WECC Composite Load Model Parameter Identification Using Evolutionary Deep Reinforcement Learning

Fankun Bu[®], Graduate Student Member, IEEE, Zixiao Ma[®], Graduate Student Member, IEEE, Yuxuan Yuan, Graduate Student Member, IEEE, and Zhaoyu Wang[®], Member, IEEE

Abstract-Due to the increasing penetration of distributed 2 energy resources (DERs), the load composition in distribution 3 grids has significantly changed. This inverter-based device has 4 notably different behavior from traditional static and induc-5 tion motor loads. To accurately represent the combination of 6 static load, induction motor and the emerging inverter-based 7 devices, the composite load model with distributed genera-8 tion (CMPLDWG) has been developed by Western Electricity 9 Coordinating Council (WECC). Due to the large number of 10 parameters and model complexity, the CMPLDWG model brings 11 new challenges to parameter identification, which is critical 12 to power system studies. To address these challenges, in this 13 paper, a cutting-edge approach inspired by the evolutionary 14 deep reinforcement learning (EDRL) with an intelligent explo-15 ration mechanism is innovatively proposed to perform parameter 16 identification for CMPLDWG. First, to extract parameters' con-17 tributions to dynamic power, parameter sensitivity analysis is 18 conducted using a data-driven feature-wise kernelized Lasso 19 (FWKL). Then, the EDRL with intelligent exploration, which 20 can handle the natural high nonlinearity and nonconvexity of 21 CMPLDWG, is employed to perform parameter identification. 22 In the parameter identification process, the extracted parameter 23 sensitivity weights are innovatively integrated into the EDRL with 24 intelligent exploration to improve discovery efficiency. Finally, the 25 proposed approach is validated using numerical experiments.

26 Index Terms—WECC composite load model, parameter iden-27 tification, evolutionary strategy, intelligent exploration.

I. INTRODUCTION

PARAMETER identification of load models is essential to power systems studies, such as planning, operation and control [1]–[4]. Due to the increasing diversity of load types and the integration of distributed energy resources (DERs) [5], [6], parameter identification still remains a challenging problem to academic researchers and industrial practitioners. Measurement-based approaches are widely employed to perform parameter identification, where voltage

Manuscript received December 25, 2019; revised March 28, 2020 and June 1, 2020; accepted July 8, 2020. This work was supported by Advanced Grid Modeling Program at the U.S. Department of Energy Office of Electricity under Grant DE-OE0000875. Paper no. TSG-01923-2019. (*Corresponding author: Zhaoyu Wang.*)

The authors are with the Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 USA (e-mail: fbu@iastate.edu; wzy@iastate.edu).

Color versions of one or more of the figures in this article are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSG.2020.3008730

and power measurements in fault-induced delayed-voltagerecovery (FIDVR) events are used to determine the parameters of given dynamic load models.

Previous works have mainly focused on identifying param-40 eters of a composite load model which consists of a ZIP 41 and an induction motor, where ZIP model is a combination 42 of a constant-impedance load, a constant-current load and a 43 constant-power load. In [2], based on trajectory sensitivities, 44 the induction motor parameter number is reduced and only 45 critical parameters are identified. The proposed approach is 46 validated using real field measurements, and it is demonstrated 47 that the approach can decrease identification time without 48 losing the composite load model's dynamic characteristics. 49 In [7], a robust time-varying parameter identification approach 50 is proposed for synthesis load modeling. The synthetic load 51 model includes time-varying ZIP, induction motor, and equiv-52 alent line impedance model. To achieve the goal of robustness 53 enhancement, dynamic programming is used to detect voltage 54 disturbances, and then a time-varying parameter identifier with 55 a smaller iteration threshold is designed. In [8], a multi-modal 56 long short-term memory deep learning method is employed to 57 identify the time-varying parameters of the composite load 58 model. In [9], a computationally efficient technique is uti-59 lized for identifying the composite load model parameters, 60 by performing a similarity analysis of parameter sensitiv-61 ity. The partial derivative of each parameter is employed to 62 identify parameters with similar sensitivities, and Levenberg-63 Marquardt algorithm is used to solve the optimization problem. 64 To improve computational efficiency, in [10], model parameter 65 sensitivities are analyzed using eigenvalues of Hessian matrix, 66 and the linear dependence between two parameters are then 67 identified by examining the condition number of the Jacobian 68 matrix. In [11], a robust time-varying parameter identifica-69 tion approach is developed for the composite load model. A 70 batch-mode regression form is constructed to guarantee data 71 redundancy, and the down-weighting coefficient for each mea-72 surement is calculated to reduce the impacts of outliers. To 73 sum up, in previous works, both traditional optimization meth-74 ods and modern learning-based approaches are employed to 75 perform parameter identification of the composite load model 76 which consists of a ZIP model and an induction motor model. 77

In recent years, as a large number of DERs are integrated into distribution systems, the composition of loads has 79 changed significantly [12]–[14]. In order to accurately capture 80

1949-3053 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

28

AQ2

⁸¹ the characteristics of this new type of load in modern power ⁸² grids, the Western Electricity Coordinating Council (WECC) 83 has developed a composite load model with distributed gen-84 eration (CMPLDWG) [15]. Also, researchers have dedicated 85 great efforts into studying this newly-proposed advanced load ⁸⁶ model. In [16], an easy-to-use tool is developed to gener-87 ate dynamic load data to enhance utilities' planning studies. 88 This tool can be adjusted to accommodate different customer ⁸⁹ types, various load components and characteristics. In [17], generic modeling and open-source implementation of the 90 a WECC composite load model are presented, which reduces 91 ⁹² the gap between the WECC model and its further implemen-⁹³ tation. In [1], an approach is proposed for dynamic composite 94 load modeling, where parameter dependency of the complex 95 dynamic load model is analyzed and visualized using matrix 96 decomposition and data clustering techniques. Meanwhile, the 97 parameter identification performance is improved by adding a ⁹⁸ regularization term to include *a priori* parameter information ⁹⁹ into the objective function. However, the *a priori* parameter 100 information is not generally available. In addition, the newly-101 approved aggregated distributed energy resources (DER_A) model in CMPLDWG has not been considered in [1]. In [18], 102 ¹⁰³ the parameter identification process is divided into two steps: determining load composition and selecting a best-fit parame-104 105 ter vector candidate from Monte-Carlo simulations. To sum 106 up, the primary disadvantages of previous WECC model 107 parameter identification approaches are that they rely on ¹⁰⁸ prior knowledge of parameters or a comprehensive library of 109 parameter candidates.

The CMPLDWG model contains 183 parameters, and the 110 111 order of differential equations reaches 25. Therefore, the tra-112 ditional optimization methods might not be able to handle the 113 high-dimensional parameter vector and the severe nonconvex-114 ity of model structure. Considering this, we seek to perform 115 parameter identification for CMPLDWG using an advanced 116 learning-based approach with an embedded intelligent explo-117 ration (IE) mechanism, which is inspired by the evolutionary 118 deep reinforcement learning (EDRL) technique. The proposed 119 approach can efficiently avoid deceptive local optima and 120 can handle the high-dimensional parameter vector [19], [20]. 121 Specifically, first, the parameter sensitivity analysis (PSA) is 122 conducted to obtain sensitivity weights reflecting contribu-123 tions of parameters to dynamics, using feature-wise kernel-124 ized Lasso (FWKL), where Lasso denotes the least absolute 125 shrinkage and selection operator. Then, the extracted param-126 eter sensitivity weights are integrated into EDRL with IE perform intelligent CMPLDWG parameter exploration by 127 to 128 avoiding purely randomized or ineffective search. Parallelly, 129 the EDRL with IE performs parameter exploitation using 130 evolutionary strategy. Finally, the EDRL with IE guides the ¹³¹ identifier to balance exploitation and exploration by designing 132 time-varying dynamic weights assigned to the approximated 133 performance gradient and novelty gradient.

