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Abstract— This paper presents a novel nonlinear dictionary
learning (DL) model to address the energy disaggregation (ED)
problem, i.e., decomposing the electricity signal of a home to its
operating devices. First, ED is modeled as a new temporal DL
problem where a set of dictionary atoms is learned to capture the
most representative temporal features of electricity signals. The
sparse codes corresponding to these atoms show the contribution
of each device in the total electricity consumption. To learn pow-
erful atoms, a novel deep temporal DL (DTDL) model is proposed
that computes complex nonlinear dictionaries in the latent space
of a long short-term memory autoencoder (LSTM-AE). While the
LSTM-AE captures the deep temporal manifold of electricity
signals, the DTDL model finds the most representative atoms
inside this manifold. To simultaneously optimize the dictionary
and the deep temporal manifold, a new optimization algorithm is
proposed that alternates between finding the optimal LSTM-AE
and the optimal dictionary. To the best of authors’ knowledge,
DTDL is the only DL model that understands the deep temporal
structures of the data. Experiments on the Reference ED Data
Set show an outstanding performance compared with the recent
state-of-the-art algorithms in terms of precision, recall, accuracy,
and F-score.

Index Terms— Deep learning, dictionary learning (DL), energy
disaggregation (ED), long short-term memory autoencoder
(LSTM-AE).

I. INTRODUCTION

ENERGY disaggregation (ED) also known as nonintrusive
load monitoring is the problem of decomposing the whole

electricity consumption signal of a residential, commercial, or
industrial building into the signals of its appliances. The disag-
gregation algorithms can inform the service customers of their
consumption patterns and recognize malfunctions in electricity
appliances [1]. Furthermore, finding the detailed electricity
consumption patterns of the customers helps energy suppliers
to efficiently plan and operate power system networks [2].

Motivated by such beneficial applications, the energy soci-
ety has been recently interested in finding accurate solutions
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to this problem. ED studies are generally categorized into two
groups. The first group of approaches focuses on classifying
electricity events rather than decomposing the energy con-
sumption signals. Reference [3] is an early work in this area
that leveraged transient and harmonic information with very
high sampling rates; however, such data require costly hard-
ware and monitoring devices. An event detection method is
proposed in [4] based on the power ripple mitigation algorithm
to recognize switching ON/OFF events of home appliances.
Moreover, an enhanced version of the cumulative sum control
chart algorithm is devised in [5] that models the switching
events using predefined sliding windows that detect large
variations in the electricity consumption data. Recent studies
employed machine learning methods for supervised classi-
fication of electrical events [6]. A combination of artificial
neural network (ANN) and particle swarm optimization (PSO)
is presented in [7] to detect abrupt electricity consumption
variations that reflect different switching ON/OFF events of
home appliances. A feedforward ANN learns the switching
patterns, while PSO optimizes its weights and biases. The
graph signal processing (GSP) method [8] is a new class
of event-based algorithms that detect the edges of electricity
consumption signals. GSP models represent switching ON/OFF

events by these edges in an unsupervised fashion. Leveraging
the piecewise smoothness of power load signals, an unsuper-
vised GSP algorithm is developed in [9] for edge detection
in electricity signals. Moreover, a training-less GSP solution
for online edge detection is proposed in [10]. In addition,
in this line of research, a cloud-based online method is devised
in [11] that clusters consumption patterns of various electrical
appliances using the edge information obtained by the GSP.

The second group of algorithms aims to decompose the total
electricity signal into its component devices. In this domain,
hidden Markov model (HMM) [12] is a data-driven approach
that casts ED to a Markov process problem to learn the state
transition patterns of electricity signals. A novel combination
of HMM and L1-norm edge detection is presented in [13] to
extract the steady-state phase of electrical devices. Moreover,
a hierarchical HMM is proposed in [14] to provide an accu-
rate representation of home appliances with multiple built-in
modes that correspond to distinct power consumption profiles.
In addition, a hybrid load classification system is presented
in [15] that combines HMMs with the K -nearest neighbor-
hood (K -NN) clustering for power appliance disaggregation.
The K -NN discriminates individual load patterns of different
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devices, while a set of HMMs learn to find state transitions
between the load patterns.

Factorial HMM (FHMM) [16] is a novel variant of classic
HMM that models the total energy signal as a random variable
conditioned on multiple independent Markov chains that corre-
spond to various electrical devices. An ED algorithm based on
FHMM is presented in [17] that considers the current of appli-
ances as load features and finds the mathematical relationship
between the total current and the current of each device. Simi-
lar FHMM models are employed in [18] and [19] for industrial
machinery power consumption monitoring. A bivariate version
of HMM is presented in [20] that applies FHMMs to represent
the joint active and reactive power of electricity consumption
signals for various appliances.

Moreover, in the class of data-driven decomposition meth-
ods, Gillis and Morsi [21] proposed a cotraining semi-
supervised approach that employs a set of wavelet features
to represent energy signals and decompose them using near-
est neighborhood classifiers. In addition, a support vector
machine is defined in [22] to decompose energy signals using
voltage–current (VC) trajectory as the signature for appli-
ances. Similar VC formulation is used in [23] to disaggregate
energy signals using transfer learning and convolutional neural
networks. In this category of models, an extreme learning
machine (ELM) is employed in [24] as a binary one-hot coding
classifier that can categorize the electrical devices based on
their consumption patterns. Furthermore, a hierarchical ELM
is proposed in [25] to decompose electricity signals according
to their extracted features obtained from an autoencoding
neural network.

A. Related Work

In recent literature, dictionary learning (DL) and sparse
modeling [26], [27] have shown significant achievements
in various areas of signal processing [28]. DL-based ED
algorithms formulate the total electricity signal as a sparse
combination of individual energy snippets. Each snippet is a
short-period time series that represents an operation mode of a
device. A discriminative sparse coding algorithm is presented
in [29] to decompose the total energy by a linear dictionary
matrix whose columns (i.e., atoms) are the extracted energy
snippets. Moreover, a novel supervised sparse model is devised
in [30] to estimate a dictionary of snippets obtained from a
multi-state finite-state machine. For each device, a dictionary
learns its various operation modes (i.e., states) computed by
the state machine corresponding to that device. In this category
of models, an unsupervised DL algorithm is presented in [31]
to minimize an L1-norm loss function that leads to robust
dictionary atoms. The supervised version of robust DL [31]
is proposed in [32] that models the sparse perturbations in
the energy signals. In addition, an analysis co-sparse coding
model is presented in [33] as a novel approach to DL that
reduces the amount of required training data in ED problems.
Furthermore, in this line of research, a nonparametric scalable
DL is presented in [34] as a polynomial-time successive
approximation. Using the submodularity per set-block, this

method iteratively maximizes a set of global lower bounds
on an ED objective function.

B. Paper Contributions

Recent ED research is dominated by DL-based algorithms.
However, the existing DL models suffer from three crucial
shortcomings that significantly impact their accuracy. This
paper addresses the following shortcomings.

