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Abstract—This study demonstrates how bid-based transactive1

energy system designs can be formulated from a customer-centric2

vantage point to encourage voluntary customer participation.3

Supportive evidence is provided for distribution systems pop-4

ulated by households with smart electric heating, ventilation and5

air conditioning systems. The optimal form of a household’s6

bid function is first derived from dynamic programming prin-7

ciples, based solely on the household’s general thermal dynamic8

and welfare attributes. The quantitative form of this optimal9

bid function is then explicitly derived, given quantitative forms10

for these attributes. A method is also developed for the system-11

atic construction of household types based on these attributes.12

Bid comparison, peak load reduction, and target load matching13

test cases conducted for a 123-bus distribution system illustrate14

the usefulness of these methods for ensuring bid-based transac-15

tive energy system designs are able to align system goals and16

constraints with local customer goals and constraints.17

Index Terms—Transactive energy system design, optimal18

household bid, household thermal dynamics, household welfare,19

representative household types, 123-bus test cases.20

I. INTRODUCTION21

RECENT years have seen a dramatic surge of interest in22

the restructuring of electric power systems at the distribu-23

tion level [2]. Researchers and practitioners are exploring new24

ways to encourage the more active participation of households25

and businesses in distribution system operations.26

Technological innovations include advancements in meter-27

ing technology. Operational innovations include proposed28

Transactive Energy System (TES) designs for the support of29

customer transactions [3], [4]. A TES design is a collection30

of economic and control mechanisms permitting the balanc-31

ing of power demands and supplies across an entire electrical32

infrastructure, using value as the key operational parameter [5].33
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The primary focus of TES design research to date has 34

been the achievement of system efficiency and reliability 35

objectives through appropriate management of customer- 36

owned distributed energy resources.1 Increasingly, TES design 37

researchers are deriving customer transactions as the outcomes 38

of customer welfare optimization problems, the standard 39

approach in economic theory. However, as discussed more 40

fully in Section II, these optimization problems are typically 41

formulated in a simple generic manner that does not express 42

local customer conditions in an empirically compelling way. 43

System efficiency and reliability are critically important 44

TES design objectives. However, TES designs must align these 45

system objectives with local customer goals and constraints if 46

voluntary customer participation is to be assured. 47

Consequently, this study considers the feasibility and desir- 48

ability of undertaking TES design from a more customer- 49

centric vantage point. For concreteness, attention is focused 50

on bid-based TES designs for distribution systems populated 51

by households. A bid-based TES design is a TES design for 52

which valuations are based on purchase and sale reservation 53

values2 expressed through bids.3 The main contributions of 54

this study are as follows: 55

• Dynamic programming principles are used to infer the 56

optimal general state-conditioned bid forms for house- 57

holds with smart thermostatically controlled loads whose 58

welfare is measured as comfort minus cost. 59

• Quantitative forms are derived for these optimal bids, 60

given quantitative forms for the households’ thermal 61

dynamic and welfare attributes expressed in terms of base 62

parameters; and a method is developed for clustering 63

households into representative types by means of these 64

base parameters. 65

• The efficacy of these methods for the formulation and 66

evaluation of bid-based TES designs from a customer- 67

centric vantage point is demonstrated by means of test 68

cases implementing the Five-Step TES Design. 69

1Distributed energy resources include small-scale storage, distributed gen-
eration (e.g., solar, wind), and demand response; see [4, p. 6].

2A purchase reservation value for a quantity q at a time t is the maximum
amount a buyer is willing to pay for q at t. A sale reservation value for a
quantity q at a time t is the minimum amount a seller is willing to accept in
payment for the sale of q at t.

3In the bid-based TES design literature, a bid refers to a demand schedule
expressing purchase reservation values for successive quantity units, a supply
schedule expressing sale reservation values for successive quantity units, or
some combination of the two.
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• The Five-Step TES Design is a bid-based TES design70

managed by an Independent Distribution System Operator71

(IDSO) that supports customer scalability, customer pri-72

vacy protection, and the alignment of system goals and73

constraints with local customer goals and constraints.74

The households considered in this study are characterized75

by physical and behavioral attributes. Each household com-76

prises: (i) a house with structural attributes; (ii) a set of77

appliances that includes an electric Heating, Ventilation, and78

Air Conditioning (HVAC) system with a smart price-sensitive79

ON/OFF controller; and (iii) a resident with comfort-cost pref-80

erences. Household thermal dynamics are expressed in terms81

of time-varying temperatures for inside air and inside mass.82

Household welfare is expressed as resident (thermal) comfort83

minus the net cost charged for power usage.84

The general mathematical form of a household’s optimal85

bid function is characterized in Section III, based solely on86

dynamic programming principles. Depending on the house-87

hold’s operating state, this optimal bid function expresses88

either power usage demand as a function of price charged89

or ancillary service (power absorption) supply as a function90

of price received.491

Quantitative parameterized representations for a household’s92

thermal dynamic system and welfare function are derived93

in Section IV, expressed in terms of base parameters.5 A94

method is then developed in Section V for deriving a house-95

hold’s optimal bid function in quantitative form, expressed in96

terms of base parameters. In addition, a method is developed97

in Section VI for classifying households into representative98

household types, where each type consists of a correlated99

clustering of base parameter values.100

Finally, test cases are reported in Sections VII–VIII to illus-101

trate the usefulness of these methods for the development102

and evaluation of bid-based TES designs from a customer-103

centric vantage point. These test cases implement a bid-based104

IDSO-managed TES design, referred to as the Five-Step TES105

Design, for a 123-bus distribution system populated by a106

mix of household types. Outcomes are reported for bid-107

function comparisons, peak load reduction, and load matching108

experiments.109

Concluding remarks are given in Section IX. Nomenclature110

tables are provided in an appendix. Test case code and data111

can be accessed at the repository site [6].112

II. RELATED LITERATURE113

TES design research is rapidly expanding. For recent exten-114

sive reviews of this research, see Abrishambaf et al. [3] and115

Küster et al. [4].116

4Ancillary services are support services for the maintenance of power bal-
ance on a grid in accordance with system reliability requirements. Ancillary
service in the form of dispatchable power absorption (withdrawal) is becom-
ing increasingly important for power balance, given the increased penetration
of non-dispatchable wind and solar power subject to sudden weather-induced
ramping events.

5As will be explained more carefully in Section IV, base parameters for
a parameterized function are parameters whose specification is both nec-
essary and sufficient for the complete determination of this function. In a
software implementation of a parameterized function, the base parameters
would constitute the user-set parameters for this function.

