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Abstract—Due to the increasing penetration of distributed1

energy resources (DERs), the load composition in distribution2

grids has significantly changed. This inverter-based device has3

notably different behavior from traditional static and induc-4

tion motor loads. To accurately represent the combination of5

static load, induction motor and the emerging inverter-based6

devices, the composite load model with distributed genera-7

tion (CMPLDWG) has been developed by Western Electricity8

Coordinating Council (WECC). Due to the large number of9

parameters and model complexity, the CMPLDWG model brings10

new challenges to parameter identification, which is critical11

to power system studies. To address these challenges, in this12

paper, a cutting-edge approach inspired by the evolutionary13

deep reinforcement learning (EDRL) with an intelligent explo-14

ration mechanism is innovatively proposed to perform parameter15

identification for CMPLDWG. First, to extract parameters’ con-16

tributions to dynamic power, parameter sensitivity analysis is17

conducted using a data-driven feature-wise kernelized Lasso18

(FWKL). Then, the EDRL with intelligent exploration, which19

can handle the natural high nonlinearity and nonconvexity of20

CMPLDWG, is employed to perform parameter identification.21

In the parameter identification process, the extracted parameter22

sensitivity weights are innovatively integrated into the EDRL with23

intelligent exploration to improve discovery efficiency. Finally, the24

proposed approach is validated using numerical experiments.25

Index Terms—WECC composite load model, parameter iden-26

tification, evolutionary strategy, intelligent exploration.27

I. INTRODUCTION28

PARAMETER identification of load models is essential29

to power systems studies, such as planning, operation30

and control [1]–[4]. Due to the increasing diversity of load31

types and the integration of distributed energy resources32

(DERs) [5], [6], parameter identification still remains a33

challenging problem to academic researchers and indus-34

trial practitioners. Measurement-based approaches are widely35

employed to perform parameter identification, where voltage36
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and power measurements in fault-induced delayed-voltage- 37

recovery (FIDVR) events are used to determine the parameters 38

of given dynamic load models. 39

Previous works have mainly focused on identifying param- 40

eters of a composite load model which consists of a ZIP 41

and an induction motor, where ZIP model is a combination 42

of a constant-impedance load, a constant-current load and a 43

constant-power load. In [2], based on trajectory sensitivities, 44

the induction motor parameter number is reduced and only 45

critical parameters are identified. The proposed approach is 46

validated using real field measurements, and it is demonstrated 47

that the approach can decrease identification time without 48

losing the composite load model’s dynamic characteristics. 49

In [7], a robust time-varying parameter identification approach 50

is proposed for synthesis load modeling. The synthetic load 51

model includes time-varying ZIP, induction motor, and equiv- 52

alent line impedance model. To achieve the goal of robustness 53

enhancement, dynamic programming is used to detect voltage 54

disturbances, and then a time-varying parameter identifier with 55

a smaller iteration threshold is designed. In [8], a multi-modal 56

long short-term memory deep learning method is employed to 57

identify the time-varying parameters of the composite load 58

model. In [9], a computationally efficient technique is uti- 59

lized for identifying the composite load model parameters, 60

by performing a similarity analysis of parameter sensitiv- 61

ity. The partial derivative of each parameter is employed to 62

identify parameters with similar sensitivities, and Levenberg- 63

Marquardt algorithm is used to solve the optimization problem. 64

To improve computational efficiency, in [10], model parameter 65

sensitivities are analyzed using eigenvalues of Hessian matrix, 66

and the linear dependence between two parameters are then 67

identified by examining the condition number of the Jacobian 68

matrix. In [11], a robust time-varying parameter identifica- 69

tion approach is developed for the composite load model. A 70

batch-mode regression form is constructed to guarantee data 71

redundancy, and the down-weighting coefficient for each mea- 72

surement is calculated to reduce the impacts of outliers. To 73

sum up, in previous works, both traditional optimization meth- 74

ods and modern learning-based approaches are employed to 75

perform parameter identification of the composite load model 76

which consists of a ZIP model and an induction motor model. 77

In recent years, as a large number of DERs are inte- 78

grated into distribution systems, the composition of loads has 79

changed significantly [12]–[14]. In order to accurately capture 80

1949-3053 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0007-5163
https://orcid.org/0000-0003-3874-1464
https://orcid.org/0000-0003-0656-0562


