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Abstract—The knowledge of distribution grid models, including4
topologies and line impedances, is essential for grid monitoring,5
control and protection. However, such information is often unavail-6
able, incomplete or outdated. The increasing deployment of smart7
meters (SMs) provides a unique opportunity to tackle this issue.8
This paper proposes a two-stage framework for distribution grid9
modeling using SM data. In the first stage, the network topology10
is identified by reconstructing a weighted Laplacian matrix of11
distribution networks. In the second stage, a least absolute de-12
viations (LAD) regression model is developed for estimating line13
impedance of a single branch based on the nonlinear (inverse)14
power flow model, wherein a conductor library is leveraged to15
narrow down the solution space. The LAD regression model is16
originally a mixed-integer nonlinear program whose continuous17
relaxation is still non-convex. Thus, we specially address its convex18
relaxation and discuss the exactness. The modified regression model19
is then embedded within a bottom-up sweep algorithm to achieve20
the identification across the network in a branch-wise manner.21
Numerical results on the IEEE 13-bus, 37-bus and 69-bus test22
feeders validate the effectiveness of the proposed methods.23

Index Terms—Distribution grid, inverse power flow, line24
impedance estimation, topology identification, smart meter, convex25
relaxation.26

I. INTRODUCTION27

W ITH the increasing penetration of distributed energy28

resources (DERs), grid monitoring and energy manage-29

ment are imperative to distribution system operation [1]. How-30

ever, such functionalities require complete and accurate knowl-31

edge of distribution grid models, including network topologies32

and line parameters. Unlike transmission systems that enjoy a33

high level of data redundancy, distribution grid models could34

be inaccurate or even unavailable [2]. Some utilities only have35

simple one-line diagrams of their systems without detailed line36

parameters; other utilities may have system models, but they are37

often incomplete or outdated due to the frequent system expan-38

sion and reconfiguration. Field inspection is a conventional ap-39

proach to draw the model information, which is laborious, costly,40

and time-consuming, especially for large-scale systems [3]. This41
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suggests an urgent need of efficient and tractable approaches for 42

distribution grid modeling. 43

In recent years, the deployment of advanced monitoring and 44

metering infrastructures, e.g., smart meters (SMs) and micro- 45

phasor measurement units (μPMUs), provides an opportunity to 46

extract the distribution grid models from field measurements [4]. 47

Some studies extend the classical state estimation tools [5]–[8] 48

to infer the status of switches, shunt capacitors/reactors, etc. 49

[9]–[12]. However, this paper considers a different problem: the 50

general distribution grid modeling consisting of a full topology 51

and parameter identification of the whole network from scratch 52

instead of only detecting the status of switchable devices. This 53

cannot be easily handled by generalizing the state estimation 54

tools. 55

Recently, data-driven approaches for network topology and 56

parameter identification have attracted a lot of attention. These 57

methods can be roughly classified into two categories accord- 58

ing to whether they require complex voltage and current mea- 59

surements (i.e., phase angle information). The studies of the 60

first category rely on high-granularity synchrophasor measure- 61

ments [13]–[16]. In [13], a multi-run optimization method was 62

proposed to estimate line parameters of a three-phase distribu- 63

tion feeder based on the synchronized voltage phasors and line 64

flow measurements. The authors in [14] proposed to identify 65

network topology based on both fundamental and harmonic 66

synchrophasor data by solving a mixed-integer linear program. 67

With the help of phase angle information, the work of [15] jointly 68

estimates the network topology and parameters by directly re- 69

constructing the admittance matrix. In [16], a similar joint esti- 70

mation was achieved by carrying out the topology and parameter 71

identification alternately. Note that these phasor-based methods 72

require a high or even full coverage of μPMUs, which is cost- 73

prohibitive, especially for low-voltage (LV) grids. In addition, 74

the existing joint topology and parameter estimation methods 75

need to solve a large-scale centralized optimization program 76

and may require iterations between topology and parameter 77

identification; thus, the computational complexity significantly 78

grows with the network size. 79

Rather than using synchrophasor measurements, another 80

line of research managed to identify topology or parameters 81

using voltage magnitude and power measurements [17]–[23]. 82

In [17], a mixed-integer quadratic programming (QP) model 83

was developed to identify network topology with the known 84

line impedance information. In [18], a structure learning 85

method was developed to estimate the grid topology by 86

assuming the nodal power injections are uncorrelated or 87

with non-negative covariances. In [19] and [20], correlation 88
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analysis-based algorithms were proposed to identify the89