TES design research is most closely associated with the 117

Pacific Northwest National Laboratory (PNNL). As reported 118

in [7], seminal work on transactive designs for power exchange 119

was conducted by PNNL researchers starting as far back as 120

2003. More recent PNNL TES design work, including field 121

demonstrations, is reported in [8]–[14]. TES design work by 122

other researchers is reported in [15]–[23]. 123

This previous work has developed a wide variety of metrics 124

and simulation tools for the evaluation of TES designs. For 125

example, Widergren et al. [13] provide a list of carefully cat- 126

egorized metrics that include convergence rate, frequency of 127

imbalance events, loss of load expectation, and voltage vio- 128

lation counts. Huang et al. [14] develop a simulation-based 129

valuation method to compare different transactive energy 130

schemes. They also develop an open-source simulation plat- 131

form to allow agents developed on different platforms to 132

interact with each other in a flexible manner. 133

In addition, some of this previous work has focused on 134

the development of new transactive techniques for retail 135

market operations. For example, Rahimi and Ipakchi [15] 136

propose a number of ways in which transactive techniques 137

can be extended from wholesale to retail markets, e.g., 138

how aggregated demand-side resources can be scheduled 139

and dispatched at wholesale in a manner similar to current 140

wholesale resources. Chassin et al. [18] propose a trans- 141

active policy for the control of loads as demand-response 142

resources able to provide frequency regulating services at 143

wholesale. Mengelkamp et al. [21] propose a blockchain- 144

based decentralized microgrid energy market facilitating peer- 145

to-peer energy transactions between retail prosumers and 146

consumers. 147

More broadly, Renani et al. [20] and Nguyen et al. [22] 148

propose TES designs for end-to-end power system operations. 149

In these designs, newly proposed forms of distribution system 150

operators function as intermediaries between a system operator 151

at wholesale and aggregated demand-side resources. 152

With specific regard to bid-based TES design, 153

Hammerstrom et al. [8] and Fuller et al. [9] propose 154

and implement a linear bid function for retail customers 155

based on average retail price. Kok formulates a simple recti- 156

linear bid function for retail customers with Thermostatically 157

Controlled Loads (TCLs) that can easily be implemented for 158

customers participating in his novel bid-based TES design 159

called the PowerMatcher. Bids are demands for device power 160

usage; ancillary service provision is not considered. The 161

maximum price that retail customers are willing to pay for 162

power usage is modeled as a cut-off price that varies in 163

direct proportion to the difference between actual and desired 164

temperature levels. This bid function form is justified on 165

general heuristic grounds. 166

Nguyen et al. [22] formulate, computationally implement, 167

and evaluate a version of Kok’s rectilinear bid function for 168

household-owned electric HVAC systems with smart price- 169

sensitive controllers. The households are participants in a 170

preliminary version of the Five-Step TES Design. Nazir and 171

Hiskens [23] develop a general virtual battery model for 172

TCLs and propose a simple bid function for use as a battery 173

price-sensitive controller. 174
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The TES design work closest to the current study is by175

Li et al. [12]. The latter authors express a bid-based TES176

design problem as a mechanism design problem [24] taking177

the specific form of a Stackelberg game whose participants178

consist of a Manager (leader) in charge of a collection of179

TCLs (followers). The Manager uses an energy price signal Pc180

to coordinate the individual energy allocations selected by the181

TCLs as a function of Pc and their own private states. The goal182

of the Manager is to achieve a socially efficient energy allo-183

cation subject to customer feasibility conditions and a system184

peak load constraint.185

More precisely, each TCL i selects a temperature setpoint186

to determine an energy allocation a∗
i that maximizes i’s utility,187

Ui, conditional on the Manager’s price signal Pc and i’s private188

state vector θi. The utility function Ui is given by i’s thermal189

comfort Vi minus i’s energy procurement cost Pcai. The ther-190

mal comfort Vi is assumed to be a concave, strictly increasing,191

and continuously differentiable function of i’s energy alloca-192

tion ai over a feasible energy allocation range [0, Em
i ].6 The193

state vector θi includes i’s ON/OFF status and thermal dynamic194

attributes (internal air and mass temperatures) together with195

other private information. The optimal energy allocation a∗
i196

is required to be a continuous non-increasing function of Pc,197

given θi.198

The Manager’s wholesale energy procurement cost C(a) is199

assumed to be a differentiable, convex, and increasing func-200

tion of the sum a of the individual TCL energy allocations201

ai. Social welfare is defined to be total TCL utility minus202

wholesale energy procurement cost.203

The mechanism design problem is then as follows:204

Determine bid functions (messages) mi to be communicated205

by each TCL i to the Manager that permit the Manager to206

determine an energy price signal Pc for the TCLs such that207

the resulting TCL-determined locally optimal energy alloca-208

tions a∗
i result in the maximization of social welfare subject209

to TCL feasibility conditions and an overall peak load limit.210

Li et al. [12] establish the existence of bid functions that211

solve this mechanism design problem, given their assumptions.212

However, as they note (p. 1176), these bid functions require213

considerable communication resources. They then simplify214

their analysis by assuming all TCLs have ON/OFF controllers215

and TCL bid functions take a piecewise linear form.216

In contrast, this study determines optimal state-conditioned217

bid functions for power customers on the basis of their ther-218

mal dynamic and welfare attributes. A customer’s optimal bid219

function can express either a demand for power usage as a220

function of charged price or a supply of ancillary service221

as a function of price compensation, depending on the cus-222

tomer’s current state. Continually refreshed versions of these223

optimal bid functions are inputs to a bid-based TES design,224

referred to as the Five-Step TES Design. The IDSO man-225

aging this design sends power price signals to customers to226

6Note that these restrictions on Vi rule out the existence of an interior
“bliss point” abliss for the energy allocation ai at which i’s comfort attains its
maximum value. As will be seen in Section V, below, the existence of such
a bliss point would give i an opportunity to offer ancillary service (power
absorption) in return for appropriate compensation.