IEE
E P

ro
of

2 IEEE TRANSACTIONS ON SMART GRID

the characteristics of this new type of load in modern power81

grids, the Western Electricity Coordinating Council (WECC)82

has developed a composite load model with distributed gen-83

eration (CMPLDWG) [15]. Also, researchers have dedicated84

great efforts into studying this newly-proposed advanced load85

model. In [16], an easy-to-use tool is developed to gener-86

ate dynamic load data to enhance utilities’ planning studies.87

This tool can be adjusted to accommodate different customer88

types, various load components and characteristics. In [17],89

a generic modeling and open-source implementation of the90

WECC composite load model are presented, which reduces91

the gap between the WECC model and its further implemen-92

tation. In [1], an approach is proposed for dynamic composite93

load modeling, where parameter dependency of the complex94

dynamic load model is analyzed and visualized using matrix95

decomposition and data clustering techniques. Meanwhile, the96

parameter identification performance is improved by adding a97

regularization term to include a priori parameter information98

into the objective function. However, the a priori parameter99

information is not generally available. In addition, the newly-100

approved aggregated distributed energy resources (DER_A)101

model in CMPLDWG has not been considered in [1]. In [18],102

the parameter identification process is divided into two steps:103

determining load composition and selecting a best-fit parame-104

ter vector candidate from Monte-Carlo simulations. To sum105

up, the primary disadvantages of previous WECC model106

parameter identification approaches are that they rely on107

prior knowledge of parameters or a comprehensive library of108

parameter candidates.109

The CMPLDWG model contains 183 parameters, and the110

order of differential equations reaches 25. Therefore, the tra-111

ditional optimization methods might not be able to handle the112

high-dimensional parameter vector and the severe nonconvex-113

ity of model structure. Considering this, we seek to perform114

parameter identification for CMPLDWG using an advanced115

learning-based approach with an embedded intelligent explo-116

ration (IE) mechanism, which is inspired by the evolutionary117

deep reinforcement learning (EDRL) technique. The proposed118

approach can efficiently avoid deceptive local optima and119

can handle the high-dimensional parameter vector [19], [20].120

Specifically, first, the parameter sensitivity analysis (PSA) is121

conducted to obtain sensitivity weights reflecting contribu-122

tions of parameters to dynamics, using feature-wise kernel-123

ized Lasso (FWKL), where Lasso denotes the least absolute124

shrinkage and selection operator. Then, the extracted param-125

eter sensitivity weights are integrated into EDRL with IE126

to perform intelligent CMPLDWG parameter exploration by127

avoiding purely randomized or ineffective search. Parallelly,128

the EDRL with IE performs parameter exploitation using129

evolutionary strategy. Finally, the EDRL with IE guides the130

identifier to balance exploitation and exploration by designing131

time-varying dynamic weights assigned to the approximated132

performance gradient and novelty gradient.133

The main innovations and contributions of our paper134

are summarized as follows: (1) To address the challenges135

of parameter identification caused by the nonlinearity of136

CMPLDWG model, we have designed a mechanism of intel-137

ligent exploration for encouraging the parameter identifier to138

Fig. 1. The structure of the WECC composite load model with the distributed
generation model of DER_A.