1) Linearity Assumption: Current DL algorithms seek to
minimize a sparse linear reconstruction error corre-
sponding to the data in the original ambient space. Each
data point is modeled as a linear combination of the
dictionary atoms that all lie on the same ambient space.
However, in many real-world applications including ED,
the relationships between different variables of the input
data in the original ambient space are too complicated
to be well-represented by linear mapping. Hence, in this
paper, a more complex nonlinear feature extraction
method is proposed to capture powerful features from
the ambient space and significantly reduce the data
dimensionality.

2) Lack of Temporal Structure: The existing DL algo-
rithms are incapable of leveraging the temporal struc-
tures exist in the data. Therefore, they cannot provide
reasonable accuracy for sequential datasets. However,
in many applications including ED, the input data are
time series in which the variables have strong tem-
poral relationships. Deep learning for temporal feature
extraction has shown promising performance in many
areas of machine learning including renewable energy
prediction [35]–[37], traffic forecasting [43], and load
modeling [39]. In this paper, a novel recursive DL
formulation is presented to address this challenge. The
proposed recurrent formulation keeps track of the tem-
poral changes in the data, hence learning the temporal
manifold of the data.

3) Atom-Feature Independence: The existing DL algo-
rithms assume that the input features fed to the DL
model are independent of the dictionary atoms. There-
fore, these features are not tuned to help better optimize
the dictionary matrix in an informative way. Moreover,
the dictionary does not provide instructive feedbacks
to better optimize the input features. To address this
concern, this paper presents a new end-to-end learning
optimization to simultaneously train the dictionary and
the input features, hence computing more discriminative
features and dictionary atoms.

Motivated by the discussed drawbacks, this paper presents
deep temporal DL (DTDL) as a novel deep learning algorithm
for ED. The objective is to learn a complex nonlinear dic-
tionary of energy signals that best describe the consumption
patterns of electrical devices. In contrast to all existing DL
models, DTDL finds an optimal dictionary of energy time
series inside the latent space of a deep neural network rather
than the original embedding space of the data. Hence, DTDL
is not restricted by the linearity assumption. To learn the
sequential structure of input energy signals, a long short-term
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memory autoencoder (LSTM-AE) is presented as a recurrent
deep neural network that learns powerful temporal states of the
data. A novel optimization is proposed to simultaneously learn
the dictionary and the corresponding sparse representation in
the space of the LSTM-AE’s latent features. Thus, DTDL
can exploit valuable time-dependent features to improve the
quality of its computed dictionary. The presented optimization
alternates between refining the LSTM-AE’s parameters and
finding the optimal dictionary in an end-to-end fashion. Hence,
the dictionary atoms and the LSTM-AE’s temporal features
pass informative knowledge to each other to find an optimal
solution.

The rest of this paper is organized as the following.
Section II defines the mathematical formulation of the ED
problem. Moreover, Section III provides a conventional DL
solution to this problem. In Section IV, the DTDL is proposed
as a new deep learning algorithm to solve ED. The recurrent
architecture as well as the mathematical optimization of the
proposed method are discussed in this section. Section V
explains a novel optimization algorithm for the DTDL that
leads to a deep learning solution for ED. Section VI presents
the disaggregation experiments on a real-world data set. The
quantitative and qualitative comparisons with the state-of-the-
art ED benchmarks are presented in this section. Finally,
the conclusions of this research are stated in Section VII.

II. PROBLEM FORMULATION

Let us assume there are L electric devices in a building and
each device i consumes an energy signal xi (t) at each time 1 ≤
t ≤ T . The aggregate consumption signal observed (recorded)
by the smart meter is computed by

x(t) =
L∑

i=1

xi (t) (1)

where x(t) is the total power consumed at time t . Observing
the aggregated signals {x(t)}Tt=1, the goal is to recover the
consumption signal of the individual appliances 1 ≤ i ≤ L,
i.e., the estimation of {xi (t)}Tt=1 for each valid i and t .

Let us consider an energy consumption data set C corre-
sponding to a building that contains the energy signals of
different devices through time (from t = 1 up to t = T ).
The consumption signals are broken into windows of length
ω � T for all devices. For each device i , the consumption
electricity in the time interval [(k − 1)ω + 1, kω] is denoted
by yi (k), called an energy snippet, for all k = 1, 2, . . . , K =
(T/ω). The corresponding aggregate signal is denoted by
y(k). As a result, C is defined by C = {C1, C2, . . . , CK }
in which each data sample Ck is a tensor of the form
〈y1(k), y2(k), . . . , yL(k), ȳ(k)〉. The goal is to build a dictio-
nary matrix D ∈ R

ω×N such that a solution of the following
problem reveals the disaggregation of y(k):

y(k) = Da(k) =
N∑

j=1

a j (k)D., j

D = [D1 D2. . .DL ] ∈ R
ω×N Di ∈ R

ω×Ni . (2)

where D is a dictionary matrix of size R
ω×N . Each column

j of the dictionary, i.e., D., j , is a representative signal (also

called an atom) for the device consumption signals yi (k) i ∈
[1, L], k ∈ [1, K ], that is, every signal yi(k) can be written as
a linear combination of several columns (atoms) in D. a(k) is
a sparse coefficient vector that determines the coefficients of
such a linear combination. Each element a j (k) decides the
contribution of each column D., j to the total consumption
signal y(k).

III. CLASSIC DICTIONARY LEARNING

In this section, the decomposition problem in (2) is cast
to a classic DL (CDL) problem where the total signal y is
decomposed by a dictionary matrix D and a sparse code a.
As shown in (1), D can be decomposed into L subdictionaries
Di ∈ R

ω×Ni , each corresponding to a device; hence, each
signal yi (k) k ∈ [1, K ] can be written as a linear combi-
nation of columns of the subdictionary Di , while Ni is the
number of these columns (atoms) defined for each device i .
Therefore, the aggregate signal y(k) is a linear combination
of the columns (atoms) in Di each associated with a sparse
coefficient vector ai (k) written by

y(k) = Da(k)

D = [D1 D2 . . . DL ] ∈ R
ω×N

a(k) = [a1(k)a2(k) . . . aL(k)] ∈ R
N ai (k) ∈ R

Ni . (3)

Since each device i has multiple consumption patterns cor-
responding to different operation modes, the objective is
to extract useful consumption signatures (temporal patterns)
through time to build subdictionaries Di for each device i ,
as a matrix whose columns (atoms) can best represent the
energy snippets yi (k) k ∈ [1, K ]. Moreover, the optimal sparse
coefficients ai(k) need to be computed for all devices to
reveal the contribution of each device in the total consumption
signal y(k).

One can find the optimal sparse coefficients a∗(k) for each k
by solving the sparse coding problem with l1 regularization as
formulated by

a∗(k)=argmina(k)||y(k)−Da(k)||22+λ1||a(k)||1 (4a)

s.t. 1T ai (k) ≤ 1ai(k)∈ {0, 1}Ni . (4b)

where ||y(k) − Da(k)||22 is the signal reconstruction error,
while ||a(k)||1 is the sparsity error with coefficient λ1 that
provides a tradeoff between the reconstruction accuracy and
sparsity of the solution a∗(k). The condition in (4b) makes
sure that for each device i , only one column (atom) is found
as its signature in y(k); thus, the device i with a nonzero
element in ai (k) is operating/ON and its contribution to the
total consumption y(k) is determined by

(Di )., j (a
i (k)) j s.t. (ai (k)) j �= 0 (5)

where (Di )., j is the j th column of Di , while (ai(k)) j is the
j th entry of ai (k).