grid topology using SM data, under the assumption that the90

correlation/similarity between customers’ voltage profiles91

increases as the electrical distance decreases. In [21], a Markov92

random field-based algorithm was proposed to detect the93

topology based on uncorrelated power loads. Notice that94

such statistical assumptions may be challenged by the high95

penetration of behind-the-meter DERs. The authors in [22]96

formulated the parameter identification problem as a maximum97

likelihood estimation model based on the linearized power flow.98

In [23], an error compensation model was developed to achieve99

a robust estimation of distribution line parameters.100

It is observed that the existing methods in this category101

either conduct topology identification based on some prior line102

parameter information (e.g., impedance or R/X ratio), or per-103

form parameter identification with a known topology. A joint104

network topology and parameter estimation is still challenging105

in the sense that such prior information is usually unavailable in106

practice. Statistical methods usually need massive measurement107

streams, composed of several hours or even many days of108

recorded data. This may hinder them from detecting topology109

changes in real time.110

In this context, we propose a novel two-stage framework to111

identify network topology and parameters in this paper. In the112

first stage, we develop a novel topology identification method,113

which consists of a linear least squares (LS) model for estimat-114

ing a weighted Laplacian matrix (WLM) and a density-based115

clustering method for recovering topology from the estimated116

WLM. Different with existing methods, the proposed topology117

identification initially builds on distribution grids with a homo-118

geneous R/X ratio, which yields a tractable fitting model. Then,119

its robustness against heterogeneous R/X ratios is also analyzed120

and demonstrated.121

In the second stage, a nonlinear least absolute deviations122

(LAD) regression model is developed for parameter estimation123

of a single branch based on the branch flow model [24]. To124

improve the accuracy of parameter estimation, the LAD regres-125

sion model establishes on the nonlinear power flow, which is126

therefore nonlinear and nonconvex. Then, we propose a convex127

relaxation method of the LAD model. A conductor library is128

exploited to significantly narrow the solution space of parameter129

estimation. Finally, a bottom-up sweep algorithm is proposed to130

accomplish the parameter estimation across the entire system131

by carrying out the estimation of line impedance and line flow,132

alternatively.133

The topology identification solves an unconstrained convex134

QP program and the density-based clustering method needs to135

scan the whole network only once. The parameter estimation is136

performed in a branch-wise manner, so that the computational137

complexity is approximately linear with the network size. There-138

fore, the proposed method enjoys good computational efficiency139

and scalability.140

The rest of this paper is organized as follows. Section II gives141

the preliminaries including the power flow model, some facts and142

basic assumptions, used for developing the proposed method.143

Sections III and IV present the details of topology identification144

and line impedance estimation methods, respectively. Numerical145

test results are provided in Section V. Some discussions in terms 146

of robustness and scalability is given in Section VI, followed by 147

conclusions. 148

II. PRELIMINARIES 149

Regarding notation, for a column vector v, let vi denote its 150

ith entry; and ‖v‖1 and ‖v‖2 denote its L1-norm and L2-norm, 151

respectively. Given a matrix M, let mij denote its entry at i-th 152

row and j-th column and [M]i denotes its ith row; M−1, MT 153

and M−T denote its inverse, transpose and inverse transpose, 154

respectively. Let 1n be the n× 1 column vector with all entries 155

being 1 and In be the n× n identity matrix. The superscript (̂•) 156

denotes the estimation and (•)� means the optimum. 157

Consider a radial distribution grid comprised of n+ 1 buses. 158

Let N ∪ {0} be the set of buses where the secondary side of 159

substation transformer is indexed by 0 (the unique slack bus in 160

the distribution grid) and N := {1, . . ., n} denotes the set of 161

other buses. For any j ∈ N , Cj ⊆ N denotes its children bus 162

set. Pj denotes the set of buses in the unique path from bus 163

j to bus 0 (including bus j itself). Without loss of generality, 164

we uniquely label a branch by its downstream end bus (i.e., 165

branch j’s downstream end is bus j). In this way, we are able to 166

characterize the network only by bus labels. 167

The proposed topology and parameter identification methods 168

both build on the branch flow model [24] that relaxes the voltage 169

angle. For notation convenience throughout this paper, we mod- 170

ify the original version by splitting the power balance equations 171

as: 172

Pj =
∑
k∈Cj

P̄k − pj , P̄j = Pj + rj ·
P 2
j +Q2

j

vj
(1a)