achieve system efficiency and reliability objectives, conditional 227

on these optimal household bid functions. 228

Another potentially important difference is the switch from 229

the Li et al. [12] focus on energy as the transacted product 230

to this study’s focus on the production, distribution, and usage 231

of power over time. As discussed at length in [25, Ch. 14], 232

this change in focus from energy to power could facilitate a 233

more coherent comprehensive approach to product settlement. 234

III. HOUSEHOLD OPTIMAL BID: GENERAL FORM 235

Consider a household with an electric HVAC system that is 236

controlled by a smart price-sensitive ON/OFF controller. The 237

goal of the household is to maximize its welfare over time, 238

measured as comfort minus cost. This section uses general 239

dynamic programming principles to derive the optimal general 240

bid-function form for the household’s smart HVAC controller. 241

Let the time-step during which an ON/OFF power set- 242

ting is maintained for the household’s HVAC system be 243

called the control-step. Let the time-line for the household 244

be divided into control-steps n = [ns, ne). At the start-time 245

ns for each control-step n, a control signal is transmitted to 246

the household’s HVAC system to either retain or switch its 247

current ON/OFF control setting. This control setting is then 248

maintained for the remainder of control-step n. 249

The household’s goal at the start-time ns for each control- 250

step n is to maximize its welfare over the next N control-steps, 251

where N denotes the household’s look-ahead horizon. The 252

household at start-time ns then has two possible control- 253

relevant states. Let ̂G(n,ON) and ̂G(n,OFF) denote the maxi- 254

mum possible comfort the household forecasts it could achieve 255

over control-steps n, n+1, . . . , n+(N−1) if its HVAC system 256

at time ns were set to ON or OFF, respectively, and the 257

ON/OFF HVAC controls for the remaining N-1 control-steps 258

n + 1, . . . , n + (N − 1) were then optimally set. These two 259

control-relevant states are as follows: 260

Xs
n : May Run as Ancillary Service Provider 261

̂G(n,ON) ≤ ̂G(n,OFF) 262

Xu
n : May Run for Power Usage 263

̂G(n,ON) > ̂G(n,OFF) 264

If the household is in state Xs
n at start-time ns, the household 265

will not be willing to pay a positive price for HVAC power 266

usage during n, no matter how small. However, the household 267

could be induced to switch (or leave) its HVAC system ON if 268

the price received for this HVAC power absorption (as ancil- 269

lary service supply) is sufficiently high. Let this sufficiently 270

high cut-off price be denoted by −�∗(Xs
n) ≥ 0. 271

Conversely, if the household is in state Xu
n at start-time ns, 272

the household will be willing to pay a positive price for HVAC 273

power usage during n as long as this price charged is suffi- 274

ciently low. Let this sufficiently low positive cut-off price be 275

denoted by �∗(Xu
n ) > 0. 276

Consequently, the household’s optimal bid function for 277

control-step n has the general rectilinear form depicted in 278

Fig. 1, where P∗(n) denotes the ON power consumption of 279

the household’s HVAC system during control-step n. 280

Note the optimal bid form in the ancillary service state 281

Xs
n constitutes a supply function for ancillary service (HVAC 282
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Fig. 1. A household’s optimal state-dependent “May Run” bid forms for
(a) ancillary service provision and (b) power usage during a control-step n.
A negative price denotes a price received by the household for provision of
ancillary service (HVAC power absorption). A positive price denotes a price
paid by the household for HVAC power usage.

power absorption) as a function of price received. Conversely,283

the optimal bid form in the power usage state Xu
n constitutes284

a demand function for HVAC power usage as a function of285

price paid.286

IV. QUANTITATIVE DERIVATION OF HOUSEHOLD287

OPTIMAL BID FUNCTIONS: PRELIMINARIES288

A. Household Formulation: Overview289

Consider a household that consists of a resident occu-290

pying a house at a particular location subject to external291

hot weather conditions. The household has a mix of smart292

(price-responsive) and conventional appliances.293

Specifically, the household has a smart electric HVAC294

system running in cooling mode with ON/OFF power set-295

tings. This HVAC system comprises a basic HVAC unit296

operating in parallel with a one-speed fan for air circu-297

lation. The household’s conventional appliances consist of298

lights, clothes-washer, refrigerator, dryer, freezer, range, and299

microwave.7300

The household participates in a bid-based TES design man-301

aged by an IDSO. The household sends bids to the IDSO302

that express its demands for HVAC power usage as a function303

of required price payment and its supplies of ancillary ser-304

vice (HVAC power absorption) as a function of offered price305

compensation. In return, the IDSO sends price signals to the306

household that determine ON/OFF power control actions for307

the household’s smart HVAC system.308

Fig. 2 classifies the household’s physical and behavioral309

attributes into conceptually distinct categories. Downward-310

pointing arrows denote “has a” relationships and upward-311

pointing arrows denote “is-a” relationships.312

The ‘Structure’ of the household is characterized by appli-313

ance and house attributes. Appliance attributes include appli-314

ance mix and appliance features. House attributes include315

7The methods developed in this study for optimal bid formulation and
type classification can be applied for households with HVAC systems running
in heating as well as cooling mode, and with arbitrary mixes of conventional
appliances. Specific appliance assumptions are made here to enable a concrete
demonstration of these methods.

Fig. 2. Classification of household physical and behavioral attributes.

location, size, thermal properties, and interior-exterior features 316

such as window framing and glazing. 317

The ‘Resident’ of the household is characterized by bid and 318

net benefit functions. The ‘Bid Function’ expresses the resi- 319

dent’s demand for HVAC power usage or supply of ancillary 320

service (HVAC power absorption), conditional on price signals 321

and current operating conditions. The ‘Net Benefit Function’ 322

expresses resident welfare as benefit net of cost. Benefit is 323

measured by thermal comfort. Cost is measured by charges 324

for power usage net of payments for ancillary service. 325

The household’s thermal dynamics are expressed as a 326

dynamic system with two state variables: internal air tem- 327

perature, and internal mass temperature. Starting from initial 328

conditions, the motion over time of these two state variables is 329

determined by external forcing terms and by HVAC ON/OFF 330

power control actions. This thermal dynamic modeling is 331

carefully based on the household’s ‘Structure’ and ‘Resident’ 332

attributes. 333

B. Household Methods: Discretization 334

In the following two subsections, a household’s thermal 335

dynamic system and net benefit function are represented in 336

specific quantitative discretized forms.8 337

For this purpose, the time-line [t0,+∞) is partitioned 338

into control-steps n of equal length �τ (seconds), where 339

1/�τ is the rate at which the household’s HVAC system 340

receives ON/OFF power control signals. Each control-step n 341

= 0, 1, . . . takes the form n = [ns, ne), where the start-time 342

ns and end-time ne are defined as ns = t0 + n�τ and ne = 343

t0 + [n + 1]�τ . 344

A function f : [t0,+∞) → R can then be expressed in a 345

discretized form f ∗(n) that comports with this partitioning, as 346

follows: For each control-step n, f ∗(n) ≡ f (ns). 347

C. Household Thermal Dynamics: Specific Form 348

Household thermal dynamics are expressed by an 349

Equivalent Thermal Parameter (ETP) model [26], [27] 350

8Careful derivations of these discretized forms from continuous-time
representations are given in [1, Secs. 5-6].
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describing the movement of two state variables, internal air351

temperature T∗
a (n) and internal mass temperature T∗

m(n), over352

discrete control-steps n = 0, 1, . . . External forcing terms for353

each control-step n include the outside air temperature T∗
o (n).354

The control variable u∗(n) for each control-step n is the355

ON/OFF HVAC setting determined by the household’s HVAC356

controller.357

The specific quantitative form of this thermal dynamic358

system is as follows. For each control-step n = 0, 1, . . .359

x∗(n + 1) = x∗(n) + A[Kh�τ ]x∗(n) + B[Kh�τ ]v∗(n) (1)360

where:361

A =
[

−Ua+Hm
Ca

Hm
Ca

Hm
Cm

−Hm
Cm

]

;362

B =
[

Ua
Ca

1
Ca

0

0 0 1
Cm

]

;363

x∗(n) =
[

T∗
a (n)

T∗
m(n)

]

;364

v∗(n) =
⎡

⎣

T∗
o (n)

Q∗
a(n)

Q∗
m(n)

⎤

⎦;365

Q∗
a(n) = [

1 − fi
]

Q∗
i (n) + [

1 − fs
]

Q∗
s (n)366

+ [

1 − fac
]