The main innovations and contributions of our paper are summarized as follows: (1) To address the challenges of parameter identification caused by the nonlinearity of CMPLDWG model, we have designed a mechanism of intelligent exploration for encouraging the parameter identifier to

Fig. 1. The structure of the WECC composite load model with the distributed generation model of DER_A.

escape from deceptive local optima. The exploration mechanism is achieved through time-varying dynamic weights which intelligently balance the exploitation and exploration. Most importantly, once the parameter identifier is stuck in a local optimum, it is stimulated to aggressively explore undiscovered parameter space. (2) The extracted CMPLDWG parameter sensitivity weights are innovatively integrated into the intelligent exploration to achieve directed and efficient parameter space discovery. By doing this, the parameter identifier can avoid purely randomized or inefficient exploration.

The rest of the paper is organized as follows: Section II 149 introduces the CMPLDWG model and the overall framework of the proposed parameter identification approach. 151 Section III proposes the method for parameter sensitivity 152 analysis. Section IV describes the process of identifying 153 CMPLDWG parameters using EDRL which is hybridized with 154 IE. In Section V, case studies are conducted to validate the 155 proposed approach and Section VI concludes the paper. 156

II. CMPLDWG MODEL AND OVERALL PARAMETER Identification Framework

A. CMPLDWG Model

This paper focuses on the comprehensive WECC composite 160 load model, which consists of three sections: substation, feeder 161 and load, as illustrated in Fig. 1. The substation section is com- 162 posed of a transformer model and a shunt capacitor model. The 163 feeder section is denoted using an equivalent feeder model. 164 The load section includes three three-phase induction motor 165 models with different dynamic characteristics, one single- 166 phase A/C performance-based motor model, an electronic load 167 model, a static load model and a distributed generator model. 168 In this paper, the distributed generator model is specified as 169 the newly-approved DER_A model presented in [21]. Table I 170 shows a list of WECC CMPLDWG model parameters of which 171 detailed definitions can be found in [15], [21]. In addition, 172 the mathematical state-space representations of CMPLDWG 173 model are presented in [22]. 174

B. Overall Framework of the Proposed Approach 175

The process of identifying unknown CMPLDWG parame- 176 ters comes down to finding optimal parameters by reducing 177

158 159

157

(1)

-	٠	

Component	Parameters						
Substation,	Load MVA Base, Bss, Rfdr, Xfdr,						
& Feeder	Fb, Xxf, TfixHS, TfixLS						
Transformar	LTC, Tmin, Tmax, Step, Vmin, Vmax,						
mansformer	Tdel, Ttap, Rcomp, Xcomp						
Load Fraction	Fma, Fmb, Fmc, Fmd, Fel, Fzip, Fdg						
Motor Type	MtpA, MtpB, MtpC, MtpD						
	LfmA, RsA, LsA, LpA, LppA, TpoA, TppoA,						
Motor A	HA, etrqA, DA, Vtr1A, Ttr1A, Ftr1A, Vrc1A, Trc1A,						
	Vtr2A, Ttr2A, Ftr2A, Vrc2A, Trc2A						
	LfmB, RsB, LsB, LpB, LppB, TpoB, TppoB,						
Motor B	HB, etrqB, DB, Vtr1B, Ttr1B, Ftr1B, Vrc1B, Trc1B,						
	Vtr2B, Ttr2B, Ftr2B, Vrc2B, Trc2B						
	LfmC, RsC, LsC, LpC, LppC, TpoC, TppoC,						
Motor C	HC, etrqC, DC, Vtr1C, Ttr1C, Ftr1C, Vrc1C, Trc1C,						
	Vtr2C, Ttr2A, Ftr2C, Vrc2C, Trc2C						
	LmfD, CompPF, Vstall, Rstall, Xstall, Tstall, Frst,						
	Vrst, Trst, fuvr, vtr1, ttr1, vtr2, ttr2, Vc1off,						
Motor D	Vc2off, Vc1on, Vc2on, Tth, Th1t, Th2t, tv, LFadj,						
	Kp1, Np1, Kq1, Nq1, Kp2, Np2, Kq2, Nq2,						
	Vbrk, CmpKpf, CmpKqf						
Electronic Load	Pfel, Vd1, Vd2, Frcel						
Static Load	Pfs, P1e, P1c, P2e, P2c, Pfreq,						
	Q1e, Q1c, Q2e, Q2c, Qfreq						
	Trv, dbd1, dbd2, Kqv, Vref0, Tp, Tiq, Ddn, Dup,						
	fdbd1, fdbd2, femax, femin, Pmax, Pmin,						
	dPmax, dPmin, Tpord, Imax, Vl0, Vl1, Vh0, Vh1,						
DER_A	tvl0, tvl1, tvh0, tvh1, Vrfrac, fltrp, fhtrp, tfl,						
	tfh, Tg, rrpwr, Tv, Kpg, Kig, Xe, Vpr,						
	Iqh1, Iql1, Pflag, Frqflag, PQflag, typeflag						

TABLE I PARAMETER LIST OF CMPLDWG MODEL

¹⁷⁸ the following estimation residual [1]:

179

$$\min_{\boldsymbol{\theta}} l(\boldsymbol{Y}, \boldsymbol{\theta}, \boldsymbol{V}) = \min_{\boldsymbol{\theta}} \frac{1}{2} \left(||\boldsymbol{Y} - f(\boldsymbol{\theta}, \boldsymbol{V})||_2^2 \right)$$

where, Y denotes active/reactive power measurement vector, $\boldsymbol{\theta}$ 180 represents the vector of parameters to be identified, V denotes 181 voltage measurement vector, l represents calculating the esti-182 183 mation residual, $|| \cdot ||_2$ is the l_2 -norm, and $f(\cdot)$ denotes the 184 mathematical representation of CMPLDWG model developed 185 in [22]. More detailed variable definitions will be elabo-186 rated in Section III. To determine the optimal parameters for 187 CMPLDWG, the EDRL approach with IE is developed in this 188 paper. The components of parameter identification framework 189 are illustrated in Fig. 2: Component I - Sensitivity Analysis: 190 Sensitivity analysis evaluates the contributions of parameters 191 to dynamic power measurements, and is based on the observation that the change of some parameters has an insignificant 192 193 impact on power measurements. The high-order character-194 istic of induction motors and DER_A in CMPLDWG can 195 significantly complicate PSA when using traditional meth-196 ods. To address this challenge, an alternative data-driven PSA 197 approach, FWKL, is proposed. The FWKL utilizes a set of

randomly-generated CMPLDWG parameter vectors and corresponding calculated residuals to extract weights indicating parameter sensitivities. The PSA is formulated as a Lasso optimization problem given as

$$\min_{\mathbf{V}\in\mathbb{R}^d} \frac{1}{2} ||\boldsymbol{e} - \boldsymbol{\Theta}^\mathsf{T} \boldsymbol{W}||_2^2 + \lambda ||\boldsymbol{W}||_1, \qquad (2) \quad 202$$