Qj =
∑
k∈Cj

Q̄k − qj , Q̄j = Qj + xj ·
P 2
j +Q2

j

vj
(1b)

vi − vj = 2 (rjPj + xjQj) +
(
r2j + x2

j

) · P 2
j +Q2

j

vj
(1c)

for any j ∈ N , where pj , qj denote the net real/reactive power 173

injection at bus j; P̄j , Q̄j denote the real and reactive power 174

flowing from the upstream bus i; Pj , Qj denote the real and 175

reactive power flowing to the downstream bus j; rj , xj > 0 176

are the line resistance and reactance; vi and vj are the squared 177

voltage magnitude at buses i and j. 178

Different than the power flow analysis that solves voltages and 179

line flows, the line impedance and topology information will be 180

extracted based on the known voltage and line flows, which is 181

referred to as inverse power flow [25]. 182

Some facts and assumptions throughout this paper are clari- 183

fied as below: 184
� The proposed method only considers balanced distribution 185

networks. This is due to the invisibility of the grid-edge 186

phase angle information. In this work, the available data 187

source required only consists of voltage magnitude and 188

power measurements recorded by SMs. In practice, this 189

method can be applied for balanced medium-voltage (MV) 190

systems or single-phase LV grids. 191
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� It is assumed that there is a full coverage of SM with192

nodal net load and voltage magnitude measurements. This193

assumption is consistent with the recent expansion of smart194

grid monitoring devices. By the end of 2020, about 107195

million SMs had been deployed, covering about 75% of196

U.S. households [26]. Further, although reactive power197

measurement is rarely collected in practice, SMs are, in198

fact, able to measure reactive power in real time. Utilities do199

not activate this function due to financial and data storage200

concerns.201
� Typically, SMs are installed on the LV customer side. So,202

SM data should be aggregated if they are used for MV203

grids. For example, the customer power measurements are204

aggregated at secondary transformer level.205
� The SM data used for identification is assumed to be perfect206

since data quality problems are not the primary focus of207

this work. Though this may not be the case in practice,208

a number of advanced data pre-processing [27]–[30] and209

pseudo measurement generation methods [31]–[33] can be210

implemented first to mitigate the impact of and data quality211

issues (e.g., asynchrony, bad data, missing data).212
� A library of line conductor types is assumed to be known,213

which is typically available in practice, in the sense that214

the conductor types are often well recorded by utilities.215

III. NETWORK TOPOLOGY IDENTIFICATION BASED ON216

WEIGHTED LAPLACIAN MATRIX217

In this section, we firstly develop an optimization-based218

topology identification method for distribution grids with the219

homogeneous R/X ratio, and then discuss its robustness against220

the variability of R/X ratios.221

A. Link Between Grid Topology and Power Flow222

Assuming the line loss is negligible compared to line flow1,223

a linear approximation of (1) that neglects the nonlinear terms224

in (1) is conducted as,225

v � 2A−TRA−1p+ 2A−TXA−1q−v0A−Ta0 (2)

where v := [v1, . . . , vn]
T , p := [p1, . . . , pn]

T , and q :=226

[q1, . . . , qn]
T denote the vectors collecting squared bus voltage227

magnitudes, real power and reactive power injections at buses228

1, . . ., n, respectively; [a0,AT ]T ∈ {0,±1}(n+1)×n is the inci-229

dence matrix of the radial-topology graph where aT0 denotes230

the first row of the incidence matrix; R := diag(r1, . . ., rn) and231

X := diag(x1, . . ., xn) are diagonal matrices with j-th diagonal232

entry being the resistance and reactance of j-th branch.233

Regarding the sort order within p,q and v, it should be234

clarified that the entries within vectors p,q and v can be sorted235

without any prior restriction. To be more clear, buses 1, . . ., n can236

be arbitrarily labelled regardless of the actual bus position in the237

network. The only requirement is that they should be organized238

in a coherent way, meaning pj , qj and vj that characterize bus j239

should come from the same SM.240

1Since line losses are usually much smaller than power flows, the approxima-
tion error is relatively small, typically at the order of 1% [34].