escape from deceptive local optima. The exploration mecha- 139

nism is achieved through time-varying dynamic weights which 140

intelligently balance the exploitation and exploration. Most 141

importantly, once the parameter identifier is stuck in a local 142

optimum, it is stimulated to aggressively explore undiscovered 143

parameter space. (2) The extracted CMPLDWG parameter sen- 144

sitivity weights are innovatively integrated into the intelligent 145

exploration to achieve directed and efficient parameter space 146

discovery. By doing this, the parameter identifier can avoid 147

purely randomized or inefficient exploration. 148

The rest of the paper is organized as follows: Section II 149

introduces the CMPLDWG model and the overall frame- 150

work of the proposed parameter identification approach. 151

Section III proposes the method for parameter sensitivity 152

analysis. Section IV describes the process of identifying 153

CMPLDWG parameters using EDRL which is hybridized with 154

IE. In Section V, case studies are conducted to validate the 155

proposed approach and Section VI concludes the paper. 156

II. CMPLDWG MODEL AND OVERALL PARAMETER 157

IDENTIFICATION FRAMEWORK 158

A. CMPLDWG Model 159

This paper focuses on the comprehensive WECC composite 160

load model, which consists of three sections: substation, feeder 161

and load, as illustrated in Fig. 1. The substation section is com- 162

posed of a transformer model and a shunt capacitor model. The 163

feeder section is denoted using an equivalent feeder model. 164

The load section includes three three-phase induction motor 165

models with different dynamic characteristics, one single- 166

phase A/C performance-based motor model, an electronic load 167

model, a static load model and a distributed generator model. 168

In this paper, the distributed generator model is specified as 169

the newly-approved DER_A model presented in [21]. Table I 170

shows a list of WECC CMPLDWG model parameters of which 171

detailed definitions can be found in [15], [21]. In addition, 172

the mathematical state-space representations of CMPLDWG 173

model are presented in [22]. 174

B. Overall Framework of the Proposed Approach 175

The process of identifying unknown CMPLDWG parame- 176

ters comes down to finding optimal parameters by reducing 177
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TABLE I
PARAMETER LIST OF CMPLDWG MODEL