where, e is the estimation residual vector, Θ denotes the 203 randomly-generated parameter vectors in a matrix form, W = 204 $[W_1, \ldots, W_d]^{\mathsf{T}}$ represents the parameter sensitivity weight 205 vector, $|| \cdot ||_1$ is the l_1 -norm and λ is the regularization 206 parameter which is determined using grid search with cross- 207 validation. Note that sensitivity analysis is a one-off work for 208 each fault event. The extracted parameter sensitivity weight 209 vector, W, is passed to the novelty gradient estimator in 210 each iteration whose number is denoted by t. Component 211 II - Parameter Vector Perturbator: In each iteration, to per- 212 form evolution, a perturbator is designed to generate multiple 213 mutated parameter vectors, θ'_t 's, using the identified parame- 214 ter vector in the last iteration, θ_t , and random variance vector, 215 ϵ_t . θ'_t 's and ϵ_t 's are then sent to a performance gradient 216 estimator and a novelty gradient estimator to approximate 217 performance and novelty gradients, respectively. Component 218 III - Performance Gradient Estimator: This estimator achieves 219 the function of exploitation of EDRL. Specifically, using 220 θ'_t 's and ϵ_t 's generated by the parameter vector perturbator, 221 the performance gradient estimator determines the direction 222 in which θ_t should move to improve expected reward. The 223 performance gradient, $\Delta \theta_t^{et}$, is then passed to a parame- 224 ter updater. Component IV - Novelty Gradient Estimator: 225 This component performs exploration by estimating the nov- 226 elty gradient, $\Delta \theta_t^{er}$, using the generated θ_t' 's and ϵ_t 's, and 227 it also intelligently encourages the parameter identifier to 228 explore unvisited parameter space. $\Delta \theta_t^{er}$ is then sent to the 229 parameter updater. Component V - Parameter Updater: To 230 balance exploitation and exploration, the parameter updater 231 assigns time-varying dynamic weights to the approximated 232 performance and novelty gradients: 233

$$\Delta \boldsymbol{\theta}_t = \omega_t \Delta \boldsymbol{\theta}_t^{et} + (1 - \omega_t) \Delta \boldsymbol{\theta}_t^{er}, \qquad (3) \quad 234$$

where, ω_t denotes a dynamic weight. Then, θ_{t+1} is calculated and added into the parameter vector archive to update the explored parameter space. *Component VI - Archive:* The archive collects the previously generated parameter vectors which are passed to the novelty gradient estimator for novelty evaluation. Component II to V compose the EDRL algorithm with IE. Since the construction of the parameter vector archive is straightforward, we will focus on elaborating the modules of sensitivity analysis and EDRL with IE in the next two sections. 240

III. PARAMETER SENSITIVITY ANALYSIS

244

PSA examines the sensitivity of dynamic power measurements with respect to load model parameters. In previous 246 works, partial derivative of dynamic power to each parameter is calculated to conduct sensitivity analysis of induction 248 motor parameters [9]. However, it becomes challenging to 249 directly apply analytical approaches to calculate partial derivatives because of the high order and the complicated structure 251

Fig. 2. The overall structure of the proposed parameter identification approach for CMPLDWG model.

²⁵² of mathematical differential equations of the WECC compos-²⁵³ ite load model. For example, the three-phase induction motor ²⁵⁴ model in CMPLDWG is of 5th order and the DER_A model ²⁵⁵ has ten state variables. Such a complex high-order nonlinear ²⁵⁶ system can significantly complicate the calculation of partial ²⁵⁷ derivatives. To address this challenge, we seek to employ a ²⁵⁸ high-dimensional feature selection technique to evaluate the ²⁵⁹ dependence of dynamic power on the CMPLDWG parame-²⁶⁰ ters [23]. Specifically, we use a data-driven FWKL instead of ²⁶¹ employing analytical derivatives [9].

Let $\theta_i \in \mathbb{R}^d$ be a *randomly-generated* parameter vector and *d* be the number of parameters, therefore, the power residual corresponding to θ_i can be calculated as

$$e_i = ||f(\theta_i, V) - Y||_2,$$
 (4)

where, $V \in \mathbb{R}^{K}$ is a vector of voltage measurements, *K* denotes the total number of measurement points, $Y = [P^{\mathsf{T}}, Q^{\mathsf{T}}]^{\mathsf{T}}$, $P \in \mathbb{R}^{K}$ and $Q \in \mathbb{R}^{K}$ represent the vector of recorded active power and reactive measurements, respectively. Also, T denotes the transpose. With a large number of generated θ_{i} 's, we can obtain *n* independent and identically distributed (i.i.d.) sample and residual pairs:

73
$$\{(\boldsymbol{\theta}_i, e_i), i = 1, \dots, n\}.$$
 (5)

²⁷⁴ To perform supervised feature selection, first, we represent ²⁷⁵ the original parameter vectors and corresponding residuals in ²⁷⁶ a matrix format as

$$\Theta = [\theta_1, \ldots, \theta_n] \in \mathbb{R}^{d \times n},$$

$$\boldsymbol{e} = [e_1, \dots, e_n]^\mathsf{T} \in \mathbb{R}^n. \tag{6b}$$

(6a)

Then, PSA is formulated as a Lasso optimization problem formulated in (2) which works well for linear regression. However, the nonlinear dependency in our specific problem hinders its application. Therefore, we employ the feature-wise nonlinear Lasso to solve our problem and the key idea is to specifically, the generated parameter matrix, Θ , is represented in a feature-wise manner:

2

278

$$\boldsymbol{\Theta} = \begin{bmatrix} \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_d \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^{d \times n}, \tag{7}$$

where, $\boldsymbol{\beta}_{k} = [\theta_{k,1}, \dots, \theta_{k,n}]^{\mathsf{T}} \in \mathbb{R}^{n}$ is a vector denoting the *k*th feature for all samples. To capture the nonlinear dependency 289 of *e* on $\boldsymbol{\theta}$, dynamic power residual and parameter vector are 290 transformed by a nonlinear function $\varphi(\cdot) : \mathbb{R}^{n} \to \mathbb{R}^{p}$. Then, the 291 Lasso optimization problem given in the objective function (2) 292 in the transformed space is reformulated as 293

$$\min_{\boldsymbol{W}\in\mathbb{R}^d}\frac{1}{2}||\varphi(\boldsymbol{e})-\sum_{k=1}^d W_k\varphi(\boldsymbol{\beta}_k)||_2^2+\lambda||\boldsymbol{W}||_1.$$
(8) 294

Although the objective function (8) can capture nonlinear ²⁹⁵ dependency, there is no constraint for W_k , k = 1, ..., d, and ²⁹⁶ the same transformation function $\varphi(\cdot)$ for e and β_k limits the ²⁹⁷ flexibility of capturing nonlinearity. To solve this, we seek to ²⁹⁸ employ a revised FWKL to perform feature selection [23], and ²⁹⁹ the revised objective function is formulated as ³⁰⁰

$$\min_{\mathbf{W}\in\mathbb{R}^d} \frac{1}{2} ||\overline{U} - \sum_{k=1}^d W_k \overline{V}^{(k)}||_{Frob}^2 + \lambda ||\mathbf{W}||_1, \qquad (9a) \quad \text{301}$$

s.t.
$$W_1, \ldots, W_d \ge 0.$$
 (9b) 302

where, $|| \cdot ||_{Frob}$ denotes the Frobenious norm, $\overline{U} = \Gamma U\Gamma$ and ³⁰³ $\overline{V}^{(k)} = \Gamma V^{(k)}\Gamma$ are centered Gram matrices, $U_{i,j} = U(e_i, e_j)$ ³⁰⁴ and $V_{i,j}^{(k)} = V(\theta_{k,i}, \theta_{k,j})$ are Gram matrices, U(e, e') and ³⁰⁵ $V(\theta, \theta')$ are kernel functions, $\Gamma = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T$ denotes the centering matrix, I_n represents the *n*-dimensional identity matrix, ³⁰⁷ and $\mathbf{1}_n$ denotes the *n*-dimensional vector with all ones. For the ³⁰⁸ two kernel functions $U(\cdot)$ and $V(\cdot)$, we employ the Gaussian ³⁰⁹ kernel which is formulated as ³¹⁰

$$K(\mathbf{x}, \mathbf{x}') = exp\left(-\frac{(\mathbf{x} - \mathbf{x}')^2}{2\sigma_{\mathbf{x}}^2}\right), \qquad (10) \quad \text{sin}$$

312

where, σ_x is the Gaussian kernel width.