For a radial distribution network, the reduced incidence matrix 241

A := [aij ]n×n is non-singular [35] and A−Ta0 = −1n. There- 242

fore, a variant of (2) reads, 243

1

2
AX−1AT︸ ︷︷ ︸

Y

(v − v01n) = AX−1RA−1︸ ︷︷ ︸
Φ

p+ q (3)

where Y := [yij ]n×n is a weighted Laplacian matrix of the 244

network with the entries being: 245

yij = yji =

⎧⎪⎨⎪⎩
−1/xj , if j ∈ Ci∑

k∈{j}∪Cj
1/xk, if i = j

0, otherwise.

(4)

Mathematically, the rationale behindY is: for any two distinct 246

buses i and j, yij < 0 if they are (directly) physically connected 247

and otherwise, yij = 0. In a physical sense, Y is structurally 248

close to the admittance matrix but without considering the line 249

resistance. Therefore, if one can (approximately) identify Y 250

that uniquely characterizes the connectivity, the topology can 251

be extracted accordingly. This inspires a Y-based topology 252

identification method. 253

B. Identification Model 254

We thus attempt to develop a regression model of Y based on 255

(3) and the measurements of p,q,v and v0 that can be obtained 256

from SM data. It minimizes the mismatch between both sides 257

of (3). Unfortunately, Φ involves the network topology and 258

parameters that are unknown yet. 259

But interestingly, suppose the network has a homogeneous 260

R/X ratio, i.e., 261

r1
x1

= · · · = rn
xn

= λ, (5)

Φ reduces to 262

Φ = A

⎡⎢⎣r1/x1

. . .

rn/xn

⎤⎥⎦A−1 = λIn. (6)

Accordingly, (3) becomes, 263

Y(v − v01n) = 2(λp+ q). (7)

This exactly eliminates the requirement of prior information 264

regarding A, R and X, and relies on p,q,v and v0. 265

Then, defining the mismatch vector regarding k-th sample, 266

e(k) := Ŷ
(
v(k) − v

(k)
0 1n

)
− 2λp(k) − 2q(k), ∀k (8)

and e := [(e(1))T , . . ., (e(K))T ]T where K � n is the total 267

number of samples, a linear LS regression model of Y reads, 268

minimize
̂Y,λ

||e||22. (9)

Clearly, this fitting model is an unconstrained convex QP pro- 269

gram that can be efficiently solved. 270
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Algorithm 1: Recovering Topology From Ŷ by Clustering.
Initialization: Initialize i← 1, j ← 1, γ, ξ
repeat

[S1]: Select the ith row of Ŷ.
repeat

[S2]: Pick ŷij and retrieve all direct density-reachable
points using ξ.

[S3]: Based on γ, if ŷij is a core point, a cluster is
formed; otherwise, update j ← j + 1.

until j = n or no new point can be added to any cluster
[S4]: Update i← i+ 1.

until i = n.

C. Recovering Topology From Weighted Laplacian Matrix271

Recovering the topology from Ŷ can be cast as an anomaly272

detection problem based on the property in (4). Considering the273

sparsity of the distribution grid topology, a density-based spatial274

clustering of applications with noise method [36] is utilized here,275

which is tabulated as Algorithm 1. The rationale behind our task276

is that most of the entries in Ŷi for all i, are concentrated on277

a small range, which can be grouped into several clusters that278

represent the unconnected buses; the non-diagonal entries that279

do not belong to these clusters are declared as anomalies which280

indicate the connectivity. To achieve this, the method uses a281

minimum density level estimation based on two user-defined282

hyperparameters, a threshold for the minimum number of neigh-283

bors,γ, and the radius, ξ. ŷij with more thanγ neighbors within ξ284

distance are considered to be a core point. All neighbors within285

the ξ radius of a core point are considered to be part of the286

same cluster as the core point. Based on multiple core points,287

all entries in Ŷ can be separated by clusters of lower density.288

The cluster with the minimum entries is considered to contain289

the connected buses. Overall, our method leverages the density290

drop between the unconnected and the connected entries in Ŷ291

to detect the cluster boundaries for recovering topology from292

estimated weighted Laplacian matrix. Unlike other clustering293

algorithms that assume normally shaped clusters, this method is294

capable of finding clusters with arbitrary shapes and sizes. More-295

over, it does not require a priori specification on the number of296

clusters, therefore ensuring the robustness and practicality [37].297

Note that it does not enforce radiality.298

D. Robustness Analysis on Heterogeneous Networks299

As mentioned above, the proposed regression model is derived300

on the assumption of a homogeneous R/X ratio, which may301

not be true in practical networks. However, a distribution grid302

at a given voltage level has the relatively heterogeneous R/X303

ratios [38], which is widely believed to hold in many practical304

cases (see [39] for some examples). In what follows, we will305

show that our proposed method has some robustness against the306

heterogeneous R/X ratios.307

Let λ := (λ1 + · · ·+ λn)/n be the mean of R/X ratios and308

accordingly, let λj := λ +Δλj , ∀j, where Δλj denotes the309

deviation to λ. Therefore, we have, 310

Φ = λIn +Δλ (10)