Furthermore, to find the optimal dictionary D with respect
to the data set C with K data samples, one can minimize the
following empirical cost function over the dictionary D and
sparse coefficient matrix A = [a(1)a(2) . . .a(K )] ∈ R

N×K :

minD,A
1

K

K∑
k=1

(||y(k)− Da(k)||22 + λ1||a(k)||1) (6a)
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s.t.
∥∥D, j

∥∥2
2 ≤ 1 j = 1, 2, . . . , N (6b)

1T ai(k) ≤ 1ai (k) ∈ {0, 1}Ni i=1, 2, . . . , L k=1, 2, . . . , K

(6c)

Here, the constraint in (6b) prevents the dictionary from being
arbitrarily large, since it can cause very small coefficient values
in A, which makes the solution less informative.

IV. DEEP TEMPORAL DICTIONARY LEARNING: A NEW

PARADIGM TOWARD SPARSE CODING

This section proposes the novel DTDL algorithm to solve
the disaggregation problem formulated in (2). First, the mathe-
matical shortcomings of CDL algorithms are discussed. Then,
DTDL is presented as a novel paradigm toward DL and sparse
coding to address these issues.

A. Mathematical Drawbacks of Classic DL

CDL optimization in (4a)–(6c) has three major shortcom-
ings that motivate the need for a more powerful framework.

1) Linearity of Solution: CDL learns a linear D. As shown
in Fig. 1, the optimization of the CDL model in (4a)–(6c)
finds an approximation ỹ(k) for the true value y(k)
by finding dictionary atoms D., j that are inside the
original space of yi (k) i ∈ [1, L] k ∈ [1, K ]; however,
if such a space is nonlinear (as in the case of most
real-world applications including ED), the estimation
value ỹ(k) might not be in the original space S, making
the estimation Da(k) useless for modeling the true y(k).
This motivates us to devise a novel nonlinear DL method
based on deep learning to provide a nonlinear mapping
from S to an appropriate transformed space S′ in which
ỹ(k) can be well written as a combination of atoms
of D as both y(k) and the columns D., j lie on the
same space S′. Learning such a nonlinear mapping,
i.e., learning the transformed space S′, is a crucial
challenge solved by the DTDL.

2) Lack of Sequential Structure: The CDL cannot lever-
age the temporal patterns of sequential data sets; thus,
the need for a recurrent optimization model that can
capture useful temporal patterns from the underlying
data, i.e., signals yi (k) inside the data set C , is raised.
As the energy consumption signals in (2) are all time
series, in this paper, a novel deep recurrent optimization
model is proposed to address this issue.

3) Dictionary-Feature Independence: The CDL assumes a
strong independence between the dictionary atoms D., j

and the input signal y(k); hence, training the dictionary
using (6a)–(6c) does not lead to informative knowledge
to update the representation of y(k). Moreover, learning
the representation of the input signal y(k) does not
yield useful knowledge to update the dictionary D. The
proposed DTDL solves this issue by providing a novel
optimization algorithm that alternates between updating
input signal features and the dictionary.

Fig. 1. (a) CDL: estimating the true consumption signal y(k) by dictionary
atoms d1, d2, and d3 inside the original nonlinear space S. (b) DTDL: trans-
formation of S by a mapping function h to learn dictionary atoms inside the
transformed space S

′
. The mapping provides a better estimation ỹ(k) for y(k)

when mapped back to S.

B. DTDL Recurrent Model
To tackle the presented challenges in Section IV-A, DTDL

is proposed as a novel deep learning-based optimization for the
disaggregation problem in (2). DTDL is a DL algorithm with
a deep recurrent formulation to capture nonlinear sequential
features that can help the model to better understand the
behavior of the energy consumption temporal data, i.e., yi (k)
signals. To learn each subdictionary Di corresponding to each
device i and the sparse code matrix A, DTDL learns Ni

number of optimal ω− dimensional energy snippets ŷi =
〈ŷi (1), ŷi (2), . . . , ŷi (Ni )〉 ∈ R

ω×Ni for each device i , such that
the elements of ŷi best represent the energy snippets yi (k) for
k ∈ [1, K ]. In other words, for each device i , every yi(k) can
be written as a linear combination of elements of ŷi ; hence,
one can conclude that the optimal subdictionary is found by
Di = ŷi ∈ R

ω×Ni .
Assuming that the energy snippets yi (k) k ∈ [1, K ] lie on

a nonlinear manifold M , to find Di = ŷi , DTDL learns a
nonlinear transformation Fenc : Rω → R

d that encodes each
energy snippet yi (k) ∈ R

ω by a d-dimensional latent feature
vector h(yi (k)) ∈ R

d that captures the fundamental nonlinear
temporal relationships of the variables in energy snippet yi(k).
The latent feature vector is further decoded by a nonlinear
mapping Fdec : R

d → R
ω that maps the extracted h(yi (k))

in the nonlinear (transformed) space to the observed yi (k)
in the original space, hence learning a powerful nonlinear
embedding function h that is capable of reconstructing the
original consumption signal. Such nonlinear mapping h is
implemented by Fenc and mapped back to the original space
of energy snippets by Fdec. While h(yi (k)) is computed
(i.e., the optimal Fenc and Fdec are found) for all yi (k) in the
data set C , DTDL learns Di = ŷi inside the transformed space
corresponding to h, hence learning the nonlinear dictionary
Di = ŷi for the energy snippets yi (k) k ∈ [1, K ] for each
device i .

Since DTDL is working with the temporal data yi (k), an
LSTM-AE neural network is devised using a deep learning-
based recurrent formulation to capture the sequential structure
of the data. The presented recurrent model can capture the
sequential relationships of variables in yi (k) by learning the
temporal manifold of yi (k). As shown in Fig. 2, the pro-
posed LSTM-AE is an LSTM network with 2ω temporal
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Fig. 2. Structure of the proposed LSTM-AE.

states Si i = 1, 2, . . . , 2ω. The first ω states serve to
model Fenc that maps yi (k) to h(yi (k)) in ω iterations.
At each iteration 1 ≤ l ≤ ω, an input element yi (k)l ∈
R is observed by the LSTM unit and the temporal state
Sl−1 is updated to Sl using the following recurrent formulation:

xl = yi (k)l

al = tanh(Wa xl +Uahl−1 + ba)

il = Sigm(Wi xl +Ui hl−1 + bi )

fl = Sigm(W f xl + U f hl−1 + b f )

ol = Sigm(Woxl +Uohl−1 + bo)

Sl = fl ◦ Sl−1 + il ◦ al

hl = ol ◦ tanh(Sl) (7)

where xl is the input vector, while il , fl , and ol are the
m-dimensional input gate, forget gate, and output gate decision
variables at iteration l, respectively. al is the input activation
with bias ba , and hl is the output vector of the LSTM at
iteration l, which contains the deep temporal features obtained
from the input sequence from iteration 1 up to l. The para-
meters bi , b f , bo, and ba are the m-dimensional bias vectors,
while Wi , W f , Wo, and Wa are weight parameters inside R

m .
Moreover, Ui , U f , Uo, and Ua are the weight matrices in
R

m×m . All bias and weight parameters are tunable parameters
that are learned to find the optimal temporal state Sl as well as
the optimal temporal feature hl at each iteration l. When l =
ω, the whole yi (k) signal has been observed and hl = hω =
h(yi (k)) is obtained by the LSTM as the temporal feature
vector of the whole consumption signal yi (k); thus, the first ω
iterations of the LSTM implement Fenc mapping each energy
snippet yi (k) to the corresponding embedding vector h.

