into Table II. We can see that compared 720

to the allocation- and noised-based methods, our approach has 721

smaller errors. 722

V. CONCLUSION 723

This paper is devoted to temporally enriching low-resolution 724

load data for service transformers that only have SMs, using 725
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high-resolution load data from service transformers with726

micro-PMUs and SMs. The entire process includes two stages,727

determining the maximum and minimum load bounds using728

known low-resolution load measurements and trained regres-729

sion models, and inferring load variability within load bound-730

aries using trained probabilistic transition models. The regres-731

sion and transition models are trained using high-resolution732

load data from service transformers with micro-PMUs. We733

have used real high-resolution load data to prove that our734

approach is able to accurately recover high-resolution load data735

masked by the average load measurements over low-resolution736

sampling intervals. The enriched high-resolution load data can737

significantly enhance utilities’ grid-edge observability and sit-738

uational awareness of distribution systems. Our paper’s key739

findings are summarized as follows.740

• The 1-second load within an hourly interval can be 40%741

times larger or smaller than the corresponding average742

load during the same hour interval. By performing power743

flow studies, we have found that using the hourly average744

load for conducting power flow analysis cannot accu-745

rately capture the actual condition of distribution systems.746

Therefore, performing low-resolution power flow studies747

might cause significant errors, especially for those dis-748

tribution networks that have a weak grid connection and749

long line segments.750

• The numerical experiments have verified that our751

proposed approach shows strong robustness and adapt-752

ability to PVs.753

• The numerical experiments have also demonstrated that754

our approach can accurately recover statistical properties755

of the instantaneous load within each low-resolution sam-756

pling interval of SM. The power flow studies show that757

our approach can faithfully reflect distribution system’s758

actual voltage conditions from a statistical perspective.759
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