the following estimation residual [1]:178

min
θ

l(Y, θ , V) = min
θ

1

2

(
||Y − f (θ , V)||22

)
(1)179

where, Y denotes active/reactive power measurement vector, θ180

represents the vector of parameters to be identified, V denotes181

voltage measurement vector, l represents calculating the esti-182

mation residual, || · ||2 is the l2-norm, and f (·) denotes the183

mathematical representation of CMPLDWG model developed184

in [22]. More detailed variable definitions will be elabo-185

rated in Section III. To determine the optimal parameters for186

CMPLDWG, the EDRL approach with IE is developed in this187

paper. The components of parameter identification framework188

are illustrated in Fig. 2: Component I - Sensitivity Analysis:189

Sensitivity analysis evaluates the contributions of parameters190

to dynamic power measurements, and is based on the obser-191

vation that the change of some parameters has an insignificant192

impact on power measurements. The high-order character-193

istic of induction motors and DER_A in CMPLDWG can194

significantly complicate PSA when using traditional meth-195

ods. To address this challenge, an alternative data-driven PSA196

approach, FWKL, is proposed. The FWKL utilizes a set of197

randomly-generated CMPLDWG parameter vectors and cor- 198

responding calculated residuals to extract weights indicating 199

parameter sensitivities. The PSA is formulated as a Lasso 200

optimization problem given as 201

min
W∈Rd

1

2
||e−�TW||22 + λ||W||1, (2) 202

where, e is the estimation residual vector, � denotes the 203

randomly-generated parameter vectors in a matrix form, W = 204

[W1, . . . , Wd]T represents the parameter sensitivity weight 205

vector, || · ||1 is the l1-norm and λ is the regularization 206

parameter which is determined using grid search with cross- 207

validation. Note that sensitivity analysis is a one-off work for 208

each fault event. The extracted parameter sensitivity weight 209

vector, W, is passed to the novelty gradient estimator in 210

each iteration whose number is denoted by t. Component 211

II - Parameter Vector Perturbator: In each iteration, to per- 212

form evolution, a perturbator is designed to generate multiple 213

mutated parameter vectors, θ ′t’s, using the identified parame- 214

ter vector in the last iteration, θ t, and random variance vector, 215

εt. θ ′t’s and εt’s are then sent to a performance gradient 216

estimator and a novelty gradient estimator to approximate 217

performance and novelty gradients, respectively. Component 218

III - Performance Gradient Estimator: This estimator achieves 219

the function of exploitation of EDRL. Specifically, using 220

θ ′t’s and εt’s generated by the parameter vector perturbator, 221

the performance gradient estimator determines the direction 222

in which θ t should move to improve expected reward. The 223

performance gradient, �θet
t , is then passed to a parame- 224

ter updater. Component IV - Novelty Gradient Estimator: 225

This component performs exploration by estimating the nov- 226

elty gradient, �θer
t , using the generated θ ′t’s and εt’s, and 227

it also intelligently encourages the parameter identifier to 228

explore unvisited parameter space. �θer
t is then sent to the 229

parameter updater. Component V - Parameter Updater: To 230

balance exploitation and exploration, the parameter updater 231

assigns time-varying dynamic weights to the approximated 232

performance and novelty gradients: 233

�θ t = ωt�θet
t + (1− ωt)�θer

t , (3) 234

where, ωt denotes a dynamic weight. Then, θ t+1 is calcu- 235

lated and added into the parameter vector archive to update 236

the explored parameter space. Component VI - Archive: The 237

archive collects the previously generated parameter vectors 238

which are passed to the novelty gradient estimator for novelty 239

evaluation. Component II to V compose the EDRL algorithm 240

with IE. Since the construction of the parameter vector archive 241

is straightforward, we will focus on elaborating the modules of 242

sensitivity analysis and EDRL with IE in the next two sections. 243

III. PARAMETER SENSITIVITY ANALYSIS 244

PSA examines the sensitivity of dynamic power measure- 245

ments with respect to load model parameters. In previous 246

works, partial derivative of dynamic power to each parame- 247

ter is calculated to conduct sensitivity analysis of induction 248

motor parameters [9]. However, it becomes challenging to 249

directly apply analytical approaches to calculate partial deriva- 250

tives because of the high order and the complicated structure 251
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Fig. 2. The overall structure of the proposed parameter identification
approach for CMPLDWG model.