Q∗
hvac(n);367

Q∗
m(n) = fiQ

∗
i (n) + fsQ

∗
s (n) + facQ∗

hvac(n);368

Q∗
hvac(n) = (−K∗(n)P∗

hvac(n) + KPfan
)

u∗(n);369

P∗(n) = P∗
hvac(n) + Pfan. (2)370

Straightforward but lengthy additional equations expressing371

the heat flow rates Q∗
i (n) and Q∗

s(n), the conversion factor372

K∗(n), the ON power usage P∗
hvac(n) of the main HVAC unit,373

and the ON power usage Pfan of the HVAC air circulation374

fan as functions of household parameters and external forcing375

terms can be found in Tesfatsion and Battula [27, Sec. 4.3].376

These additional equations are omitted from the current study377

due to page-length limitations.378

Fuller descriptions for all terms appearing in the thermal379

dynamic system (1) are given in nomenclature tables provided380

in an appendix to this study.381

D. Household Net Benefit: Specific Form382

The net benefit of a household during any time interval is383

defined to be the (thermal) comfort attained by the household384

minus its net cost for power withdrawal from the distribution385

grid. This section derives an explicit quantitative expression386

for the forecasted net benefit of a household for a control-step387

n, measured at the start-time ns for n. Recall that �τ denotes388

the length (in seconds) of each control-step n.389

The comfort attained by a household during any control-390

step n is measured as the deviation between the household’s391

maximum attainable comfort (Gmax�τ ) and the household’s392

discomfort. As in [16], [28], the household’s discomfort is393

measured by the discrepancy between inside air temperature394

and the bliss temperature TB at which the household attains395

maximum comfort.396

The forecasted comfort of a household for control-step n, 397

calculated at the start-time ns for n, is given by 398

̂G
∗
(n) = [

Gmax − ̂H∗(n)
]

�τ (3) 399

where the forecasted discomfort ̂H∗(n) is given by 400

̂H∗(n) =
(

h1
[

T∗
a (n) − TB

]2 + h2
[

En
[

T∗
a (n + 1)

] − TB
]2

)

401

(4) 402

with positive weights h1 and h2. The term En[T∗
a (n + 1)] 403

in (4) denotes the household’s forecast9 for the future inside 404

air temperature T∗
a (n + 1) at the start-time for control-step 405

n+1, conditional on the household’s current state at ns and the 406

ON/OFF HVAC control action to be taken at ns. 407

The forecasted net cost of a household for control-step n, 408

calculated at the start-time ns for n, is given by 409

̂C
∗
(n) = [

Khπ
∗(n)

]

P∗(n)�τ · u∗(n). (5) 410

The term Khπ
∗(n) (¢/kW·s) in (5) denotes the retail power 411

price π∗(n) (¢/kWh) converted by Kh to ¢/kW·s. As will be 412

clarified below in Section V, the retail power price π∗(n) can 413

be either positive or negative in sign. A positive retail power 414

price denotes a price charged for demanded power usage, 415

and a negative retail power price denotes a price received for 416

supplied ancillary service (power absorption). 417

As seen in (2), the expression P∗(n) (kW) in (5) denotes 418

the total power consumption of the household’s HVAC system 419

at the start-time ns if the system is ON. The control variable 420

u∗(n) equals 1 (or 0) if the household’s HVAC system is set 421

to ON (or OFF) at the start-time ns. 422

Finally, the forecasted net benefit of a household for control- 423

step n, calculated at the start-time ns for n, is given by 424

̂NB∗
(n) = ̂G

∗
(n) − μ̂C

∗
(n). (6) 425

The factor μ > 0 in (6) denotes the household’s marginal 426

utility of money (utils/¢), a standard economic concept used 427

to transform prices measured as money per quantity unit into 428

prices measured as benefit (utility) per quantity unit.10
429

E. Household Parameter and Forcing Term Settings 430

This subsection suggests possible ways that numerical 431

values could be set for the parameters and forcing terms char- 432

acterizing the thermal dynamic and welfare attributes of our 433

modeled household, thus permitting practical implementation. 434

Regarding the household thermal dynamic system (1), val- 435

ues for the four main thermal parameters {Ca, Cm, Ua, Hm} and 436

the three weight factors {f i, fs, fac} can be determined from the 437

physical attributes of a house, such as the floor area, the num- 438

ber of stories, the orientation and size of windows and doors, 439

and the level of thermal insulation. Relationships expressing 440

Ca, Cm, Ua, and Hm as functions of physical house attributes 441

are carefully presented and explained in [27, Sec. 4.4]. Values 442

for HVAC system parameters, such as the HVAC system’s 443

9The precise manner in which this forecast is calculated is carefully
explained in [1, App. B].

10See [1, Sec. 5.1] for a fuller discussion of the meaning and derivation of
a household’s marginal utility of money.
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cooling-mode coefficient of performance that enters into the444