where Δλ := Adiag(Δλ1, . . . ,Δλn)A
−1. 311

Proposition 1: Matrix Δλ := [Δij ]n×n is a matrix with the 312

entries being, 313

Δij =

⎧⎨⎩Δλi −ΔλCi∩Pj , if i ∈ Pj

Δλi, if i = j
0, otherwise.

(11)

The proof is provided in the appendix. Observe (11), Δλ can 314

be used to quantify the heterogeneity of R/X across the whole 315

network. For a netwrok with relatively homogeneous R/X ratios, 316

λj � λ, ∀j and consequently, |Δλi| � 0 and |Δλi −Δλj | � 317

0, ∀i, j. Therefore, Δλ will not significantly affect the solution 318

of (9) provided the program is numerically stable. And for a 319

strictly homogeneous network, (10) completely reduces to (6). 320

IV. LINE IMPEDANCE ESTIMATION: LAD REGRESSION MODEL 321

AND BOTTOM-UP SWEEP FRAMEWORK 322

Here, we develop a regression model for line impedance 323

estimation of a single branch–a LAD model with mixed-integer 324

semidefinite programming (MISDP) formulation. It is then em- 325

bedded with a bottom-up sweep algorithm to accomplish the 326

parameter estimation across the entire network. 327

Keep in mind that the proposed regression model is built on 328

full nonlinear inverse power flow instead of its linearized coun- 329

terpart, in the sense that the latter may be unable to accurately 330

recover the parameters, especially when the regression problem 331

is ill-posed [40]; see Fig. 1 for a numerical example on the IEEE 332

13-bus feeder. Note that, the non-convexity of the nonlinear in- 333

verse power flow model makes the regression problems NP-hard 334

even after continuous relaxation. This motivates us to specially 335

address its convexification. 336

A. Regression Model for a Single Branch 337

The line impedance estimation establishes on the voltage drop 338

relationship (1 e). Define the vector of model mismatch ej := 339

[e
(1)
j , . . ., e

(K)
j ]T for all j ∈ N with 340

e
(k)
j := v

(k)
i − v

(k)
j − 2

(
r̂jP

(k)
j + x̂jQ

(k)
j

)

−
(
R̂j + X̂j

)
·
(
P

(k)
j

)2

+
(
Q

(k)
j

)2

v
(k)
j

, ∀k (12)

where xj and rj denote the estimation of rj and xj ; R̂j := r̂2j 341

and X̂j := x̂2
j . 342

The impedance estimation minimizes the L1-norm (LAD) of 343

ej , which is expected to hold the following features. On the 344

one hand, the nonlinearity of the inverse power flow is well- 345

captured to guarantee estimation accuracy. On the other hand, the 346

library of R/X ratios (obtained from the line conductor library) is 347

exploited to significantly narrow the solution space; otherwise, 348

the solution may easily fall into some remote local optimum. 349

Therefore, the line impedance estimation, which is inherently 350
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Fig. 1. Least-squares-based line parameter estimation results of the modified IEEE 13-bus test feeder (see Section V for details) based on the linearized inverse
power flow model with and without the help of a R/X ratio library.

Fig. 2. One-line diagrams of the modified IEEE (a) 13-bus, (b) 37-bus and (c) 69-bus test feeders (balanced) where the original 13-bus test feeder is modified
to a 11-bus test feeder by removing the dummy buses 634 and 692 of the original case and the line impedance of 69-bus feeder are slightly modified to achieve
several typical R/X ratios. The resultant R/X ratio libraries are {0.5153, 1.2840, 0.8124, 0.8112, 0.9864, 2.0655}, {1.4536, 1.6222, 2.7482, 1.9691}, and
{0.4000, 0.8000, 0.9000, 2.0000, 2.9000, 3.0000, 3.1000, 3.3000, 3.4000} in the three cases, respectively.