In the objective function (9a), the decoupling between $U(\cdot)$ ³¹³ and $V(\cdot)$ provides more flexibility compared with the objective ³¹⁴ function (8). In addition, the non-negativity constraint in (9b) ³¹⁵ fits the specific application in our problem, since negative sensitivity parameter weights do not have practical interpretability. ³¹⁷ Intuitively, problem (9) tends to find non-redundant parameters with significant contributions to power residual, and ³¹⁹ equivalently, to dynamic power. Also, for two strongly dependent features, either of their sensitivity weights tends to be ³²¹ eliminated. The parameter sensitivity weight vector, W, is ³²² then integrated into the parameter identification algorithm to ³²³ accelerates the learning process, which will be presented in ³²⁴ Section IV.

IV. PARAMETER IDENTIFICATION 326 USING THE EDRL WITH IE 327

As stated in previous sections, the severe nonlinearity, high ³²⁸ nonconvexity and the large number of parameters bring significant challenges to perform parameter identification for ³³⁰ the CMPLDWG model when using existing approaches. This ³³¹ motivates us to tackle this challenge utilizing the EDRL with ³³² IE, which is recently demonstrated to be able to perform ³³³ well on high-dimensional optimization tasks [19], [24]. The ³³⁴ basic idea of performing optimization tasks using evolution ³³⁵

Parameter	LB	UB	Parameter	LB	UB	Parameter	LB	UB	Parameter	LB	UB
1	Motor A etrqB 1 4		Np2	1.6	4.8	Тр	0.01	0.04			
ТроА	0.046	0.184	DB	0.5	2.0	Nq1	1	4	Tiq	0.01	0.04
ТрроА	0.001	0.004	Motor C		Nq2	1.25	5	Tpord	2.5	10	
LpA	0.05	0.20	ТроС	0.05	0.20	CmpKpf	0	2	Kpg	50	200
LppA	0.042	0.168	TppoC	0.0013	0.0052	CmpKqf	-6.6	-1.65	Kig	5	20
LsA	0.9	3.6	LpC	0.08	0.32	Electronic Load		Tg	0.01	0.04	
RsA	0.02	0.08	LppC	0.06	0.24	Frcel	0	0.375	Tv	0.01	0.04
HA	0.05	0.20	LsC	0.9	3.6	Sta	Static Load		Xe	0.125	0.500
etrqA	0.5	2.0	RsC	0.015	0.06	P1c 0 0.4		Load Fraction			
DA	0.5	2.0	HC	0.1	0.4	P2c	0	0.6	Fma	0	0.5
Motor B etrq		etrqC	1	4	Q1c	0	0.4	Fmb	0	0.5	
ТроВ	0.05	0.20	DC	0.5	2.0	Q2c	0	0.6	Fmc	0	0.5
ТрроВ	0.0013	0.0052	Motor D		Pfreq	-0.2	0.2	Fmd	0	0.5	
LpB	0.08	0.32	Kp1	-1	1	Qfreq	-2	-0.5	Fel	0	0.5
LppB	0.06	0.24	Kp2	6	24	DER_A		Fzip	0	0.5	
LsB	0.9	3.6	Kq1	3	12	Trv	0.01	0.04	Fdg	-0.5	0
RsB	0.015	0.06	Kq2	5.5	22	Trf	0.015	0.06			
HB	0.5	2.0	Np1	0.5	2	Kqv	0.5	2.0			

TABLE II NUMERICAL INTERVAL OF LOAD PARAMETERS

³³⁶ strategy is: During each iteration, a population of parameter ³³⁷ vectors is perturbed based on one selected parameter vector ³³⁸ among a meta-population, and then, these mutated vectors ³³⁹ are recombined to update the selected ancestor vector. In this ³⁴⁰ paper, the EDRL is also hybridized with IE to improve explo-³⁴¹ ration. Compared with traditional random and blind search ³⁴² strategy, the IE module achieves efficient and directed explo-³⁴³ ration, which can efficiently assist EDRL to escape from local ³⁴⁴ optima. The detailed steps are described as follows:

Step I - Initialization: The first step is to initialize M 345 346 random parameter vectors which will be updated in each 347 iteration. Note that only one vector is probabilistically selected $_{348}$ to update in each iteration. The initialized M vectors are denoted as $S = \{\theta_1^1, \dots, \theta_1^M\}$, where t denotes the number 349 350 of iteration. The objective of constructing a meta-population to enhance additional diversity. M and the tuning param-351 is 352 eters in the remaining sections are determined using grid search with cross-validation which is a general hyperparameter 353 optimization technique. 354

Step II - Sampling: In each iteration t, we probabilistically determine which parameter vector among the Mmeta-population to be updated based on parameter vectors' novelties. The novelty is evaluated in terms of Euclidean distances from a vector to the vectors in the newest archive. Specifically, first, the originality of each parameter vector in $S_{1} \in \mathcal{H}_{t}^{k}$, conditioned on current parameter vector archive, A, is vector as

$$O_t^k = o\left(\boldsymbol{\theta}_t^k, \boldsymbol{W}, \boldsymbol{A}\right) = \frac{1}{|C|} \sum_{j \in C} ||\boldsymbol{W}_{\cdot} * \left(\boldsymbol{\theta}_t^k - \boldsymbol{\theta}_j\right)||_2, \quad (11)$$

³⁶⁴ where, $1 \leq k \leq M$, $C = kNN(\theta_t^k, A) = \{\theta_1, \dots, \theta_{N'}\}$, ³⁶⁵ kNN denotes k-nearest neighbors algorithm, and .* denotes the ³⁶⁶ element-wise multiplication operation. The purpose of kNN is to select *representative* parameter vectors in A for evaluating the novelty of θ_t^k . Intuitively, a small k can introduce higher distance variance, while a large k means higher computational cost. In our paper, we have conducted numerical experiments to determine the optimal k value which is sufficient for evaluating the novelty of a newly explored parameter vector while avoiding high computational time. The introduction of W, which is obtained from PSA, aims to revise the consideration that parameters with different sensitivity weights have different contributions to vector novelty. Then, for each parameter vector in S, the novelty score which determines the probability of being selected to be updated is calculated as

$$P_t^k = \frac{O_t^k}{\sum_{j=1}^M O_t^j}.$$
 (12) 381

 P_t^k tells us that selecting the parameter vectors with high $_{382}^{382}$ novelty scores can achieve directed or guided exploration. $_{383}$

Step III - Variation: In this step, variation is performed ³⁸⁴ on the selected parameter vector in Step II, θ_t^k , to generate ³⁸⁵ multiple workers. The function of these workers is explained ³⁸⁶ as follows: First, EDRL produces parameter vectors in the ³⁸⁷ neighborhood of θ_t^k , and then θ_t^k is updated by following the ³⁸⁸ direction determined by the population of the produced parameter vector workers. To obtain *N* workers, Gaussian noise is ³⁹⁰ applied to θ_t^k as follows ³⁹¹

$$\boldsymbol{\theta}_t^{i,k} = \boldsymbol{\theta}_t^k + \sigma \boldsymbol{\epsilon}_t^i \quad i = 1, \dots, N, \tag{13} \quad \textbf{392}$$

where, σ is a fixed noise standard deviation, $\epsilon_t^i \sim \mathcal{N}(0, I)$ and 393 *I* is an *N*-dimensional identity matrix. 394