As shown in Fig. 2, the iterations ω + 1 ≤ l ≤ 2ω
reconstruct yi (k). At each time instance l, an output feature
hl = yi (k)l−ω is generated by the LSTM to model Fdec that
maps the resulting temporal features of Fenc, i.e., h(yi (k)),
to the original consumption snippet yi (k). This leads to learn-
ing the nonlinear temporal manifold of the energy snippets
yi (k) i = 1, 2, . . . , L k = 1, 2, . . . , K as the LSTM-AE learns
sequential features hω = h(yi (k)) in its iteration l = ω

that are so powerful that can reconstruct the original energy
snippets yi (k).

C. DTDL Optimization Program

DTDL learns the subdictionaries Di and the sparse coeffi-
cient matrix A in the latent space of hω = h(yi (k)), that is,
when yi(k) is mapped in the ωth iteration of the LSTM to the
feature vector hω, the columns (atoms) of the corresponding
subdictionary Di are learned to represent hω so that the
linear combinations of the atoms (columns) of each Di would
be able to yield the feature vectors hω = h(yi (k)) for all
k = 1, 2, . . . , K . Such linear combinations are determined by
the sparse code matrix A.

DTDL defines the following novel optimization program for
the problem of learning the optimal D and A, while finding
the optimal mappings Fenc and Fdec:

min
Fenc,Fdec,{Di }Li=1

J = J1 + λ2 J2 + λ3 J3 + λ4 J4

J1 = 1

L

L∑
i=1

1

K

K∑
k=1

(||Fenc(yi (k))− Di a
i(k)||22

+ λ1||ai(k)||1
)

J2 =
L∑

j=1, j �=i

∣∣∣∣DT
i D j

∣∣∣∣2
F

J3 = 1

L

L∑
i=1

1

K

K∑
k=1

(||Fdec(Fenc(yi (k)))− yi (k)||22
)

J4 =
(||W f ||2F+||Wi ||2F+||Wo||2F+||U f ||2F+||Ui ||2F
+ ||Uo||2F + ||b f ||22 + ||bi ||22 + ||bo||22

)
s.t.

1

K

K∑
k=1

|1T ai (k)− 1T ai (k + 1)| = 0 ∀ i

∥∥(Di )., j
∥∥2

2 ≤ 1 i = 1, 2, . . . , L j = 1, 2, . . . ,Ni . (8)

Here, J1 is the data reconstruction cost function to compute
the difference between hl=ω = h(yi (k)) = Fenc(yi (k)) and the
linear combination of the atoms in the subdictionary Di com-
puted by Di ai(k). Such difference is computed for all devices i
and all time intervals k in the data set C . The term λ1||ai(k)||1
ensures sparsity for the solution of A. J2 is the cross-dictionary
incoherence term; minimizing this error promotes incoherence
between two subdictionaries Di and D j �=i , that is, this error
term is in favor of having distinct subdictionary atoms for
different devices. J3 is the LSTM-AE’s reconstruction error
term, which is the distance between the output of LSTM-AE
generated at iterations ω+1 ≤ l ≤ 2ω, i.e., Fdec(Fenc(yi(k))),
and the desired output yi (k) for all devices i and all time
intervals k. J4 is the regularization error defined to control the
magnitude of the LSTM-AE’s parameters. Large parameters
might lead to the overfitting problem; thus, J4 is defined over
LSTM parameters of (7) to avoid this issue. The first constraint
in (8) satisfies the temporal smoothness prior. Note that, for
any device i , the term |1T ai (k)− 1T ai(k + 1)| is zero except
at intervals when it turns ON/OFF. Given the fact that such
switching happens in very small periods of time compared
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to the whole time period, the term (1/K )
∑K

k=1 |1T ai (k) −
1T ai(k+1)| is minimized for all devices. Finally, the constraint
‖(Di )., j‖22 ≤ 1 is assumed to avoid each subdictionary from
obtaining arbitrary large entries as it would cause very small
entries in the coefficient matrix A that can lead to trivial
solutions.

V. DTDL OPTIMIZATION SOLUTION

The optimization program in (8) is not jointly convex with
respect to {Fenc, Fdec, Di }Li=1, and A. As a result, an iterative
algorithm is proposed that alternates between optimization
of the functions Fenc and Fdec, and finding the optimal
variables {Di }Li=1 and A. The proposed algorithm addresses
three subproblems alternately as explained in the following.

A. Optimization of the LSTM-AE Mappings Fenc and Fdec

Having a fixed D and A, to optimize Fenc and Fdec in the
objective (8), one needs to solve the following optimization:

min
Fenc,Fdec

J̃

=
{

1

L

L∑
i=1

1

K

K∑
k=1

[(||Fenc(yi (k))− Di a
i (k)||22

)

+ (||Fdec(Fenc(yi (k)))− yi (k)||22
)]}

+ λ4
(||W f ||2F + ||Wi ||2F + ||Wo||2F + ||U f ||2F + ||Ui ||2F
+ ||Uo||2F + ||b f ||22 + ||bi ||22 + ||bo||22

)
. (9)

As explained in Section IV-C, the term Fenc(yi (k)) in (9) is
the output of the ω-th iteration of the LSTM-AE denoted by
hl=ω; hence, DTDL needs to train the LSTM unit to output
hl=ω = Di ai(k) at this iteration. Moreover, Fdec(Fenc(yi(k)))
is the output of the LSTM-AE in iterations ω + 1
through 2ω, i.e., Fdec(Fenc(yi (k))) = [hω+1hω+2 . . . h2ω].
Therefore, DTDL needs to train LSTM-AE to satisfy
[hω+1hω+2 . . . h2ω] = yi (k) in (9). Let us define the following
notations for the LSTM parameters at each iteration l:

gatesl =

⎡
⎢⎢⎣

al

il

fl

ol

⎤
⎥⎥⎦, W =

⎡
⎢⎢⎣

Wa

Wi

W f

Wo

⎤
⎥⎥⎦, U =

⎡
⎢⎢⎣

Ua

Ui

U f

Uo

⎤
⎥⎥⎦, b =

⎡
⎢⎢⎣

ba

bi

b f

bo

⎤
⎥⎥⎦ .