Fig. 3. Results of topology identification of the modified IEEE 13-bus (left), 37-bus (middle), and 69-bus (right) test feeders. The top part shows the normalized
counterpart of Ŷ. The bottom part shows the output of Algorithm 1, which represents the connectivity.
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Fig. 4. Results of line parameter estimation of 13-, 37- and 69-bus test feeders.

a combinatorial optimization problem, can be cast as a mixed-351

integer nonlinear programming (MINLP) model by introducing352

the binary variables α1, .., αH ,353

minimize
αh,rj ,xj ,Rj ,Xj

f(ej) := ||ej ||1 (13a)

subject to R̂j = r̂2j (13b)

X̂j = x̂2
j (13c)

r̂j =

H∑
h=1

λhαhx̂j (13d)

H∑
h=1

αh = 1, αh ∈ {0, 1}, ∀h. (13e)

The Big-M technique is exploited to linearize the bilinear term 354

αhxj as, 355

−Mj(1− αh) ≤ r̂j − λhx̂j ≤Mj(1− αh), ∀z (14)

where Mj is a large real number. 356

While (13) can be handled by some general MINLP solvers, 357

there is no guarantee of global optimality since its continuous 358

relaxation counterpart is still non-convex due to the quadratic 359
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constraints (13 b) and (13 c). Therefore, in what follows, we360

will discuss the convexification.361

To make the optimization model tractable, we first rewrite the362

cost function in an equivalent form without L1-norm operator363

by introducing the auxiliary variables θ(1)j , . . ., θ
(K)
j :364

f(θ
(1)
j , . . . , θ

(K)
j ) =

K∑
k=1

θ
(k)
j (15)

with the additional constraints,365

θ
(k)
j ≥ e

(k)
j , −θ(k)j ≤ e

(k)
j , ∀k. (16)

To tackle the non-convex quadratic equalities (13 b) and (13366

c), we propose to convexify them via SDP relaxation. We first367

rewrite (13 b) and (13 c) as,368

Wr
j :=

[
1 r̂j

r̂j R̂j

]

 0, rank {Wr

j} = 1, ∀j (17a)

Wx
j :=

[
1 x̂j

x̂j X̂j

]

 0, rank {Wx

j } = 1, ∀j. (17b)

Then, removing the rank-1 constraints in (17), a MISDP model369

whose continuous relaxation is a convex SDP, is given by,370

minimize
αh,rj ,xj ,Rj ,Xj ,θ

(k)
j

K∑
k=1

θ
(k)
j (18a)

subject to θ
(k)
j ≥ e

(k)
j , ∀k (18b)

−θ(k)j ≤ e
(k)
j , ∀k (18c)

Wr
j 
 0 (18d)

Wx
j 
 0 (18e)

(13e) and (14). (18f)

In this way, it can be handled by MISDP solvers. The follow-371

ing proposition provides a sufficient condition that guarantees372

the SDP relaxation is exact while the estimation is error-free.373

Proposition 2: Let μ := [rj , xj , r
2
j , x

2
j ]

T . If μ is the optimal374

solution of (18), then the SDP relaxation is exact and the esti-375

mation is exact.376

The proof is provided in the appendix. Proposition 2 implies377

that if the measurements are error-free, such sufficient condition378

naturally holds because f(μ) = inf f = 0. If the measurements379

are erroneous but the errors do not affect the optimal solution380

(i.e., such sufficient condition still holds), the relaxation is still381

exact. Furthermore, if the errors are so large that the resultant382

optimal solution of (18) is no longer equal to μ, it is still possible383

that such relaxation is exact but it depends on the properties of384

samples.385

B. Bottom-Up Sweep Algorithm386

Clearly, developing (18) requires the knowledge of voltage387

magnitude and line flow values. Unfortunately, due to the low388

coverage of line flow sensors, there are few line flow measure-389

ments available. Exceptions are the tail branches since they have390

Algorithm 2: Bottom-Up Sweep Algorithm.
Initialization: Initialize d← D.
repeat

[S1]: Update the P
(k)
j and Q

(k)
j by (1 a) and (1 b) for all

k = 1, . . .,K and j in layer d.
[S2]: Calculate rj , xj of each line segment by solving
(18) for all j in layer d.