determination of the ON power usage P∗(n) for the HVAC445

system running in cooling mode, can be obtained from the446

HVAC system installer or manufacturer.447

Relationships expressing the heat flow rates Q∗
s (n) and448

Q∗
i (n) as functions of forcing terms and physical house449

attributes are carefully presented and explained in [27,450

Sec. 4.2]. The heat flow rate Q∗
s (n) from solar radiation to451

inside air mass and inside solid mass can be calculated from452

incident solar radiation and physical house attributes. However,453

obtaining an accurate estimate for the heat flow rate Q∗
i (n)454

from internal non-HVAC equipment usage and house occu-455

pancy to inside air mass and inside solid mass presents quite a456

practical challenge since these determining factors depend on457

resident behavior. Some form of typical variation for Q∗
i (n)458

would presumably have to be used based on information459

provided by the resident and/or by sites such as [28].460

Another issue is the determination of the internal mass tem-461

perature T∗
m(n), appearing as the second component of the state462

vector x∗(n) for the thermal dynamic system (1). This internal463

mass temperature cannot be obtained by direct measurement.464

However, as demonstrated in [16, App. A], a Luenberger465

observer can be designed to estimate this state variable using466

environmental variable measurements for outside air tempera-467

ture, solar radiation, and humidity together with reasonable468

assumptions regarding heat flow rates. Environmental vari-469

able measurements can be obtained either directly, by sensors470

installed at the house, or indirectly from weather monitoring471

websites.472

The representation (6) for a household resident’s forecasted473

net benefit (comfort minus cost) is roughly based on [28]. The474

resident could program his comfort and cost preferences either475

directly on a wall control unit or by means of a user-friendly476

graphical user interface that runs on some form of mobile477

computing device. The wall unit or mobile computing device478

could permit the resident to enter his preferences in a user-479

friendly (non-numerical) manner that is internally translated480

into numerical values.481

For example, to determine the bliss temperature TB, the res-482

ident could be asked to set a slider control between minimum483

and maximum temperature limits. Given an arbitrary positive484

pre-set value for Gmax in (3), the weight factors h1 and h2485

appearing in expression (4) for forecasted discomfort could486

reasonably be set to equal scaled values Kd/2. Forecasted dis-487

comfort for a control-step n would then be approximated as the488

scaled average deviation between TB and the actual (or fore-489

casted) inside air temperature at the start-time and end-time490

for n. To determine the scale factor Kd, the resident could be491

asked to set a slider control between 0 and Gmax. Finally, to492

determine the comfort-cost trade-off parameter μ, the resident493

could be asked to set a slider control between minimum and494

maximum limits corresponding to “cost is not important (rel-495

ative to comfort)” and “cost is highly important (relative to496

comfort)”.497

V. OPTIMAL HOUSEHOLD BID FUNCTION DERIVATION498

Consider a household whose thermal dynamic system and499

forecasted net benefit function take the parameterized forms500

presented in Sections IV-C and IV-D. The base parameter set 501

BP for this household is defined by the following three condi- 502

tions: (i) Each element of BP is a parameter appearing in the 503

household’s thermal dynamic system or forecasted net bene- 504

fit function; (ii) Each parameter appearing in the household’s 505

thermal dynamic system and forecasted net benefit function 506

can be expressed as a function of one or more parameters in 507

BP; (iii) No parameter in BP can be non-trivially expressed 508

as a function of other parameters in BP. 509

Thus, in standard mathematical terms, BP constitutes a basis 510

set for the parameters appearing in the household’s thermal 511

dynamic system and forecasted net benefit function. Let β 512

denote the household’s base parameter vector consisting of 513

all of the elements of BP. A complete listing of all of the 514

components of β, together with their descriptions and units of 515

measurement, is given in [1, Tab. 12]. 516

Dynamic programming principles were used in Section III 517

to obtain the general state-dependent form of a household’s 518

optimal bid function for a control-step n, given an arbi- 519

trary look-ahead horizon N ≥ 1; see Fig. 1. Treatment 520

of multi-period look-ahead horizons N > 1 is conceptu- 521

ally straightforward but computationally more demanding than 522

treatments of single-period look-ahead horizons N=1 due to 523

the infamous dynamic programming “curse of dimensional- 524

ity.”11 Consequently, for simplicity of exposition, this section 525

derives a specific quantitative expression for the household’s 526

optimal state-dependent bid function in terms of the house- 527

hold’s base parameter vector β under the presumption that 528

N=1. 529

The power level P∗(n, β) corresponding to P∗(n) in Fig. 1 530

denotes the ON power consumption of the household’s HVAC 531

system running in cooling mode during n, as determined 532

by (2). Suppose the household’s HVAC system is switched 533

(or left) OFF at the start-time ns for control-step n. Let the 534

household’s resulting forecasted net benefit (6) be denoted by: 535

̂NB∗
(n, β, OFF) = ̂G

∗
(n, β, OFF). (7) 536

Conversely, suppose the household’s HVAC system is switched 537

(or left) ON at ns. Let the household’s resulting forecasted net 538

benefit (6) be denoted by: 539

̂NB∗
(n, β, ON) = ̂G

∗
(n, β, ON) − μC∗(n, β, ON) 540

= ̂G
∗
(n, β, ON) − μKhπ

∗(n)P∗(n, β)�τ 541

(8) 542

Since the goal of the household is to maximize its forecasted 543

net benefit during n, the household will be willing to switch 544

11Consider a dynamic programming problem spanning N future periods
0, 1, . . . , N − 1 with N ≥ 1. The solution of this problem starts with the
assignment of a value to each possible system outcome that could occur during
the final period N-1 as a result of each possible decision at the start of period
N-1 in each possible state that the system could be in at the start of period
N-1. The curse-of-dimensionality refers to the fact that the number of possible
system states at the start of period N−1 increases exponentially with increases
in N if the decision set of the decision-maker at the beginning of each period
includes at least two distinct decision choices. For example, for the problem
at hand, the HVAC controller can set the HVAC system to either ON or OFF
at the beginning of each control-step n = 0, 1, . . . Assuming each possible
setting results in a different next-period starting state (or state set), there are
(at least) 2N−1 possible starting states for period N-1 corresponding to any
particular starting state at the start of period 0. The possible gain in value
from using a longer look-ahead horizon N must therefore be weighed against
increased computational cost.
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(or leave) its HVAC system ON during n if and only if545

̂NB∗
(n, β, OFF) ≤ ̂NB∗

(n, β, ON). (9)546

Substituting (7) and (8) into (9), and rearranging terms,547

condition (9) is equivalent to548

π∗(n) ≤
[

̂G
∗
(n, β, ON) − ̂G

∗
(n, β, OFF)

]