(10)

To minimize J̃ in (9) after observing each yi (k), we compute
the gradient of J̃ with respect to the LSTM’s output hl using

�l = ∂ J̃

∂hl
(yi(k))

=
{

2[Fenc(yi (k))− Di ai(k)] l = ω

2[[hω+1hω+2 . . . h2ω] − yi (k)] l ≥ ω + 1
(11)

Thus, for each LSTM iteration l = 1, 2, . . . , ω, DTDL
computes the partial derivatives of J̃ with respect to various
LSTM’s gates by

δhl = �l +�hl

δSl = δhl◦ ol ◦ (1− tanh2(Sl ))+ δSl+1 ◦ fl+1

δal = δSl ◦ il ◦ (1− a2
l )

δil = δSl ◦ al ◦ il ◦ (1− il)

δ fl = δSl ◦ Sl−1 ◦ fl ◦ (1− fl )

δol = δhl ◦ tanh(Sl) ◦ ol ◦ (1− ol)

δxl = W T .δgatesl

�hl−1 = U T .δgatesl (12)

where ◦ is the Hadamard product. Considering (9)–(12), the
partial derivatives of J̃ with respect to the LSTM’s parame-
ters W , U , and b are computed by

δW =
2ω∑
l=0

δgatesl ⊗ xl + λ4W

δU =
2ω−1∑
l=0

δgatesl+1 ⊗ hl + λ4U

δb =
2ω∑
l=0

δgatesl+1 + λ4b. (13)

Having (12), the LSTM-AE model (which is an implementa-
tion of Fenc and Fdec) is updated using the following update
rule based on the gradient descent method:

W new ← W − ηδW

Unew ← U − ηδU

bnew ← b − ηδb. (14)

Here, W new, Unew, and bnew are, respectively, the updated
parameters for W , U , and b using the gradient descent update
rule (13) after observing each yi (k) i = 1, 2, . . . , L k =
1, 2, . . . , K in 2ω iterations. η is the learning rate that deter-
mines how strong each update can be.

B. Optimization of the Dictionary D

Given the fixed mappings Fenc and Fdec, as well as some
fixed sparse code matrix A, the main optimization in (8) would
have the following form by which DTDL seeks to optimize D:

min
D=[D1 D2...DL ]

J̄ = 1

L

L∑
i=1

1

K

K∑
k=1

(||Fenc(yi (k))− Di a
i (k)||22

)

+ λ2

L∑
j=1, j �=i

∣∣∣∣DT
i D j

∣∣∣∣2
F

s.t. ‖(Di )., j‖22 ≤ 1 i = 1, 2, . . . ,L j = 1, 2, . . . ,Ni .

(15)

Here, the cross subdictionary incoherence error term
λ2

∑L
j=1, j �=i ||DT

i D j ||2F tries to enforce the resulting subdic-
tionaries of different devices i �= j to have distinct dictionary
atoms. To investigate the effect of such an error term on the
accuracy of the solution, two different settings are assumed to
solve (15). The first case assumes a zero coefficient λ2, while
the second case considers a nonzero λ2. The solutions under
both of these assumptions are investigated in the following.
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1) No Subdictionary Incoherence Error (λ2 = 0) in (15):
In this setting, there is no incoherence error; hence, each two
devices might contain similar atoms in their corresponding
subdictionaries. This changes the optimization of (15) to a
least squares problem with quadratic constraints; thus, DTDL
solves (15) using Lagrangian multipliers. First, let us define
the Lagrangian in the following form using the Lagrangian
multipliers φ = [φi, j ≥ 0] i = 1, 2, . . . , L j = 1, 2, . . . , Ni :

L(D, φ) = 1

L

L∑
i=1

1

K

K∑
k=1

(||Fenc(yi (k))− Di a
i (k)||22

)

+
L∑

i=1

Ni∑
j=1

φi, j
(‖(Di )., j‖22 − 1

)
(16)

Considering a set of multipliers as φ̃ = [φ̃ j ≥ 0]Nj=1, one can
rewrite (16) using

L(D, φ) = 1

L

L∑
i=1

1

K

K∑
k=1

(||Fenc(yi (k))− Di a
i (k)||22

)

+
N∑

j=1

φ̃ j
(‖D., j‖22 − 1

)
. (17)

Having (∂L(D, φ)/∂ D) = 0, the following analytical solution
is computed as an optimal solution for (17):

D = FTotal
enc AT (AAT +	)−1

FTotal
enc =

〈 Fenc(yi=1(1)) . . . Fenc(yi=1(K ))
. . .

Fenc(yi=L(1)) . . . Fenc(yi=L(K ))

〉
∈ R

d×(L∗K )

(18)

where FTotal
enc ∈ R

d×(L∗K ) is a vector of all Fenc(yi=l (k)) for
all i = 1, 2, . . . ,L and k = 1, 2, . . . ,K . Note that d =
dim(hl=ω) is the dimension of the temporal feature vector
hl=ω = Fenc(yi (k)); also, 	 is computed by 	 = (L ∗
K )diag(φ)∈ R

N×N . Therefore, the corresponding Lagrangian
dual function is written as

Ldual(φ)

= L(D, φ)

= 1

L

L∑
i=1

1

K

K∑
k=1

∥∥Fenc(yi (k))−FTotal
enc AT (AAT+	)−1ai (k)

∥∥2
2

+
N∑

j=1

φ̃ j
(∥∥FTotal

enc AT (AAT+	)−1ui
∥∥2

2−1
)

(19)

with the i th unit vector denoted by ui ∈ R
N . Leveraging the

gradient descent method, the dual Lagrangian Ldual(φ) in (19)
is maximized with respect to φ̃ = [φ̃ j ≥ 0]Nj=1. The gradient

of the dual for any φ̃ j is computed by

∂Ldual(φ)

∂φ̃ j
= ∥∥FTotal

enc AT (AAT +	)−1ui
∥∥2

2 − 1. (20)

When the optimal φ̃ is computed using gradient descent, the
optimal dictionary D is estimated by (18) using the optimal
	 = (L ∗ K )diag(φ).

2) Nonzero Subdictionary Incoherence Error (λ2 �= 0)
in (15): When the subdictionary incoherence error term is
considered, i.e., λ2 �= 0, one needs to optimize (15). Applying
gradient descent, the error J̄ in (15) is minimized with respect
to each subdictionary for each training data yi (k) using the
following gradient value for each subdictionary Di :

∂ J

∂ Di
(yi (k)) = Di a

i (k)(ai(k))T − Fenc,i (a
i (k))T

+ λ2

L∑
j=1, j �=i

(
DT

i D j
)
Di

Fenc,i = 〈Fenc(yi (1)) . . . Fenc(yi (K ))〉 ∈ R
d×K .(21)

Using (21), one can minimize the optimization error J̄ with
respect to every subdictionary Di , hence optimizing the whole
dictionary D.