Step IV - Gradient Estimation: In this step, the performance 395 and novelty gradients determined by the meta-population of 396 ³⁹⁷ generated vectors in Step III are approximated. For each ³⁹⁸ mutated parameter vector, $\theta_t^{i,k}$, its fitness can be evaluated ³⁹⁹ via calculating the difference between the estimated dynamic ⁴⁰⁰ power and the real dynamic power. First, the power residual ⁴⁰¹ caused by the mismatch between estimated parameters and ⁴⁰² real parameters, $e_t^{i,k}$, is calculated by substituting $\theta_t^{i,k}$ into (4). ⁴⁰³ Then, the reward is obtained by inversing $e_t^{i,k}$:

404
$$R_t^{i,k} = r(\boldsymbol{\theta}_t^{i,k}, \boldsymbol{V}, \boldsymbol{Y}) = \frac{1}{e_t^{i,k}} \quad i = 1, \dots, N.$$
 (14)

⁴⁰⁵ Equation (14) indicates that as the residual decreases the ⁴⁰⁶ reward increases. Thus, the performance gradient of $\boldsymbol{\theta}_t^k$ is ⁴⁰⁷ *approximated* via taking a sum of the sampled parameter ⁴⁰⁸ vector perturbations weighted by the reward:

409
$$\Delta \boldsymbol{\theta}_{t}^{et,k} \approx \alpha \frac{1}{N\sigma} \sum_{i=1}^{N} R_{t}^{i,k} \boldsymbol{\epsilon}_{t}^{i}, \qquad (15)$$

⁴¹⁰ where, α is a learning rate. In (15), $\Delta \theta_t^{et,k}$ indicates a stochas-⁴¹¹ tic reward experienced over a full iteration of multiple worker ⁴¹² interactions, which means the performance gradient relies on ⁴¹³ multiple workers and this can effectively avoid the high vari-⁴¹⁴ ance brought by a certain single mutated vector. Note that the ⁴¹⁵ calculated reward, $R_t^{i,k}$, is normalized through 1 to *N* before ⁴¹⁶ performing the gradient approximation in (15).

For the novelty gradient, first, the novelty with respect to 418 each perturbed vector, $O_t^{i,k}$, is calculated using (11). Then, the 419 novelty gradient of θ_t^k is approximated as

420
$$\Delta \boldsymbol{\theta}_{t}^{er,k} \approx \alpha \frac{1}{N\sigma} \sum_{i=1}^{N} O_{t}^{i,k} \boldsymbol{\epsilon}_{t}^{i}. \tag{16}$$

⁴²¹ Similar with $R_t^{i,k}$, $O_t^{i,k}$ is normalized before computing the nov-⁴²² elty gradient. Intuitively, $\Delta \theta_t^{er,k}$ indicates the direction which ⁴²³ the parameter identifier should follow to increase the average ⁴²⁴ originality of parameter vector distribution.

Step V - Gradient Combination: Using the computed performance and novelty gradients with respect to θ_t^k , we can algoright balance exploitation and exploration by introducing a timevarying dynamic weight, ω_t . Thus, the overall gradient based algo on which θ_t^k should be updated is computed as follows:

430
$$\Delta \boldsymbol{\theta}_{t}^{k} = \omega_{t} \Delta \boldsymbol{\theta}_{t}^{et,k} + (1 - \omega_{t}) \Delta \boldsymbol{\theta}_{t}^{er,k}. \tag{17}$$

⁴³¹ Intuitively, the algorithm follows the approximated gradient ⁴³² in parameter-space towards directions that both exhibit novel ⁴³³ behaviors and achieve high rewards. A large ω_t tends to ⁴³⁴ encourage θ_t^k to follow the performance gradient and restrain ⁴³⁵ it to follow the novelty gradient. In comparison, a small ω_t ⁴³⁶ tends to aggressively guide θ_t^k to mutate to unseen parameter ⁴³⁷ space and hold back exploitation.

⁴³⁸ Step VI - Updating: After obtaining $\Delta \theta_t^k$, the updating of ⁴³⁹ θ_t^k is expressed as follows:

$$\boldsymbol{\theta}_{t+1}^{k} = \boldsymbol{\theta}_{t}^{k} + \Delta \boldsymbol{\theta}_{t}^{k}.$$
(18)

⁴⁴¹ $\boldsymbol{\theta}_{t+1}^k$ is then added into the archive *A* for updating the pre-⁴⁴² existing vector landscape. As more learned parameter vectors

Fig. 3. Detailed structure of the EDRL with an intelligent exploration mechanism.

Algorithm 1 Updating ω_t

$$if R_{t+1}^k > R_b^t \ then \\ if \omega_t \neq 0 \ then \\ \omega_{t+1} \leftarrow min(1, \omega_t + \Delta \omega); \ C_b^{t+1} \leftarrow 0; \\ R_b^{t+1} \leftarrow R_{t+1}^k; \\ else \\ \omega_{t+1} \leftarrow 1; \ C_b^{t+1} \leftarrow 0; \ R_b^{t+1} \leftarrow R_{t+1}^k; \\ end \ if \\ else \\ C_b^{t+1} \leftarrow C_b^t + 1; \\ end \ if \\ if \ C_b^t > C_{set} \ then \\ \omega_{t+1} \leftarrow max(0, \omega_t - \Delta \omega); \ C_b^{t+1} \leftarrow 0; \\ end \ if \\ end \ if \\ end \ if \\ w_{t+1} \leftarrow max(0, \omega_t - \Delta \omega); \ C_b^{t+1} \leftarrow 0; \\ end \ if \\ end \ \ \ end \ \ end \ \ end \ \ end \ \ \ end \ \ \ end \ \ \ end \ \ end \ \ \ end \ \ \ end \ end \ end \ \ end \$$

are saved into *A*, the base for evaluating future parameter vectors' novelty changes and stimulates the algorithm to discover unexplored parameter space. 443 In addition to updating θ_t^k and A in each iteration, the dynamic weight, ω_t , should also be updated for avoiding local date optima. To do this, first, the latest reward, R_{t+1}^k , which is date optima. To do this, first, the latest reward, R_{t+1}^k , which is date optimal to do θ_{t+1}^k , is calculated. We also define a "drag hand", R_b^t , to record the best reward among historical rewards. Then, ds1 the dynamic weight in (17), ω_t , is updated using Algorithm 1, ds2 where, $\Delta \omega$ denotes the weight updating rate, and C_b^t counts ds3 the number of rewards that are less than R_b^t in succession. ds4 C_{set} is a threshold which determines the frequency of updatds5 ing ω_t when the parameter vector is stuck in a local optimum. ds6 Also, C_b^t and R_b^t are updated in each iteration, as presented ds7 in Algorithm 1. Note that Step II to VI constitute the entire ds8 operation in each iteration t.

V. CASE STUDY

459

In this section, the proposed parameter sensitivity anal-460 461 ysis and parameter identification algorithms are validated ⁴⁶² using numerical experiments. Before performing verification. we firstly screen out the CMPLDWG parameters that are 463 464 necessary to be identified. This screening is based on the 465 consideration that CMPLDWG contains multiple types of 466 parameters, of which some parameters can be determined by field measurements and engineering judgement. Specifically, 467 the transformer impedance, substation shunt capacitive sus-468 ceptance, feeder impedance and capacitive susceptance can 469 accurately calculated using transformer, capacitor and 470 be 471 feeder parameters [25], [26]. For the stalling and restarting 472 of induction motors, engineering judgement can be lever-473 aged to estimate the settings [15], [27]. This is based on 474 the observation that the stalling or restarting of a large num-475 ber of induction motors can cause abrupt current, voltage 476 and power changes [28], [29], which can be further cor-477 roborated in [1]. Also, the tripping of a large number of 478 induction motors can cause sudden current decrease, power 479 decrease and voltage increase. Excluding the parameters which 480 can be accurately calculated using the electric power grid 481 modeling technique can significantly reduce the complexity 482 of parameter identification process. On the other hand, indis-483 tinguishably identifying all CMPLDWG parameters can pose an unnecessary computational burden on the proposed param-484 485 eter identification algorithm. In our problem, 61 CMPLDWG 486 parameters are screened out for parameter identification, as 487 shown in Table III, and the remaining parameters are set with 488 default values.