μKhP∗(n, β)�τ
≡ Fn(β). (10)549

The power usage state Xu
n (β) corresponding to Xu

n in Fig. 1550

is the β-dependent household state in which the household551

is willing to pay for power usage during control-step n. It552

follows from the derivation of relation (10) that the household553

is in a power usage state Xu
n (β) at the start of control-step n554

if and only if Fn(β) in (10) is strictly positive in value. In555

this case there is a range of positive prices π∗(n) for power556

usage during control-step n that the household is willing to557

pay, bounded above by the positive cut-off price �∗(Xu
n (β))558

given by Fn(β).559

Consequently, the household’s optimal bid function in a560

power usage state Xu
n (β) takes the rectilinear form depicted561

on the right-hand side of Fig. 1. This optimal bid function562

constitutes a demand function for HVAC power usage as a563

function of price paid.564

Conversely, the ancillary service state Xs
n(β) corresponding565

to Xs
n in Fig. 1 is the β-dependent household state in which the566

household is not willing to pay for power usage during control-567

step n but is willing to provide ancillary service (HVAC power568

absorption) during n in return for sufficiently high compensa-569

tion. It follows from the derivation of relation (10) that the570

household is in an ancillary service state Xs
n(β) at the start571

of control-step n if and only if Fn(β) in (10) is less than or572

equal to zero. In this case the household can be induced to573

switch (or leave) its HVAC system ON during n if and only574

if the price received for ancillary service, −π∗(n), is at least575

as high as the non-negative cut-off price −�∗(Xs
n(β)) given576

by −Fn(β).577

Consequently, the form of the household’s optimal bid func-578

tion in an ancillary service state Xs
n(β) takes the rectilinear579

form depicted on the left-hand side of Fig. 1. This optimal580

bid function constitutes a supply function for ancillary service581

as a function of price received.582

Complete explicit derivations of a household’s optimal bid583

cut-off prices �∗(Xu
n (β)) and −�∗(Xs

n(β)) as functions of its584

base parameter vector β are provided in [1, App. C].585

VI. HOUSEHOLD TYPE CLASSIFICATION586

This section develops a method for classifying households587

into representative types in accordance with the values set for588

the components of each household’s base parameter vector β.589

As shown in Fig. 2, the ‘Structure’ attributes of a house-590

hold are divided into ‘Appliance’ and ‘House’ attributes. Let591

βa denote the components of β that correspond to ‘Appliance’592

attributes, and let βh denote the components of β that cor-593

respond to ‘House’ attributes. Finally, let βr denote the594

components of β that correspond to ‘Resident’ attributes. A595

Household Type is then defined by three aspects: Appliance596

Type (βa), House Type (βh), and Resident Type (βr). A com- 597

plete description of the components of β = (βa, βh, βr), 598

classified by attribute type, is given in [1, Tab. 12]. 599

To be physically and economically meaningful, the base 600

parameters comprising β for any given household must be 601

configured in a correlated manner. For example, it would be 602

empirically problematic to assume that a household with a 603

small-sized house, located in a temperate climate, has a large 604

powerful HVAC system. 605

For concreteness, suppose a household’s Structure Quality 606

Type (SQT) is characterized by its HVAC Type (βhvac) and its 607

House Type (βh), where βhvac consists of all base parameters 608

in the household’s Appliance Type βa that correspond to the 609

attributes of its HVAC system. As seen in [1, Tab. 12], βhvac
610

thus includes an HVAC system’s coefficient of performance 611

(cooling_COP) and over-sizing factor (OSF); and a house- 612

hold’s House Type βh characterizes the location, size, thermal 613

integrity, and interior-exterior attributes of its house. 614

Different SQTs can then be constructed using different cor- 615

related settings for the base parameters in βhvac and βh, 616

with all remaining elements of β maintained at fixed value 617

settings. For example, in the test cases reported below in 618

Sections VII–VIII, a household has a Low SQT if it has a 619

‘Small’ sized house, ‘Poor’ thermal integrity, ‘Poor’ interior- 620

exterior features, and a ‘Poor’ quality HVAC system. It has 621

a Medium SQT if it has a ‘Normal’ sized house, ‘Normal’ 622

thermal integrity, ‘Normal’ interior-exterior features, and a 623

‘Normal’ HVAC system. It has a High SQT if it has a ‘Large’ 624

sized house, ‘Good’ thermal integrity, ‘Good’ interior-exterior 625

features, and a ‘Good’ quality HVAC system.12
626

VII. TEST CASE PRELIMINARIES 627

A. Grid and Household Formulation 628

The standard IEEE 123-bus distribution grid [29] is modi- 629

fied for our test cases in three ways. First, 927 households are 630

distributed across the 123 buses in proportion to the original 631

loads, which are then omitted. Second, the distribution grid is 632

connected to a transmission grid through a substation; whole- 633

sale power is supplied to the distribution system through this 634

T-D interface. Third, the distribution system is managed by an 635

IDSO operating at this substation; see Fig. 3. 636

Each household is formulated using our household model 637

and implemented in part using the GridLAB-D (GLD) House 638

Object [30].13 Weather forcing terms consist of outside tem- 639

perature, solar flux, and humidity data for hot summer days 640

in Des Moines, Iowa. The base parameter location attributes 641

specified for each household are also for Des Moines, Iowa. 642

The base parameter welfare attributes maintained for each 643

household are: Gmax = 3.3333 (utils/s); TB = 72 (◦F); and 644

h1 = h2 = .0017 (utils/[s - (◦F)2]). The base parameters NOC 645

and foc appearing in each household’s Resident Type βr are 646

set to 1 and 1.0, respectively. The setting NOC = 1 indicates 647

the household has a single resident, and the setting foc = 1.0 648

indicates this resident occupies the house 100% of the time. 649

12The specific correlated parameter settings used to characterize Low,
Medium, and High SQTs are given in [1, App. F].

13See [1, App. E] for GLD House Object implementation details.
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Fig. 3. IEEE 123-bus distribution grid modified to include an IDSO operating
as a T-D linkage entity at a substation connected to a transmission grid.

B. Five-Step TES Design650

All test-case households participate in an IDSO-managed651

bid-based TES design for the management of their power652

consumption. This design, referred to as the Five-Step TES653

Design, consists of the iterated implementation of five steps654

characterized by five action time-rates, as follows14:655

• Step 1: The HVAC controller for each household h656

collects data on the state of h at a data check rate.657

• Step 2: The HVAC controller for each household h658

forms a state-conditioned bid function Bid(h) for HVAC659

power usage demand or ancillary service supply and660

communicates it to the IDSO at a bid refresh rate.661

• Step 3: The IDSO combines the household bid functions662

Bid(h) into a vector AggBid of aggregate bid functions663

at an aggregate bid refresh rate.664

• Step 4: The IDSO uses AggBid to determine and commu-665

nicate price signals back to household HVAC controllers666

at a price signal rate.667

• Step 5: The HVAC controller for each household h inserts668

its latest received price signal into its latest refreshed669

state-conditioned bid function Bid(h) at a power control670

rate, which triggers an ON/OFF power control action for671

the HVAC system.15
672

Customer scalability, customer privacy, and the alignment673

of system goals and constraints with local customer goals674

and constraints are important design criteria motivating our675

formulation and use of the Five-Step TES Design.676

Scalability is facilitated by employing a radial two-way677

communication network between the IDSO and participant678

households. In practice, real-time telemetry supporting two-679

way communication would be needed to implement this680

design. However, U.S. energy regions interested in smart681

grid development are already moving ahead with plans to682

implement two-way real-time telemetry.16
683

14The Five-Step TES Design is a variant of the PowerMatcher TES design
developed by Koen Kok [17].

15The power control rate is given by 1/�τ , where �τ is the length in
seconds of each control-step n; see Section IV-B.

16For example, ERCOT [33] has installed two-way real-time telemetry to
support the ability of “Qualified Scheduling Entities” to submit price-sensitive
demand bids into its day-ahead and real-time markets on behalf of load-
serving entities functioning as demand-response resources.

Fig. 4. Staggered-step implementation of the Five-Step TES Design.

Privacy is protected by permitting household bids in Step 2 684

to take the optimal state-conditioned form depicted in Fig. 1 685

for each control-step n. Specifically, Bid(h) for a household 686

h in an ancillary service state Xs
h,n consists of a negatively- 687

valued cut-off price �∗(Xs
h,n) together with a forecast P∗

h(n) 688

for the ON power usage of h’s HVAC system. Similarly, Bid(h) 689

for a household h in a power usage state Xu
h,n consists of a 690

positively-valued cut-off price �∗(Xu
h,n) together with a fore- 691

cast P∗
h(n) for the ON power usage of h’s HVAC system. 692

Consequently, the amount of private information that house- 693

holds must convey to the IDSO in Step 2 of the Five-Step 694

TES Design is minimal. 695

Finally, the alignment of system goals and constraints with 696

private goals and constraints is facilitated by Step 4 of the 697

design. As will be illustrated in Section VIII, the system effi- 698

ciency and reliability goals pursued by an IDSO can take a 699

wide variety of forms. However, whatever form these system 700

goals take, Step 4 ensures they are implemented in accordance 701

with local household goals and constraints as expressed by 702

means of continually refreshed household bid functions. 703

For simplicity, the five action time-rates for the Five-Step 704

TES Design are commonly set equal to 1/�t with time-step 705

�t = 300s for each test case reported in Section VIII. Let 706

the time-delay between Step j and Step j + 1 in any given 707

iteration of the five steps be denoted by εj for j = 1, . . . , 5, 708

where “Step 6” is equated with “Step 1” in the subsequent 709

iteration. The time delays εj for each test case are commonly 710

set so that their summation does not exceed �t. Finally, let tj = 711

tj−1 + εj for j = 1, . . . 5. Then, for each reported test case, the 712

iterated staggered implementation of the five steps comprising 713

the Five-Step TES Design is as depicted in Fig. 4. 714

However, the specification of the five action time-rates for 715

the Five-Step TES Design is in fact a critical design choice 716

with important performance and cost ramifications at both 717

household and system levels. 718

At the household level, Ilić et al. [31, Sec. 3] document 719

how longer cycle periods (slower power control rates) can 720

degrade the coefficient of performance for residential air- 721

conditioning systems due to efficiency losses arising from 722

various operational side-effects. On the other hand, shorter 723

cycle periods (faster power control rates) can result in costly 724

wear-and-tear and shorter lifetimes for system components. 725

Indeed, as stressed by Wu et al. [32], HVAC manufacturers 726
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commonly install minimum ON/OFF time constraints in727