C. Optimization of the Sparse Code Matrix A

When Fenc, Fdec, and D are fixed, one can optimize the
coefficient matrix A while observing each signal yi (k). Let us
write the main optimization program in (8) in the following
form where the main objective J in (8) is optimized with
respect to each ai(k) in A:

minai (k) J = ||Fenc(yi(k))− Di a
i(k)||22 + λ1||ai(k)||1

s.t. |1T ai(k)− 1T ai (k + 1)| = 0 ∀i, k. (22)

Here, to satisfy the constraint |1T ai (k)−1T ai (k+1)| = 0 for
all i and k, this condition is rewritten using a binary matrix G

AG = 0A ∈ R
N×(K∗L)G ∈ R

(K∗L)×(K∗L)

A = (ai=1(1)ai=2(1) . . . ai=L (1)

. . . ai=1(K )ai=2(K ai=L(K ))

= (A.,1 A.,2. . .A., j . . .A.,(K∗L)) j = (k − 1)L + i

Gi, j =

⎧⎪⎨
⎪⎩

1 i = j

−1 i = j + L

0 otherwise.

(23)

Having the constraint AG = 0, i.e., GT AT = 0, one
can rewrite optimization (22) to solve for each column
ai(k) = A., j j = (k− 1)L + i for all energy snippets yi (k) by

min
A, j=(k−1)L+i

L∑
i=1

K∑
k=1

||Fenc(yi(k))− D A., j ||22 + λ1||A., j ||1

s.t.
K∗L∑
i ′=1

K∗L∑
j ′=1

G j ′,i ′ A., j = 0. (24)

Solving (24) by the proximal Jacobian alternating direction
method of multipliers (ADMM) [40], the optimal sparse
coefficient matrix is computed. Note that the dimension of G
does not add much computational burden to the optimization
program as a large portion of G’s entries are zero.
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D. DTDL Disaggregation Solution

Algorithm 1 shows the structure of the proposed ED
algorithm that solves the optimization problem (2) using the
presented DTDL model. Here, Fenc, Fdec, {Di }Li=1, and A
are optimized using an iterative algorithm alternating among
the optimizations (9), (15), and (24). The optimizations are
executed repeatedly until the average change in the dictionary
entries is less than a small threshold ε > 0.

Algorithm 1 DTDL-Based Disaggregation Algorithm
Inputs: Energy signals of all devices yi (k)k ∈ [1, K ] i ∈
[1, L]
Outputs: Optimal Dictionary D = D∗ and sparse coefficient
a = a∗ for the disaggregation problem Y = Da where Y is
a test aggregate consumption signal
1: Repeat:
2: Optimize (9) to update Fenc, Fdec

3: Optimize (15) to update the dictionary D
4: Optimize (24) to update the sparse coefficients A
5: Until Convergence (changes in dictionary entries are less
than ε > 0)
6: Test the model: Given the optimal dictionary D∗, com-
pute optimal coefficient vector a∗ for an aggregate energy
consumption signal Y :

a∗ = min
a

∥∥Fenc (Y )− D∗a
∥∥2

2 + λ1||a||1 (25)

In the test time, the optimal dictionary D∗ is used in (25)
to obtain the optimal coefficients a∗ for some test aggregate
energy signal Y of a building. Having the optimal dictio-
nary D∗, the optimal coefficients a∗ show the contribution
of each device in the total electricity consumption Y . One can
simply compute such contributions using (5).

VI. SIMULATION RESULTS

A. Data Set

The proposed DTDL disaggregation algorithm is evaluated
on the real-world Reference ED Data Set (REDD) [12],
a large publicly available data set for electricity disaggregation
problems. The data set contains power consumption signals
of five houses with around 20 different appliances at each
house. The electricity signals of each device as well as the
total consumption are available for two weeks with a high
frequency sampling rate f = 15 kHz.

Knowing that low-frequency sampling leads to a more prac-
tical energy measurement that is less costly and more challeng-
ing for ED, DTDL is trained and evaluated on low-frequency
data. In this paper, a sampling rate f = 1 Hz is applied to
collect the energy signals. DTDL is trained and validated using
the data corresponding to the first week; 80% of these samples
are used to train and the rest are used to validate the model to
find the optimal hyperparameters. The samples of the second
week are applied to test the model.

Fig. 3. Validation accuracy of DTDL with different configurations of
LSTM-AE dimension, window length, and dictionary size.

B. Disaggregation Accuracy Metrics

Let us assume the test aggregate consumption signal Y
contains K time intervals (windows) of length ω, each denoted
by Y (k) k = 1, 2, . . . , K . Signal Y (k) is the summation of
energy signals (energy snippets) Yi (k) i = 1, 2, . . . , L, that
is, each device 1 ≤ i ≤ L consumes Yi (k) at the time
interval k. In addition, let us denote the estimation of Yi (k) by
Ŷi (k) = Di ai(k) obtained by Algorithm 1. The disaggregation
accuracy is computed by

acc =
(

1−
∑K

k=1
∑L

i=1 ‖Ŷi (k)− Yi (k)‖1
2

∑K
k=1 ‖Y (k)‖1

)
× 100%. (26)

Here, the factor 2 in the denominator is due to the fact that
the absolute value leads to double counting errors.

To have a comprehensive comparison, the precision, recall,
and the F-score are computed at the device level. At each
time period k, a binary “ON/OFF” value indicates whether
each device i is operating (ai(k) is nonzero) or not (ai(k)
is zero). Precision P determines what portion of the estimated
ON/OFF decisions for a device truly belongs to that device,
while recall R measures what portion of the ON/OFF value
for one device is correctly estimated. F-score is the harmonic
mean of P and R that combines these two metrics by

Fscore = 2× P × R

P + R
. (27)

C. Experimental Settings and Model Validation

In this paper, the learning rate η of the LSTM-AE’s update
rule (14) is set to be 0.01 and the dictionary convergence
threshold ε in Algorithm 1 is set to be 0.05. DTDL has sev-
eral hyperparameters including the LSTM-AE’s latent feature
dimension m, the time window length ω, and the number of
dictionary atoms μ considered for each device. To find an
optimal configuration of hyperparameters, a validation search
space is defined that contains all different configurations of
5 ≤ m ≤ 13 and 8 ≤ ω ≤ 16 with μ ∈ {5, 10, 15, 20, 25, 30}.
For each configuration in this search space, DTDL is trained
on the training set and evaluated on the validation set to
compute the corresponding validation accuracy acc defined
in (26). The configuration with the highest validation accuracy
acc is chosen as the optimal model that is further evaluated
on the testing set.

Fig. 3 shows the validation acc of DTDL averaged over all
houses in the data set. As shown in this plot, the optimal
configuration has m = 8 with a disaggregation accuracy
of 83.71%. Increasing m to larger values would grow the
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Fig. 4. Validation accuracy of DTDL with different configurations of error
coefficients λ2, λ3, and λ4. The contribution of various error terms to the
accuracy of the disaggregation model is shown in terms of the accuracy metric
in (26). (a) λ4 = 0.6. (b) λ3 = 1.2. (c) λ2 = 0.4.

generalization capability (i.e., nonlinear capacity) of the LSTM
unit; however, it would also make the LSTM prone to over-
fitting; therefore, the moderate value of m = 8 is the optimal
choice. It is also shown that the window size ω = 14
leads to the highest validation accuracy. Note that smaller
windows would degrade the accuracy as the transients would
be overemphasized when learning D. Moreover, larger time
windows would lead to observing different dynamics/operation
modes in just a single time window, hence decreasing the
disaggregation accuracy. As shown in Fig. 3, the optimal
model with the highest validation accuracy contains μ = 15
dictionary atoms per device. Having larger number of atoms
would increase the likelihood of overfitting that declines the
validation accuracy. In addition, having smaller number of
atoms would cause the model to miss useful energy patterns
that contain important operation modes of various devices in
the data set.