In this case study, the Power System Simulator for Engineering (PSS/E) and the ACTIVSg500 test case are employed to generate voltage and power measurements for parameter identification [30]. The fault-induced voltagerecovery curves are shown in Fig. 4. MATLAB is used to execute the processes of parameter sensitivity analysis and parameter identification. The case study is conducted on a standard PC with an Intel Xeon CPU running at 3.70 GHz and with 32.0 GB of RAM.

498 A. Parameter Sensitivity Identification

⁴⁹⁹ To fully extract the sensitivity weights hidden in the ⁵⁰⁰ randomly-generated parameter samples and corresponding

Fig. 4. Fault-induced voltage-recovery curves at the load bus.

power residuals, first, we have created a comprehensive library 501 containing 40,000 parameter vector and residual pairs which 502 are divided into two sections, training dataset and test dataset, 503 for cross-validation. Note that the dataset size is determined 504 based on our numerical experiment result that once the dataset 505 size exceeds 16,000, the FWKL gives us stable extracted 506 parameter weights for different sets of the randomly selected 507 parameter vector and residual pairs. Generating each pair of 508 the parameter vector and the corresponding residual takes 509 about 0.3 seconds. Then, the tuning parameters of FWKL are 510 determined using grid search with cross-validation based on 511 the training and test datasets [31]. Finally, the FWKL algo- 512 rithm is applied to the entire dataset to conduct parameter 513 sensitivity analysis. Based on our sensitivity analysis result, 514 the load fraction parameters, the synchronous and subtransient 515 reactances of three-phase induction motors, and the exponen- 516 tial load torque coefficients of three-phase induction motors 517 have a significant effect on the load dynamics in the fault 518 event specified in Fig. 4, as shown in Fig. 5. The remaining 519 parameters have small or no effect on the dynamic procedure. 520 It should be noted that the values of parameter sensitivity 521 weights change according to specific dynamic events since 522 the weight vector in (9) partially depends on the voltage and 523 power measurements, which are determined by specific fault 524 cases. Therefore, PSA should be conducted on a case-by-case 525 basis to obtain more accurate parameter sensitivity weights for 526 specific fault events. 527

B. Parameter Identification

The extracted parameter sensitivity weights are integrated ⁵²⁹ into EDRL algorithm with IE to perform parameter identification using given voltage and power measurements. There ⁵³¹ are only a couple of published technical reports involved with ⁵³²

528

Parameter	Real	Identified	Parameter	Real	Identified	Parameter	Real	Identified	Parameter	Real	Identified
Motor A		etrqB	2	2.4816	Np2	3.2	4.4470	Тр	0.02	0.0207	
ТроА	0.092	0.0906	DB	1	1.2146	Nq1	2	1.6632	Tiq	0.02	0.0153
ТрроА	0.002	0.0024	Motor C			Nq2	2.5	2.5239	Tpord	5	4.0030
LpA	0.1	0.1037	ТроС	0.1	0.0941	CmpKpf	1	0.5000	Kpg	100	68.3279
LppA	0.083	0.0495	TppoC	0.0026	0.0034	CmpKqf	-3.3	-4.2400	Kig	10	9.9675
LsA	1.8	1.8637	LpC	0.16	0.1268	Electronic Load		Tg	0.02	0.0156	
RsA	0.04	0.0275	LppC	0.12	0.1064	Frcel	0.25	0.1551	Tv	0.02	0.0163
HA	0.1	0.1188	LsC	1.8	1.7535	Static Load		Xe	0.25	0.2239	
etrqA	1	0.8368	RsC	0.03	0.0286	P1c 0.2 0.1953		Lo	Load Fraction		
DA	1	0.9661	HC	0.2	0.2839	P2c	0.3	0.2094	Fma	0.2	0.1969
	Motor B		etrqC	2	2.3741	Q1c	0.2	0.1588	Fmb	0.3	0.4393
ТроВ	0.1	0.0883	DC	1	1.0687	Q2c	0.3	0.1727	Fmc	0.3	0.3113
ТрроВ	0.0026	0.0034	Motor D			Pfreq	0	-0.0942	Fmd	0.1	0.1300
LpB	0.16	0.1094	Kp1	0	0.8636	Qfreq	-1	-0.8593	Fel	0.2	0.1804
LppB	0.12	0.1797	Kp2	12	11.6751	DER_A		Fzip	0.1	0.1774	
LsB	1.8	2.0663	Kq1	6	8.0773	Trv	0.02	0.0262	Fdg	-0.2	-0.2053
RsB	0.03	0.0302	Kq2	11	10.9500	Trf	0.03	0.0221			
HB	1	1.4290	Np1	1	1.3602	Kqv	1	1.4408			

TABLE III Real and Identified CMPLDWG Parameters

Fig. 5. Sensitivity weights of WECC composite load model parameters.

WECC model parameter settings. In this paper, the numerical 533 534 intervals of parameters for randomly selecting initial values are 535 determined based on [32], [33], along with our experience on 536 deriving detailed mathematical representation of WECC composite load model [22]. The numerical intervals are presented 537 in Table II, where, LB denotes lower bound and UB denotes 538 upper bound. Table III shows the real and corresponding iden-539 540 tified parameter values of CMPLDWG. As can be observed, the EDRL with IE can give us satisfying identified param-541 542 eters. The identification accuracy is further corroborated by 543 Fig. 6, in which, the estimated active and reactive power curves can closely fit the actual curves. While our approach is not 544 545 designed for online parameter identification, it is of impor-546 tance to examine the computational time. In our case studies, 547 each iteration takes about 2 seconds.

It is also of significance to examine the collected best reward R_b^t and dynamic weight ω_t in each iteration, which so are shown in Fig. 7 and 8, respectively. In Fig. 7, the loss corresponding to the collected best reward, e_b^t , is also shown for examining parameter identification performance. It can be so seen that during Iteration 1 to 1226, the proposed parameter identification approach simultaneously performs exploitation 554 and exploration, and the best reward increases continuously, 555 as shown in Fig. 7. The corresponding learning process in 556 this iteration range can be confirmed in Fig. 8, in which 557 ω_t is firstly initialized as 0, once it stays invariant for 10 558 continuous iterations (C_{set}), it is decreased in a step size of 559 0.05 ($\Delta\omega$) to force the parameter identifier to follow more 560 closely with novelty gradient. Once an unseen better reward 561 occurs, ω_t gradually increases to 1 to encourage the identi- 562 fier to act following the approximated performance gradient. 563 During Iteration 1 to 1226, although ω_t alternatively decreases 564 and increases, it does not reach 0. From Iteration 1227 to 1717, 565 the parameter identifier is stuck in a local optimum and the 566 best reward stays invariant, as shown in Fig. 7. During this 567 iteration range, first, ω_t is designed to gradually decrease to 568 0, which means the identifier is stimulated to explore more 569 aggressively in the unseen parameter space, as presented in 570 Section IV. This is verified by the variation of dynamic weight 571 ω_t , as shown in Fig. 8, where, from Iteration 1227 to 1717, ω_t 572 decreases to 0 and keep unchanged, which means the identi- 573 fier completely inhibits the performance gradient. At Iteration 574

Fig. 6. The real power curves and the estimated power curves using the identified parameters.

Fig. 7. The best reward and corresponding loss.