of mathematical differential equations of the WECC compos-252

ite load model. For example, the three-phase induction motor253

model in CMPLDWG is of 5th order and the DER_A model254

has ten state variables. Such a complex high-order nonlinear255

system can significantly complicate the calculation of partial256

derivatives. To address this challenge, we seek to employ a257

high-dimensional feature selection technique to evaluate the258

dependence of dynamic power on the CMPLDWG parame-259

ters [23]. Specifically, we use a data-driven FWKL instead of260

employing analytical derivatives [9].261

Let θ i ∈ R
d be a randomly-generated parameter vector and262

d be the number of parameters, therefore, the power residual263

corresponding to θ i can be calculated as264

ei = ||f (θ i, V)− Y||2, (4)265

where, V ∈ R
K is a vector of voltage measurements, K denotes266

the total number of measurement points, Y = [PT, QT]T,267

P ∈ R
K and Q ∈ R

K represent the vector of recorded268

active power and reactive measurements, respectively. Also,269

T denotes the transpose. With a large number of generated270

θ i’s, we can obtain n independent and identically distributed271

(i.i.d.) sample and residual pairs:272

{(θ i, ei), i = 1, . . . , n}. (5)273

To perform supervised feature selection, first, we represent274

the original parameter vectors and corresponding residuals in275

a matrix format as276

� = [θ1, . . . , θn] ∈ R
d×n, (6a)277

e = [e1, . . . , en]T ∈ R
n. (6b)278

Then, PSA is formulated as a Lasso optimization problem279

formulated in (2) which works well for linear regression.280

However, the nonlinear dependency in our specific problem281

hinders its application. Therefore, we employ the feature-wise282

nonlinear Lasso to solve our problem and the key idea is to283

apply a nonlinear transformation in a feature-wise manner.284

Specifically, the generated parameter matrix, �, is represented285

in a feature-wise manner:286

� = [
β1, . . . ,βd

]T ∈ R
d×n, (7)287

where, βk = [θk,1, . . . , θk,n]T ∈ R
n is a vector denoting the k- 288

th feature for all samples. To capture the nonlinear dependency 289

of e on θ , dynamic power residual and parameter vector are 290

transformed by a nonlinear function ϕ(·) : R
n → R

p. Then, the 291

Lasso optimization problem given in the objective function (2) 292

in the transformed space is reformulated as 293

min
W∈Rd

1

2
||ϕ(e)−

d∑
k=1

Wkϕ
(
βk

)||22 + λ||W||1. (8) 294

Although the objective function (8) can capture nonlinear 295

dependency, there is no constraint for Wk, k = 1, . . . , d, and 296

the same transformation function ϕ(·) for e and βk limits the 297

flexibility of capturing nonlinearity. To solve this, we seek to 298

employ a revised FWKL to perform feature selection [23], and 299

the revised objective function is formulated as 300

min
W∈Rd

1

2
||U −

d∑
k=1

WkV
(k)||2Frob + λ||W||1, (9a) 301

s.t. W1, . . . , Wd ≥ 0. (9b) 302

where, || · ||Frob denotes the Frobenious norm, U = �U� and 303

V
(k) = �V(k)� are centered Gram matrices, Ui,j = U(ei, ej) 304

and V(k)
i,j = V(θk,i, θk,j) are Gram matrices, U(e, e′) and 305

V(θ , θ ′) are kernel functions, � = In− 1
n 1n1T

n denotes the cen- 306

tering matrix, In represents the n-dimensional identity matrix, 307

and 1n denotes the n-dimensional vector with all ones. For the 308

two kernel functions U(·) and V(·), we employ the Gaussian 309

kernel which is formulated as 310

K
(
x, x′

) = exp

(
−

(
x− x′

)2

2σ 2
x

)
, (10) 311

where, σx is the Gaussian kernel width. 312

In the objective function (9a), the decoupling between U(·) 313

and V(·) provides more flexibility compared with the objective 314

function (8). In addition, the non-negativity constraint in (9b) 315

fits the specific application in our problem, since negative sen- 316

sitivity parameter weights do not have practical interpretability. 317

Intuitively, problem (9) tends to find non-redundant param- 318

eters with significant contributions to power residual, and 319

equivalently, to dynamic power. Also, for two strongly depen- 320

dent features, either of their sensitivity weights tends to be 321

eliminated. The parameter sensitivity weight vector, W, is 322

then integrated into the parameter identification algorithm to 323

accelerates the learning process, which will be presented in 324

Section IV. 325

IV. PARAMETER IDENTIFICATION 326

USING THE EDRL WITH IE 327

As stated in previous sections, the severe nonlinearity, high 328

nonconvexity and the large number of parameters bring sig- 329

nificant challenges to perform parameter identification for 330

the CMPLDWG model when using existing approaches. This 331

motivates us to tackle this challenge utilizing the EDRL with 332

IE, which is recently demonstrated to be able to perform 333

well on high-dimensional optimization tasks [19], [24]. The 334

basic idea of performing optimization tasks using evolution 335
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TABLE II
NUMERICAL INTERVAL OF LOAD PARAMETERS