To analyze the contribution of different error terms J1,J2,J3,
and J4 defined in optimization (8) to the quality and accuracy
of our ED solution, the validation accuracy is computed
using different combinations of error coefficients λ2, λ3,
and λ4. Fig. 4 shows the validation acc averaged over all
houses for such configurations of the objective function J .
In this plot, each error coefficient is chosen from the set
� = {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4}. As shown in Fig. 4, the
optimal configuration is 〈λ2, λ3, λ4〉 = 〈0.2, 1.0, 0.4〉.

As discussed in Section IV-C where the DTDL’s opti-
mization is proposed, J2 is the cross dictionary incoherence
error that enforces the devices to have dissimilar consumption
patterns. The optimal coefficient λ2 = 0.2 shows that this
error term should have a relatively low (but more than zero)
value, which means that, for some devices, the assumption of
having dissimilar energy snippets is true (e.g., refrigerator and
lighting devices), while for other devices, the energy snippets
might have similar behaviors. For instance, as shown in
Fig. 5, the devices with rotary components (i.e., motors) such
as refrigerator and washer/dryer have similar consumption
patterns that are different from lighting appliances.

J3 is the reconstruction error term that makes sure that the
LSTM-AE has learned useful temporal features that are strong
enough to reconstruct the original consumption signals. The
optimal coefficient of this error term is J3 = 1.0, which is
relatively high. This shows that learning powerful temporal
features help the model to find more accurate disaggregation
solutions. Therefore, the high value of J3 justifies the DTDL

Fig. 5. Consumption pattern of (a) washer/dryer, (b) refrigerator, and
(c) lighting device during their operation time for House 3 in the REDD
data set.

for learning the transformed space S
′

using the presented
LSTM-based architecture. Moreover, the regularization coeffi-
cient J4 has a moderate value of 0.4 that shows the LSTM-AE
can successfully avoid the overfitting problem by restricting
the magnitude of its parameters.

D. Benchmarks

The proposed DTDL disaggregation model is compared
with various recent ED benchmarks including simple mean
prediction (SMP) [41], FHMM [19], [20], approximate
MAP inference (AMAPI) [14], [42], hierarchical FHMM
(HieFHMM) [15], and powerlet-based ED (PED) [7], [29].
Moreover, the CDL algorithm presented in Section III is
considered as a baseline to better show the merit of deep
learning in the area of sparse coding and DL. The compared
benchmarks are briefly discussed in the following.

1) Simple Mean Prediction: SMP is recently introduced
in [41] as a fundamental baseline for ED. In the training stage,
this algorithm observes the total energy signal of a home as
well as the energy signal of its individual devices. For each
device, a consumption percentage is computed as the ratio
of the energy consumed by that device to the total energy
consumption. Then, during the test time, the total energy signal
is disaggregated according to this ratio at all time steps.

2) Factorial HMM: FHMM is a recent signal disaggrega-
tion model presented in [20]. This benchmark is an HMM
with a discrete hidden state x (i)

t for each device i at each
time instance t . Given x (i)

t , at each time step t , the device i
is assumed to consume the real-valued energy y(i)

t . At the
training time, the HMM observes energy signals of the
whole training set to compute a Gaussian posterior probability
density function P(y(i)

t ) for each consumption signal y(i)
t .

In this paper, following [19] and [20], four HMM states are
defined for each device while 20 devices are assumed for
each home; hence, the FHMM learns 420 ∼= 1012 different
hidden states to compute all y(i)

t variables in the REDD data
set. The Baum–Welch expectation maximization algorithm
is employed to train the HMM to estimate P(y(i)

t ) for all
devices i at all time instances t . Moreover, the blocked Gibbs
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TABLE I

DISAGGREGATION ACCURACY OF VARIOUS BENCHMARKS

sampling method [43] is used to compute y(i)
t from the HMM’s

probability distribution P(y(i)
t ) for all time steps t .

3) Approximate MAP Inference: This model is recently pre-
sented in [42] as a novel extension of FHMM-based disaggre-
gation models. First, the time instances where the total energy
has more than 60% variation (increase or decrease) are used
to break the total energy signal into several energy snippets.
Each snippet is assigned to one HMM. In each HMM, the
mean of the probability density function corresponding to the
hidden states is set to the mean of the observed total energy in
the corresponding snippet. Moreover, the transition probability
between two HMM states Si and Sj is proportional to the
number of times the snippet corresponding to Sj is observed
after the snippet of Si in the training set. To disaggregate each
snippet, each HMM computes the probability of observing the
snippet. The snippets corresponding to HMMs with probabil-
ities higher than a threshold τ = 0.03 are considered as the
disaggregated signals.

4) Hierarchical FHMM: The HieFHMM is recently pre-
sented in [15] for residential ED. In this mode, first, the nor-
malized cross correlation (NCC) of the consumption signals
is computed for all devices. Then, the devices are clustered
into five groups where each pair of items in each group
have an NCC of more than 0.85, while the NCC of items
in different groups is less than this threshold. Following the
FHMM method in [20], an HMM is trained for each cluster to
learn the contribution of each of the five clusters to the total
energy.

5) Powerlet-Based Energy Disaggregation: PED is a recent
DL model proposed in [29] that led to the state-of-the-art
disaggregation performance on the REDD data set. First,
the total energy signal is divided into windows of size 15 s.
Then, each device is modeled as a set of dynamic systems
using autoregression with order 3. For each device, a linear
dictionary is learned by ADMM [40] to capture 20 most
representative patterns of the consumption signals. To dis-
aggregate the total energy, a linear sparse regression decides
which dictionary atoms contribute to the total energy.

E. Numerical Results

Table I shows the ED accuracy computed by (26) for
all benchmarks in the REDD data set. As shown in this
table, the DL models, PED and DTDL, have generally bet-
ter performance than other methodologies. FHMM and its

TABLE II

PRECISION(%),RECALL(%), AND F-SCORE(%) COMPARISONS

variants, AMAPI and HieFHMM, are outperformed by PED
and DTDL, since HMM-based models are limited by their
first-order Markov property that makes them unable to capture
high-order correlation among various devices’ consumption
patterns. DTDL obtains the highest accuracy with 21.71%,
21.33%, and 18.40% improvement over FHMM, AMAPI,
and HieFHMM, respectively. The superiority of DTDL over
the benchmarks is due to learning useful nonlinear patterns
from electricity signals while incorporating the learned deep
features in its DL process. Moreover, the recurrent structure of
DTDL makes it a more powerful temporal pattern recognition
model for the time-dependent energy data.