575 1718, the identifier discovers a parameter vector which can give higher reward than any of the previous best rewards. As 576 expected, ω_t immediately jumps to 1 to avoid possible sliding 577 578 out from the newly explored optimum with higher reward, due novelty exploration inertia. From Iteration 1718 to 2342, 579 the identifier simultaneously performs exploitation and explo-580 ration as shown in Fig. 7, accordingly, ω_t varies in the range 581 a non-zero value to 1, as shown in Fig. 8. This is simiof 582 lar to the process which occurs in the range of Iteration 1 to 583 1226. Similar with the range of Iteration 1227 to 1717, in the 584 ⁵⁸⁵ range of Iteration 2343 to 3324, ω_t decreases to 0 and R_h^t stays ⁵⁸⁶ invariant, as shown in Fig. 8 and 7, respectively. At Iteration 587 3325, ω_t jumps to 1 to force the identifier immediately per-⁵⁸⁸ form exploitation, which is similar at Iteration 1718, as shown Fig. 8. Also, the best reward starts to increase at Iteration 589 in 3325, as shown in Fig. 7. The aforementioned cyclic process 590 continues to pursue better rewards as the number of iterations 591 increases, as shown in Fig. 7 and 8. 592

It is interesting to examine the efficaciousness of integrating sensitivity weights into the IE module. To do this, we perform additional CMPLDWG parameter identification using EDRL with IE without revising parameter vector novely scores.

Fig. 8. Variation of the time-varying dynamic weight.

Fig. 9. The introduction of parameter sensitivity weights into EDRL with IE improves learning performance.

Fig. 9 shows two best reward collection curves corresponding 597 to EDRL with IE by integrating W and without integrating W, 598 respectively. As can be seen, the introduction of W acceler- 599 ates the exploitation and exploration in reaching the same best 600 reward. 601

It is also significant to compare the proposed parame- 602 ter identification approach with the presented algorithms in 603 previous works. First, we focus on comparing our algorithm 604 with the proposed parameter identification approach in [1], 605 which also aims to identify a large number of parameters. 606 The comparison shows that our approach can achieve better 607 parameter identification accuracy and does not rely on a priori 608 knowledge. And also, our method is easier to implement due to 609 the utilization of mathematical representation of CMPLDWG 610 model. In addition, the parameter identification accuracy using 611 the proposed approach in [1] significantly relies on a priori 612 knowledge about parameter setting. We have also compared 613 the performance of our proposed approach with that of two 614 other state-of-the-art optimization algorithms, Salp Swarm 615 algorithm (SSA) and deep Q-networks (DQN). SSA is a newly 616 proposed metaheuristic optimizer inspired by the process of 617 looking for a food source by salps. SSA has demonstrated 618 satisfying performance compared with other metaheuristic 619 algorithms [34]. DQN is a cutting-edge reinforcement learning 620 technique designed for sequential decision-making tasks [35]. 621 The performance of the three algorithms (EDRL, SSA and 622 DQN) is shown in Fig. 10. It can be seen that our proposed 623 approach outperforms the other two methods in terms of the 624 average fitness error, e_h^t . In comparison, SSA shows the fastest 625 convergence rate. DQN takes the longest time to converge and 626 shows the largest average fitness error. It is also important to 627

630

Fig. 10. Performance comparison of EDRL, SSA and DQN.

628 point out that DQN needs a significantly longer time to train 629 a stable actor with satisfying identification performance.

VI. CONCLUSION

This paper presents a parameter identification approach for 631 WECC composite load model. The proposed method employs 632 633 a data-driven nonlinear feature selection technique to perform parameter sensitivity analysis, which avoids solving highly 634 635 complex analytical derivatives caused by the high order and 636 nonlinearity of differential equations of WECC composite load 637 model. After that, the proposed method utilizes a cutting-638 edge approach inspired by evolutionary reinforcement learning 639 technique, which is hybridized with an intelligent exploration 640 mechanism to perform parameter identification. The parameter 641 sensitivity weights are innovatively embedded in the reinforce-642 ment learning process to achieve efficient exploration. The numerical experiments demonstrate that the proposed approach 643 644 can achieve promising accuracy. It is also shown that the 645 proposed identifier can escape from local optima through the 646 assistance of the intelligent exploration mechanism when stuck local optima. Finally, it is verified that the integration of 647 in sensitivity weights into the reinforcement learning process 648 accelerates the learning rate. 649

While our proposed approach can perform parameter iden-650 tification of WECC composite load model with satisfying 651 652 accuracy, the computational cost hinders its online appli-653 cation. Also, the model complexity stands in the way of 654 widely applying WECC composite load model in the electric 655 power industry. Considering this, one prospect for research 656 on CMPLDWG is to simplify the model or develop a surro-657 gate model to significantly reduce the computation cost and/or 658 model complexity, while keeping the primary characteristics 659 of WECC model.

REFERENCES

- [1] K. Zhang, H. Zhu, and S. Guo, "Dependency analysis and improved 661 parameter estimation for dynamic composite load modeling," 662 Trans. Power Syst., vol. 32, no. 4, pp. 3287-3297, Jul. 2017. 663
- [2] J. Ma, D. Han, R.-M. He, Z.-Y. Dong, and D. J. Hill, "Reducing iden-664 tified parameters of measurement-based composite load model," IEEE 665 Trans. Power Syst., vol. 23, no. 1, pp. 76-83, Feb. 2008. 666
- Q. Huang and V. Vittal, "Application of electromagnetic transient-[3] 667 transient stability hybrid simulation to FIDVR study," IEEE Trans. 668 Power Syst., vol. 31, no. 4, pp. 2634-2646, May 2016. 669
- [4] R. Huang et al., "Calibrating parameters of power system stability mod-670 els using advanced ensemble Kalman filter," IEEE Trans. Power Syst., 671 672
 - vol. 33, no. 3, pp. 2895-2905, Oct. 2017.

- [5] Y. Zhang, J. Wang, and Z. Li, "Uncertainty modeling of distributed 673 energy resources: Techniques and challenges," Curr. Sustain. Energy 674 Rep., vol. 6, no. 2, pp. 42-51, Jun. 2019. 675
- [6] M. Cui, J. Wang, and B. Chen, "Flexible machine learning-based cyber-676 attack detection using spatiotemporal patterns for distribution systems,' 677 IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1805-1808, Mar. 2020. 678
- [7] M. Cui, J. Wang, Y. Wang, R. Diao, and D. Shi, "Robust time-varying 679 synthesis load modeling in distribution networks considering voltage 680 disturbances," IEEE Trans. Power Syst., vol. 34, no. 6, pp. 4438-4450, 681 Nov. 2019 682
- [8] M. Cui, M. Khodayar, C. Chen, X. Wang, Y. Zhang, and M. E. Khodayar, 683 "Deep learning based time varying parameter identification for system-684 wide load modeling," IEEE Trans. Smart Grid, vol. 10, no. 6, 685 pp. 6102-6114, Nov. 2018. 686
- J.-K. Kim, K. An, and J. Ma, "Fast and reliable estimation of com-[9] 687 posite load model parameters using analytical similarity of parameter 688 sensitivity," IEEE Trans. Power Syst., vol. 31, no. 1, pp. 663-671, 689 Jan. 2016. 690
- [10] S. Son et al., "Improvement of composite load modeling based on 691 parameter sensitivity and dependency analyses," IEEE Trans. Power 692 Syst., vol. 29, no. 1, pp. 242-250, Jan. 2014. 693
- [11] C. Wang, Z. Wang, J. Wang, and D. Zhao, "Robust time-varying parame- 694 ter identification for composite load modeling," IEEE Trans. Smart Grid, 695 vol. 10, no. 1, pp. 967-979, Jan. 2019. 696
- [12] U.S. Energy Information Administration. (2011).697 Share Energy Used byAppliances ana Consumer of 698 U.S.[Online]. Electronics Increases in Homes. 699 Available: https://www.eia.gov/consumption/residential/reports/2009/ele 700 ctronics.php 701
- [13] U.S. Energy Information Administration. (2018).EIA 702 Electricity Data Include Estimated Small-Scale Now 703 Solar PV Capacity and Generation. [Online]. Available: 704 https://www.eia.gov/todayinenergy/detail.php?id=23972 705
- [14] J. Zhang, M. Cui, and Y. He, "Robustness and adaptability analysis for 706 equivalent model of doubly fed induction generator wind farm using 707 measured data," Appl. Energy, vol. 261, pp. 1-12, Mar. 2020. 708
- [15] Modeling and Validation Work Group, "WECC dynamic composite 709 load model (CMPLDW) specifications," Western Elect. Coordinating 710 Council, Salt Lake City, UT, USA, Rep., 2015. 711