HVAC equipment to prevent these types of equipment degra-728

dation problems.729

At the system level, the joint specification of the five action730

time-rates could affect the ability of the IDSO in Step 4 to731

maintain efficient and reliable system operations. For example,732

it is not efficient to have a data check rate or a bid refresh rate733

that exceeds the power control rate; the faster local time-rates734

would require additional local computations, yet they would735

not have any effect on actual power usage.736

C. Hardware Implementation737

Each of the test cases reported below in Section VIII was738

run on a machine with a 3.5 GHz 4-Core Intel Xeon CPU E3-739

1240 v5 processor, a Windows 10 Enterprise operating system,740

and 16 GB of RAM.741

VIII. TEST CASE OUTCOMES742

A. Purpose743

Household test case outcomes are reported in this section744

to demonstrate the usefulness of our optimal bid formulation745

and representative type construction method for the customer-746

centric development and evaluation of bid-based TES designs.747

Three different types of test cases are considered: bid-function748

comparisons; peak-load reduction experiments; and target load749

matching experiments. A key treatment factor for each of these750

test cases is household structure quality as measured by the751

SQT metric defined in Section VI.752

B. Test Case 1: Bid Function Performance Comparisons753

This subsection reports the increase in household net benefit754

(comfort minus cost) that results for a control-step n when a755

household switches from the use of the heuristically motivated756

bid function developed by Nguyen et al. [22] to the optimal757

bid function derived in Section V of this study with look-ahead758

horizon N=1.759

The heuristic bid function developed by Nguyen et al. [22]760

for a household resident R specifies cut-off prices for ancillary761

service provision and power usage that vary in direct propor-762

tion to the deviation between R’s bliss temperature TB and the763

current inside air temperature T∗
a (n) of R’s house, as follows:764

�s(T∗
a (n)

) = θs
[

T∗
a (n) − TB

TB − Tmin

]

, Tmin < T∗
a (n) ≤ TB;765

(11)766

�u(

T∗
a (n)

) = θu
[

T∗
a (n) − TB

Tmax − TB

]

, TB < T∗
a (n) < Tmax,767

(12)768

where θs and θu are positively-valued scaling parameters. The769

test case parameter values maintained for this heuristic bid770

formulation are: Tmin = 68◦F, TB = 72◦F, Tmax = 76◦F,771

and θs = θu = 20 (¢/kWh).772

The net benefit that results during a control-step n from the773

use of the heuristic bid function (11) and (12) is compared with774

the net benefit that results from the use of the optimal bid func-775

tion under variously set values for the household’s marginal776

Fig. 5. Increase in net benefit resulting when a household switches from the
heuristic bid function developed in [22] to our optimal bid function, under var-
ied settings for household marginal utility of money μm (utils/$) and structure
quality.

utility of money μ and the household’s structure quality as 777

measured by SQT. The initial inside air temperature and ini- 778

tial outside weather temperature for control-step n are set at 779

T∗
a (n) = 74.67 (◦F) and T∗

o (n) = 79 (◦F), respectively, for 780

both bid formulations. 781

The outcomes reported in Fig. 5 for this test case show that 782

the optimal bid function results in higher net benefit for all 783

tested values for μm (utils/$), where μm = μ × 100¢/1$. 784

This net benefit improvement is larger for larger μm val- 785

ues. Moreover, this same pattern holds across all three tested 786

settings for household structure quality. 787

As seen in Section III, the general form of our optimal bid 788

function, depicted in Fig. 1, is correct for an arbitrary look- 789

ahead horizon N ≥ 1. The increased foresight provided by 790

implementing a longer look-ahead horizon N > 1 is another 791

potential source of net benefit improvement from the use of our 792

optimal bid function in place of the heuristic bid function (11) 793

and (12). However, as discussed in Section V, this potential 794

improvement must be weighed against increased computa- 795

tional cost. In addition, since our optimal bid function depends 796

on forecasted future values for inside air temperature, another 797

potential drawback to the use of a longer look-ahead horizon 798

is increased forecast error. 799

C. Test Case 2: IDSO Peak Load Reduction Capabilities 800

This subsection reports outcomes for test cases in which the 801

system goal of an IDSO managing a Five-Step TES Design 802

for households on day D is to achieve a reduction target for 803

household peak load on day D+1. 804

The IDSO on day D forecasts a 24-hour profile for total 805

household load on day D+1, assuming a flat retail price π 806

= 12¢/kWh17 for all hours of day D+1. The IDSO uses this 807

forecasted load profile to estimate a peak load PL (MW) for 808

day D+1 together with a target peak load reduction TPLR 809

(MW) for day D+1 satisfying 0 ≤ TPLR < PL. The IDSO on 810

day D+1 then uses its continually refreshed vector AggBid of 811

household aggregate bid functions to calculate and send retail 812

price signals to households that ensure realized total household 813

load never exceeds Lmax = [PL-TPLR] during day D+1. 814

17The flat retail price 12¢/kWh is based on average retail electricity rates
for Des Moines, Iowa. As noted in Section VII-A, weather data and household
location attributes for this test case are also for Des Moines, Iowa.
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Fig. 6. Low SQT Case: Load outcomes on day D+1 when the IDSO controls
retail prices to achieve a 0.5MW target peak load reduction with all Low SQT
households.

More precisely, at the start-time for any price-step18 k815

on day D+1, AggBid consists of two distinct aggregate bid816

functions: one constructed from the optimal bid functions817

submitted by households in a power usage state (identified818

by their submission of positive cut-off prices); and a second819

one constructed from the optimal bid functions submitted by820

households in an ancillary service state (identified by their821

submission of negative cut-off prices). Since ancillary service822

(power absorption) is not useful for achieving peak load reduc-823

tion, the IDSO sends a price signal 0 to all households in an824

ancillary service state. If the forecasted load for k given π825

does not exceed Lmax, the IDSO sends the price signal π to826

all households in a power usage state. If the forecasted load827

for k given π does exceed Lmax, the IDSO sends a price signal828

π > π to all households in a power usage state that lowers829

aggregate power usage demand down to Lmax.830

The treatment factor for this test case is household struc-831

ture quality, as measured by the metric SQT explained in832

Section VI.19 Each household’s marginal utility of money μ833

is set to 1 (utils/¢). All other household attributes are set at834

the maintained values given in Section VII-A.835

Figs. 6–8 report outcomes for total realized household load836

on day D+1 when the IDSO sends controlled retail price837

signals to households to achieve a 0.5MW target peak load838

reduction on day D+1. For comparison, load outcomes result-839

ing under the flat retail price π with no IDSO price control840

are also reported. All households have the same SQT, either841

all Low, all Medium, or all High.842

Fig. 9 reports the specific retail price signals sent by the843

IDSO to households in a power usage state on day D+1 for844

each of the three SQT cases reported in Figs. 6–8. The strong845

variation seen in these retail price signals across the three dif-846

ferent SQT cases indicates that careful consideration should847

be given to household structure quality in peak-load reduction848

studies, particularly if retail price volatility is a concern.849

D. Test Case 3: IDSO Load Matching Capabilities850

This subsection reports outcomes for test cases in which the851

system goal of an IDSO managing a Five-Step TES Design852

18A price-step is the time interval corresponding to Step 4 for some iteration
of the bid-based TES design; see Section VII-B. As detailed in Section VII-A,
the length of each price-step (i.e., the inverse of the price signal rate) is set
equal to �t = 300s (5min) for all test cases reported in this study.

19Specific characterizations for the Low, Medium, and High SQTs used for
this test case are provided in [1, Apps. D and E].