Table II shows the precision, recall, and F-score of all
benchmarks. Let us compare the DL-based models: CDL,
PED, and DTDL. On average, DTDL has 18.01% and 11.62%
better F-score than CDL and PED, respectively. As explained
in Section IV-A, CDL learns a linear dictionary using the
consumption signals of all devices. However, PED runs sparse
coding on the temporal windows of each device to find the
windows that are most representative (i.e., windows that can
best represent the whole set of windows). The representative
windows of each device are used as the columns of the subdic-
tionary corresponding to that device. In contrast to both CDL
and PED, the proposed DTDL algorithm learns a nonlinear
dictionary that considers the temporal state transitions of the
devices inside each window. DTDL shows better precision
and recall than PED and CDL due to modeling the tempo-
ral behavior of consumption signals and learning powerful
nonlinear features to boost the disaggregation accuracy. The
significant superiority of DTDL over CDL and PED shows that
the presented deep learning algorithm can better understand
the temporal relationships in the REDD data set due to
its powerful LSTM-AE features. In addition, it shows that
the proposed nonlinear DL optimization in (8) outperforms
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Fig. 6. Estimated energy consumption signals of (a) washer/dryer and
(b) refrigerator in House 1 on day 14.

Fig. 7. Pie charts of actual/estimated consumption signals for House 3.

the existing dictionary optimization methods that can merely
compute linear dictionaries.

Fig. 6 shows the actual/estimated power consumption
obtained by DTDL for two devices in House 1 on day 14 in
the testing set. Note that the model accurately understands
the transients and various steady states in the appliances.
Moreover, Fig. 7 shows the pie charts of the actual/estimated
energy consumption of the proposed DTDL and PED for
House 3 during the test time. Note that the DTDL’s estimated
consumption values closely follow the actual values, achieving
better accuracy than the state-of-the-art PED model in the
7-day test period. This shows the better reliability of our
proposed model for real-world ED purposes in long time
horizons.

F. Frequency Resolution Analysis

Section VI-E considers the widely used sampling frequency
f = 1 Hz to compare the disaggregation performance of
DTDL with the recent state-of-the-art benchmarks. In this
section, the impact of frequency resolution on the ED per-
formance is studied. As explained in [44], the practical dis-
aggregation methods work with low sampling frequencies in
the range R = [0.2 Hz, 1Hz]. Using frequencies that exceed
R would unnecessarily grow the measurement cost while
considering frequencies lower than 0.2 Hz would lead to a
sensible decline in the measurement accuracy due to the lack
of training samples for the disaggregation models.

Fig. 8. Average disaggregation accuracy of DTDL and recent benchmarks
using various sampling frequencies.

Fig. 9. Average F-score of DTDL and recent benchmarks using various
sampling frequencies.

To provide a comprehensive analysis of the effects of sam-
pling frequency resolution on the ED performance, the pro-
posed DTDL is compared with all benchmarks using various
values of the empirical frequency f ∈ {0.2, 0.4, 0.6, 0.8, 1.0}
in Hz unit. Fig. 8 shows the effect of frequency resolution on
the disaggregation accuracy defined in (26) for the proposed
DTDL and all benchmarks. As shown in this plot, the accuracy
has a positive correlation with the sampling frequency f , that
is, the accuracy decreases as the frequency of the electricity
signals is decreased. For instance, CDL leads to an accuracy
of 66.68% with f = 1 Hz, which is decreased to 55.01%
for f = 0.6 Hz, and reaches to 35.11% when f = 0.2 Hz.
This observation is due to the fact that using smaller data
frequency leads to having less number of training samples
that would result in the lower generalization capability of
the disaggregation models. On the other hand, increasing the
frequency leads to a larger training set that would enhance
the generalization of the models. As shown in Fig. 8, DTDL
has the lowest decrease rate in comparison with other methods
as the frequency is decreased. The accuracy of DTDL drops
by only 18.28% from f = 1 Hz to f = 0.2 Hz, while PED
and CDL show 30.80% and 31.57% decrease in the accuracy,
respectively. This shows that DTDL can better maintain its
generalization capacity when the amount of training data
is limited. Fig. 9 shows the impact of sampling frequency
in the F-score of DTDL as well as recent disaggregation
benchmarks. As shown in this figure, the F-score shows a
similar behavior as the disaggregation accuracy when the
sampling frequency is changed. The F-score of DTDL declines
with a small slope as the frequency is decreased. However,
the other methods show a significant decrease in their F-score.
Therefore, DTDL provides a more reliable performance in
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Fig. 10. Estimation of the actual power consumption of furnace in House 3 on day 14 using DTDL, PED, and HieFHMM with f = 0.8 Hz and f = 0.4 Hz.
(a) DTDL with f = 0.8 Hz. (b) PED with f = 0.8 Hz. (c) HieFHMM with f = 0.8 Hz. (d) DTDL with f = 0.4 Hz. (e) PED with f = 0.4 Hz. (f) HieFHMM
with f = 0.4 Hz.

real-world applications where the amount of data is limited
due to the measurement cost.

Fig. 10 shows the estimation of the actual power consump-
tion of the furnace in House 3 on day 14 using DTDL, PED,
and HieFHMM. As shown in Fig. 10(a)–(c), DTDL provides a
more accurate estimate of the actual consumption signal than
PED and HieFHMM when f = 0.8 Hz. DTDL can better
estimate the sudden changes in the data including the sudden
decrease in sample 72 and the sudden increase in sample 99.
The superiority of DTDL over PED and HieFHMM is due
to capturing complex nonlinear dictionary atoms from the
consumption signals and learning the deep temporal structures
and sequential relationships in the data. In Fig. 10(d)–(f),
when the frequency is dropped to f = 0.4 Hz, DTDL still
provides a reliable estimation of the actual power consumption
while PED and HieFHMM cannot accurately follow the actual
data due to its large variations and nonlinear nature. This
observation shows that in contrast to recent benchmarks,
DTDL leads to a high disaggregation accuracy even when
applied to small data sets with low sampling frequencies and
large temporal variations.

VII. CONCLUSION

In this paper, the problem of ED is addressed as a supervised
DL problem. A dictionary matrix is learned to capture the
representative consumption patterns of each device, Further-
more, a set of coefficients are optimized to find the most
accurate sparse linear combination of these patterns to con-
struct the aggregate electricity signal. To extract informative
time-dependent electricity patterns, we propose DTDL that
learns deep temporal features from the energy signals of each
device using an LSTM-AE. A novel optimization program

is devised to learn the LSTM states/parameters while tuning
the dictionary atoms and their sparse coefficients using our
nonlinear temporal states. Real ED experiments on a publicly
available data set show the superiority of the DTDL over
HMM-based approaches and DL models. Compared with the
state-of-the-art PED, our DTDL obtains 7.63% and 7.10%
better disaggregation accuracy and F-score, respectively. This
outperformance is mainly due to extracting nonlinear dictio-
naries as well as learning temporal structure of the underlying
electricity signals. Future research seeks to design a new
LSTM-AE whose states can be retrieved by an analytical
optimizer such as ADMM-based optimization methods to find
the global optima temporal parameters.
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