AO3

- [16] A. Gaikwad, P. Markham, and P. Pourbeik, "Implementation of the 712 WECC composite load model for utilities using the component-based 713 modeling approach," in Proc. IEEE/PES Transm. Distrib. Conf. Exposit. 714 (T&D), May 2016, pp. 1-5. 715
- Q. Huang et al., "A generic modeling and development approach 716 [17] for WECC composite load model," Elect. Power Syst. Res., vol. 172, 717 pp. 1-10, Jul. 2019. 718
- [18] X. Wang, Y. Wang, D. Shi, J. Wang, and Z. Wang, "Two-stage 719 WECC composite load modeling: A double deep Q-learning networks 720 approach," IEEE Trans. Smart Grid, early access, Apr. 15, 2020, 721 doi: 10.1109/TSG.2020.2988171. 722
- [19] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. Stanley, and J. Clune, 723 "Improving exploration in evolution strategies for deep reinforcement 724 learning via a population of novelty-seeking agents," in Proc. Adv. 725 Neural Inf. Process. Syst., Dec. 2018, pp. 5032-5043 726
- [20] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and 727 J. Schmidhuber, "Natural evolution strategies," J. Mach. Learn. Res., 728 vol. 15, no. 1, pp. 949-980, Mar. 2014. 729
- [21] "The new aggregated distributed energy resources (DER_A) model for 730 transmission planning studies: 2019 update," Elect. Power Res. Inst., 731 Palo Alto, CA, USA, Rep., 2019. 732
- [22] Z. Ma, Z. Wang, Y. Wang, R. Diao, and D. Shi, "Mathematical rep-733 resentation of the WECC composite load model," J. Mod. Power Syst. 734 Clean Energy, to be published. 735
- [23] M. Yamada, W. Jitkrittum, L. Sigal, E. P. Xing, and M. Sugiyama. 736 (2019). High-Dimensional Feature Selection by Feature-Wise Kernelized 737 Lasso. [Online]. Available: https://arxiv.org/abs/1202.0515. 738
- [24] S. Wang et al., "A data-driven multi-agent autonomous voltage control 739 framework using deep reinforcement learning," IEEE Trans. Power Syst., 740 early access, Apr. 23, 2020, doi: 10.1109/TPWRS.2020.2990179. 741
- [25] W. Kersting, Distribution System Modeling and Analysis. New York, 742 NY, USA: CRC Press, 2011. 743
- J. D. Glover, M. S. Sarma, and T. J. Overbye, Power System Analysis [26] 744 and Design, 5th ed. Stamford, CT, USA: Cengage Learn., 2011. 745
- A. Hughes and B. Drury, Electric Motors and Drives, 4th ed. [27] 746 Amsterdam, The Netherlands: Elsevier, 2013. 747

- [28] H. Wu and I. Dobson, "Analysis of induction motor cascading stall in a 748 simple system based on the cascade model," IEEE Trans. Power Syst., 749 750
- vol. 28, no. 3, pp. 3184-3193, Aug. 2013. 751 [29] D. C. Yu, H. Liu, H. Sun, S. Lu, and C. Mccarthy, "Protective device coordination enhancement for motor starting programs," IEEE Trans 752
- 753 Power Del., vol. 20, no. 1, pp. 535-537, Jan. 2005. 754 [30] A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye,
- 755 "Grid structural characteristics as validation criteria for synthetic networks," IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3258-3265, 756 Jul. 2017. 757
- 758 [31] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY, USA: Springer, 2009. 759
 - 760 [32] R. D. Quint. (2015). A Look Into Load Modeling: The Composite Load Model. [Online]. Available: https://gig.lbl.gov/sites/all/files/6b-761 quint-composite-load-model-data.pdf 762
 - "Reliability guide: Parameterization of the DER_A model," North Amer. 763 [33] Elect. Rel. Corporat., Atlanta, GA, USA, Rep., 2019. 764
 - 765 [34] R. Abbassi, A. Abbassi, A. A. Heidari, and S. Mirjalili, "An efficient
 - 766 SALP swarm-inspired algorithm for parameters identification of photovoltaic cell models," Energy Convers. Manag., vol. 179, pp. 362-372, 767 768 Jan. 2019.
 - 769 [35] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and 770
 - J. Pineau, "An introduction to deep reinforcement learning," Found. 771 Trends Mach. Learn., vol. 11, nos. 3-4, pp. 219-354, 2018.

Zixiao Ma (Graduate Student Member, IEEE) 785 received the B.S. degree in automation and the 786 M.S. degree in control theory and control engi-787 neering from Northeastern University in 2014 and 788 2017, respectively. He is currently pursuing the 789 Ph.D. degree with the Department of Electrical 790 and Computer Engineering, Iowa State University, 791 Ames, IA, USA. His research interests are focused 792 on the power system load modeling, microgrids, 793 nonlinear control, and model order reduction. 794

Yuxuan Yuan (Graduate Student Member, IEEE) 795

Zhaoyu Wang (Member, IEEE) received the B.S. 802 and M.S. degrees in electrical engineering from 803 Shanghai Jiaotong University in 2009 and 2012, 804 respectively, and the M.S. and Ph.D. degrees in elec- 805 trical and computer engineering from the Georgia 806 Institute of Technology in 2012 and 2015, respec-807 tively. He is the Harpole-Pentair Assistant Professor 808 with Iowa State University. He is the Principal 809 Investigator for a multitude of projects focused on 810 these topics and funded by the National Science 811 Foundation, the Department of Energy, National 812

Laboratories, PSERC, and Iowa Energy Center. His research interests include 813 power distribution systems and microgrids, particularly on their data analyt- 814 ics and optimization. He is the Secretary of IEEE Power and Energy Society 815 (PES) Award Subcommittee, the Co-Vice Chair of PES Distribution System 816 Operation and Planning Subcommittee, and the Vice Chair of PES Task Force 817 on Advances in Natural Disaster Mitigation Methods. He is an Editor of the 818 IEEE TRANSACTIONS ON POWER SYSTEMS, the IEEE TRANSACTIONS ON 819 SMART GRID, IEEE PES LETTERS, and the IEEE OPEN ACCESS JOURNAL 820 OF POWER AND ENERGY, and an Associate Editor of IET Smart Grid. 821

AO4

Fankun Bu (Graduate Student Member, IEEE) received the B.S. and M.S. degrees from North China Electric Power University, Baoding, China, in 2008 and 2013, respectively. He is currently pursuing the Ph.D. degree with the Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA. From 2008 to 2010, he worked as a Commissioning Engineer for NARI Technology Company Ltd., Nanjing, China. From 2013 to 2017, he worked as an Electrical Engineer for State Grid Corporation of China, Nanjing. His

783 research interests include distribution system modeling, smart meter data 784 analytics, renewable energy integration, and power system relaying.

801