Fig. 7. Medium SQT Case: Load outcomes on day D+1 when the IDSO
controls retail prices to achieve a 0.5MW target peak load reduction with all
Medium SQT households.

Fig. 8. High SQT Case: Load outcomes on day D+1 when the IDSO controls
retail prices to achieve a 0.5MW target peak load reduction with all High SQT
households.

Fig. 9. IDSO-controlled retail price signals used by the IDSO on day D+1 to
achieve a 0.5MW target peak load reduction under three different household
SQT treatments: all Low; all Medium; or all High.

for households on day D is to match total household load on 853

day D+1 to a target load profile. 854

As depicted in Fig. 3, the IDSO functions at a substation 855

of a 123-bus grid. The IDSO participates in a wholesale Day- 856

Ahead Market (DAM) operating over a transmission grid that 857

connects to the distribution grid at this substation. 858

On each day D the IDSO submits a fixed demand bid 859

into the DAM consisting of a forecasted 24-hour profile for 860

total household load during day D+1. On day D+1 the IDSO 861

attempts to ensure actual total household load does not deviate 862

from the fixed demand bid it submitted into the DAM on day 863

D. Any such deviations must be settled using real-time market 864

locational marginal prices on day D+1, which is risky because 865

these prices tend to be highly volatile. 866

More precisely, the IDSO on day D+1 uses its continually 867

refreshed vector AggBid of household aggregate bid functions 868
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Fig. 10. IDSO’s ability to use controlled retail prices to match total household
load on day D+1 to a target load profile, given by the IDSO’s fixed demand
bid submitted into a day-ahead market on day D.

Fig. 11. The retail price signals sent by the IDSO on day D+1 to households
in a power usage state to match total household load to the IDSO’s day-D
DAM fixed demand bid, depicted as the target load profile in Fig. 10.

to calculate and send retail price signals to households that869

ensure realized total household load on day D+1 matches the870

fixed demand bid the IDSO submitted into the DAM on day D.871

At the start-time for any price-step k on day D+1, AggBid con-872

sists of two distinct aggregate bid functions: one constructed873

from the optimal bid functions submitted by households in a874

power usage state (identified by their submission of positive875

cut-off prices); and a second one constructed from the optimal876

bid functions submitted by households in an ancillary service877

state (identified by their submission of negative cut-off prices).878

Fig. 10 reports load-matching outcomes for a case in which879

the distribution grid is populated by a mixture of households880

with Low, Medium, and High SQTs.20 All households have881

the same maintained Resident Type with a marginal utility of882

money μ = 1 (utils/¢). As seen, the IDSO is successfully able883

to use retail price signals on day D+1 to match total household884

load to the load profile it submitted to the day-D DAM as its885

fixed demand bid.886

The retail price signals used by the IDSO to achieve the887

good load matching in Fig. 10 are shown in Fig. 11. Note888

that all of these retail price signals are positive, indicating the889

IDSO is not making any use of ancillary service to achieve its890

load matching goal.891

As a second load-matching test case, suppose the IDSO892

instead submits into the day-D DAM the fixed demand bid893

(load profile) depicted in Fig. 12. Once again, as seen, the894

IDSO is successfully able to use retail price signals on day895

D+1 to match total household load to this target load profile.896

The retail price signals used by the IDSO to accomplish the897

good load matching depicted in Fig. 12 are shown in Fig. 13.898

In contrast to the earlier load-matching test case, it is seen899

that the IDSO must now actively use ancillary service (power900

absorption) bids in order to achieve its load-matching goal.901

20The SQT of each household connected at each grid bus is configured as
Low, Medium, or High with probabilities (1/3, 1/3, 1/3).

Fig. 12. IDSO’s ability to use controlled retail prices to match total household
load on day D+1 to a different target load profile, i.e., a different fixed demand
bid submitted into the day-D DAM.

Fig. 13. The positive and negative retail price signals communicated by the
IDSO to households on day D+1 to match total household load to the target
load profile depicted in Fig. 12.

Specifically, the target load profile sharply increases starting 902

around hour H7 (minute 420) on day D+1. To match actual 903

load to this upward shift, the IDSO has to send negative retail 904

price signals to households in an ancillary service state to 905

induce additional power usage. Recall that the magnitude of 906

a negative retail price signal denotes the price a household in 907

an ancillary service state will receive in compensation for any 908

supplied ancillary service (power absorption). 909

However, in attempting to interpret more fully the retail 910

price movements depicted in Fig. 13, it is essential to keep in 911

mind they arise from a complicated underlying causal process. 912

Specifically, they depend on dynamic nonlinear interactions 913

among external forcing terms (e.g., grid voltage and weather 914

conditions), house and appliance attributes, resident net ben- 915

efit and bid functions, thermal dynamic relationships, IDSO 916

system goals and constraints, and past price-induced HVAC 917

ON/OFF control actions. For example, the rising retail prices 918

observed subsequent to hour H12 (minute 720) reflect the 919

IDSO’s need to reduce household power usage demand down 920

to the IDSO’s target load levels, given all that has gone before. 921

IX. CONCLUDING REMARKS 922

This study formulates methods to facilitate the develop- 923

ment and evaluation of bid-based transactive energy system 924

designs starting from a careful consideration of local customer 925

goals and constraints. The basic idea is to ensure that system 926

requirements respect private requirements, as far as physical 927

reliability permits, so that voluntary customer participation is 928

maintained. 929

For concreteness, attention is focused on distribution 930

systems populated entirely by households. The optimal form 931
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TABLE I
HOUSEHOLD WELFARE: VARIABLES, FUNCTIONS, & PARAMETERS

TABLE II
HOUSE THERMAL DYNAMICS: DERIVED (NON-BASE) PARAMETERS

of household bids for thermostatically-controlled power usage932

and ancillary service provision is first deduced from general933

dynamic programming principles. Specific quantitative forms934

of these bids are then derived as functions of base param-935

eters characterizing household thermal dynamic and welfare936

attributes. It is then shown how these optimal bid forms can937

be built into a bid-based transactive energy system design, as938

a starting point, so that subsequently considered system goals939

and constraints are well aligned with local customer goals and940

constraints.941

This customer-centric approach contrasts with currently942

common approaches to power system design that start by pre-943

supposing fixed system goals, such as peak-load constraints,944

reserve requirements, and load shedding policies based on945

administratively pre-set value-of-lost-load specifications. This946

prioritization of administratively determined system goals pre-947

vents assurance that the resulting designs are truly optimal948

from a social welfare point of view.949

The test cases reported in this study provide preliminary950

evidence for the feasibility and desirability of customer-centric951

bid-based transactive energy system design. Future studies will952

push further and harder. Particular attention will be focused on953

the management of such designs by independent distribution954

system operators operating as linkage entities at transmission955

and distribution system interfaces. A key issue to be examined956

TABLE III
HOUSE THERMAL DYNAMIC FACTORS AND VARIABLES

is the ability of such designs to support the creation of new 957

customer revenue streams through the provision of flexible 958

dependable ancillary services to wholesale power markets. 959

NOMENCLATURE 960

Tables I-III provide symbols and descriptions for the vari- 961

ables, function, parameters, and conversion factors explicitly 962

appearing in the quantitative representations for household 963

thermal dynamics and welfare presented in Sections IV–V. 964
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