[S3]: Calculate P̄
(k)
j and Q̄

(k)
j as per (1 c) and (1 d) for

all k = 1, . . .,K and j in layer d.
[S4]: Update d← d− 1.

until d = 0.

no further downstream neighbors, and thus the line flows phys- 391

ically equal the power injections at the leaf buses, which can be 392

measured by SMs. Moreover, as per (1 a)–(1 b), the line flow over 393

a given branch can be calculated, provided all of its neighboring 394

downstream line flows have been known. These facts motivate 395

the design of a bottom-up (a.k.a. leaf-to-root) sweep algorithm 396

that manipulates the line flow and line impedance estimation in 397

an alternating way. 398

We first partition a radial distribution network into multiple 399

layers which are labeled as 1, . . ., D where D is the maximum 400

depth [see Fig. 2(a) for an example with D = 4]. Physically, 401

bus j belongs to layer d” means there are d intermediate line 402

segments in the path from bus j to the root bus 0. As stated in 403

Section II, for a radial network, there is a unique path from any 404

bus j to the root bus 0. Therefore, the partition of layers is unique 405

as well. The bottom-up sweep algorithm with the breadth-first 406

search is tabulated as Algorithm 2. 407

V. NUMERICAL RESULTS 408

In this section, the proposed topology and parameter iden- 409

tification methods are verified on the modified IEEE 13, 37 410

and 69-bus test feeders, which are depicted in Fig. 2. We have 411

utilized the real SM data from our utility partners in Midwest 412

to replace the load data of these benchmark systems. More 413

precisely, the available customer power measurements with 1-h 414

resolution are aggregated at secondary transformer level by 415

summing them at different times. The power flow analysis takes 416

as input these distribution system models and the nodal load 417

demand time-series. The computed nodal voltages are treated 418

as the voltage measurements, along with the load time-series, 419

used for topology and parameter identification. In this work, 420

the length of the time window is 200 samples. Following the 421

previous works [37], the minimum number of neighbors, γ, 422

and the radius ξ in topology recovery are assigned as 2 and 3, 423

respectively. The optimization programs are solved by YALMIP 424

Toolbox in MATLAB, along with the solver MOSEK [41]. 425

A. Results of Topology Identification 426

The topology identification results of the modified IEEE 13- 427

bus, 37-bus and 69-bus test feeders are depicted in Fig. 3. For 428

data visualization, the min-max normalization [42] is utilized to 429

rescale the entries of [Ŷ]i to be within [0,1] for all i. 430
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The upper part of Fig. 3 illustrates the rescaled variant of431

matrices Ŷ of each test feeder. Then, by performing Algorithm432

1, the estimated connectivity between any two buses of each433

test feeder is obtained (see the bottom part of Fig. 3 where434

“0” denotes “unconnected” and “1” denotes “connected”). The435

performance is validated by comparing the estimated connec-436

tivity and the real connectivity. In this work, the proposed437

method achieves a 100% accurate topology recovery for all the438

three distribution feeders. Note that, this verifies our method’s439

robustness against heterogeneous R/X ratios.440

B. Results of Line Parameter Estimation441

The line parameter estimation results of the modified IEEE442

13-bus, 37-bus and 69-bus test feeders are depicted in Fig. 4. As443

can be seen from Fig. 4, the SDP-based LAD model precisely444

recovers the line impedance of each branch, under all the three445

test cases. In terms of rj , the largest relative errors (among all446

branches) are 3.33× 10−5%, 3.40× 10−4% and 1.44× 10−4%447

for the modified IEEE 13-bus, 37-bus and 69-bus test feeders,448

respectively; and as for xj , the largest relative errors are 3.33×449

10−5%, 3.40× 10−4% and 7.06× 10−5%, respectively.450

To quantify the exactness of SDP relaxation in (18), that is451

how close are the matrices Wr
j and Wx

j to rank one, one can452

compute the ratio between their largest two eigenvalues, i.e.,453

σ2(W)/σ1(W). The maximum values of σ2(W
r)/σ1(W

r)454

among all branches are 6.77× 10−11, 6.33× 10−10 and 1.49×455

10−10 for the 13-bus, 37-bus and 69-bus test feeders; and the456

maximum values of σ2(W
x)/σ1(W

x) among all branches are457

6.20× 10−11, 9.44× 10−10 and 1.47× 10−10, respectively. It458

is demonstrated that the SDP relaxation is exact.459

VI. DISCUSSIONS460

A. Robustness461

For topology identification, given that the nonlinearity of462

power flow is dropped in the regression model, it is unlikely463

to solve Ŷ to be exactly equal to the true Y. Yet, in fact, it does464

not require an exact estimation, because the topology is only465

sensitive to the structural feature of the matrix rather than its466

exact value. Such a feature makes the proposed method robust467

against imperfect data to a certain extent.468

For line parameter estimation, on the one hand, the conductor469

library can reduce the solution space. This may enhance the470

numerical stability of the regression model, and reduces the471

impact of data quality issues. On the other hand, the proposed472

bottom-up sweep algorithm is inherently robust because the473

estimation errors regarding downstream branches only affect474

the line losses, which slightly contributes to the upstream-end475

line flows. It is therefore expected that the effects of estimation476

errors can asymptotically diminish.477

B. Efficiency and Scalability478

Besides the tractable fitting model of Y, the density-based479

clustering method used for extracting topology from Ŷ is also480

efficient since this method scans the whole dataset only one time.481

Further, we have applied an indexing structure that executes482

a neighboring query in O(log n). Consequently, the computa- 483

tional complexity of this anomaly detection is O(n log n) [37]. 484

In our tests, recovering the topology from the estimated weighted 485

Laplacian matrix can be done in a few seconds. 486

The line impedance estimation method has good scalability. 487

Via SDP relaxation, the LAD regression model (18) can be 488

easily handled by off-the-shelf solvers (solved in milliseconds 489

in our tests). The optimization model is designed and solved 490

in a branch-wise manner whose computation burden does not 491

grow with network size [the computation burden of (18) is 492

only related to the number of samples and the size of library]. 493

Besides, the sweep algorithm only requires very simple algebraic 494

operations for line flow computation, which scales well with the 495

network size as well. Therefore, the total computation burden for 496

parameter estimation is approximately linear with the network 497

size. 498

The high computational efficiency and good scalability en- 499

able a real-time application of the proposed method after some 500

system changes (e.g., network reconfiguration). 501

VII. CONCLUSION 502

In this paper, we propose a data-driven framework to accu- 503

rately and efficiently find the connectivity of different nodes in 504

entire or partial networks using SM data. The proposed topol- 505

ogy identification establishes on reconstructing the weighted 506

Laplacian matrix of a homogeneous distribution circuit, which 507

also exhibits provable robustness against heterogeneous R/X 508

ratios. The mixed-integer nonlinear LAD regression model for 509

parameter identification is developed and convexified. We then 510

embed it in a bottom-up sweep algorithm to achieve the line 511

parameter estimation across the whole network. The test results 512

validate the effectiveness and accuracy of the proposed methods. 513

At present, this work only focuses on balanced radial dis- 514

tribution grids. In future studies, the proposed method will 515

be generalized to unbalanced and/or meshed grids, with the 516

help of limited available μPMU data on a few critical nodes. 517

Moreover, the proposed method will be enhanced for better 518

robustness against heterogeneous R/X ratios and various data 519

quality problems. 520

APPENDIX 521

A. Proof of Proposition 1 522

LetB := A−1. First, as per the linear algebra theory, In → B 523

can be accomplished via the elementary row operations, by 524

which, in turn, one can exactly achieve A→ In. Second, given 525

that A is the reduced incidence matrix of a tree-topology net- 526

work, we have aij = −1 if i = j, aij = 1 if i ∈ Pj\{j} and 527

otherwise, aij = 0. To achieve A→ In, one has to add the rows 528

j for all j ∈ {j|i ∈ Pj} onto the row i, and then multiply row i 529

by −1. Accordingly, one can obtain B := [bij ]n×n with 530

bij =

{−1, if i ∈ Pj or i = j
0, otherwise.

(19)
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And then, we have531

aik · bkj =
⎧⎨⎩ 1, if k ∈ {i} ∩ Pj

−1, if k ∈ Ci ∩ Pj

0, otherwise
(20)

which indicates it is non-zero if and only if i ∈ Pj . Therefore,532

δij = Aidiag(Δλ1, . . . ,Δλn)B
j =

n∑
k=1

aikΔλkbkj

=

⎧⎨⎩Δλi −ΔλCi∩Pj , if i ∈ Pj\{j}
Δλi, if i = j
0, otherwise

(21)

for any i, j ∈ N . �533

B. Proof of Proposition 2534

Let f�
NLP and f�

SDP be the optimal cost function value of (13)535

and (18). Obviously, it follows that f�
NLP ≥ f�

SDP.536

It is observed that μ is a feasible solution of (13). If f�
SDP =537

f(μ) holds, we have538

f(μ) ≥ f�
NLP ≥ f�

SDP = f(μ). (22)

This yields f�
NLP = f�

SDP = f(μ), and therefore, the relaxation539

is exact while the estimation is exact. �540
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