strategy is: During each iteration, a population of parameter336

vectors is perturbed based on one selected parameter vector337

among a meta-population, and then, these mutated vectors338

are recombined to update the selected ancestor vector. In this339

paper, the EDRL is also hybridized with IE to improve explo-340

ration. Compared with traditional random and blind search341

strategy, the IE module achieves efficient and directed explo-342

ration, which can efficiently assist EDRL to escape from local343

optima. The detailed steps are described as follows:344

Step I - Initialization: The first step is to initialize M345

random parameter vectors which will be updated in each346

iteration. Note that only one vector is probabilistically selected347

to update in each iteration. The initialized M vectors are348

denoted as S = {θ1
1, . . . , θ

M
1 }, where t denotes the number349

of iteration. The objective of constructing a meta-population350

is to enhance additional diversity. M and the tuning param-351

eters in the remaining sections are determined using grid352

search with cross-validation which is a general hyperparameter353

optimization technique.354

Step II - Sampling: In each iteration t, we probabilis-355

tically determine which parameter vector among the M356

meta-population to be updated based on parameter vectors’357

novelties. The novelty is evaluated in terms of Euclidean dis-358

tances from a vector to the vectors in the newest archive.359

Specifically, first, the originality of each parameter vector in360

S, θk
t , conditioned on current parameter vector archive, A, is361

evaluated as362

Ok
t = o

(
θk

t , W, A
)
= 1

|C|
∑
j∈C

||W. ∗
(
θk

t − θ j

)
||2, (11)363

where, 1 ≤ k ≤ M, C = kNN(θk
t , A) = {θ1, . . . , θN′ },364

kNN denotes k-nearest neighbors algorithm, and .* denotes the365

element-wise multiplication operation. The purpose of kNN366

is to select representative parameter vectors in A for evalu- 367

ating the novelty of θk
t . Intuitively, a small k can introduce 368

higher distance variance, while a large k means higher com- 369

putational cost. In our paper, we have conducted numerical 370

experiments to determine the optimal k value which is suffi- 371

cient for evaluating the novelty of a newly explored parameter 372

vector while avoiding high computational time. The intro- 373

duction of W, which is obtained from PSA, aims to revise 374

Euclidean distances between vectors. This revision is based 375

on the consideration that parameters with different sensitiv- 376

ity weights have different contributions to vector novelty. 377

Then, for each parameter vector in S, the novelty score which 378

determines the probability of being selected to be updated is 379

calculated as 380

Pk
t =

Ok
t∑M

j=1 Oj
t

. (12) 381

Pk
t tells us that selecting the parameter vectors with high 382

novelty scores can achieve directed or guided exploration. 383

Step III - Variation: In this step, variation is performed 384

on the selected parameter vector in Step II, θk
t , to generate 385

multiple workers. The function of these workers is explained 386

as follows: First, EDRL produces parameter vectors in the 387

neighborhood of θk
t , and then θk

t is updated by following the 388

direction determined by the population of the produced param- 389

eter vector workers. To obtain N workers, Gaussian noise is 390

applied to θk
t as follows 391

θ
i,k
t = θk

t + σεi
t i = 1, . . . , N, (13) 392

where, σ is a fixed noise standard deviation, εi
t ∼ N (0, I) and 393

I is an N-dimensional identity matrix. 394

Step IV - Gradient Estimation: In this step, the performance 395

and novelty gradients determined by the meta-population of 396
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generated vectors in Step III are approximated. For each397

mutated parameter vector, θ
i,k
t , its fitness can be evaluated398

via calculating the difference between the estimated dynamic399

power and the real dynamic power. First, the power residual400

caused by the mismatch between estimated parameters and401

real parameters, ei,k
t , is calculated by substituting θ

i,k
t into (4).402

Then, the reward is obtained by inversing ei,k
t :403

Ri,k
t = r

(
θ

i,k
t , V, Y

)
= 1

ei,k
t

i = 1, . . . , N. (14)404

Equation (14) indicates that as the residual decreases the405

reward increases. Thus, the performance gradient of θk
t is406

approximated via taking a sum of the sampled parameter407

vector perturbations weighted by the reward:408

�θ
et,k
t ≈ α

1

Nσ

N∑
i=1

Ri,k
t εi

t, (15)409

where, α is a learning rate. In (15), �θ
et,k
t indicates a stochas-410

tic reward experienced over a full iteration of multiple worker411

interactions, which means the performance gradient relies on412

multiple workers and this can effectively avoid the high vari-413

ance brought by a certain single mutated vector. Note that the414

calculated reward, Ri,k
t , is normalized through 1 to N before415

performing the gradient approximation in (15).416

For the novelty gradient, first, the novelty with respect to417

each perturbed vector, Oi,k
t , is calculated using (11). Then, the418

novelty gradient of θk
t is approximated as419

�θ
er,k
t ≈ α

1

Nσ

N∑
i=1

Oi,k
t εi

t. (16)420

Similar with Ri,k
t , Oi,k

t is normalized before computing the nov-421

elty gradient. Intuitively, �θ
er,k
t indicates the direction which422

the parameter identifier should follow to increase the average423

originality of parameter vector distribution.424

Step V - Gradient Combination: Using the computed425

performance and novelty gradients with respect to θk
t , we can426

balance exploitation and exploration by introducing a time-427

varying dynamic weight, ωt. Thus, the overall gradient based428

on which θk
t should be updated is computed as follows:429

�θk
t = ωt�θ

et,k
t + (1− ωt)�θ

er,k
t . (17)430

Intuitively, the algorithm follows the approximated gradient431

in parameter-space towards directions that both exhibit novel432

behaviors and achieve high rewards. A large ωt tends to433

encourage θk
t to follow the performance gradient and restrain434

it to follow the novelty gradient. In comparison, a small ωt435

tends to aggressively guide θk
t to mutate to unseen parameter436

space and hold back exploitation.437

Step VI - Updating: After obtaining �θk
t , the updating of438

θk
t is expressed as follows:439

θk
t+1 = θk

t +�θk
t . (18)440

θk
t+1 is then added into the archive A for updating the pre-441

existing vector landscape. As more learned parameter vectors442

Fig. 3. Detailed structure of the EDRL with an intelligent exploration
mechanism.

Algorithm 1 Updating ωt

if Rk
t+1 > Rt

b then
if ωt �= 0 then

ωt+1 ← min(1, ωt +�ω); Ct+1
b ← 0;

Rt+1
b ← Rk

t+1;
else

ωt+1 ← 1; Ct+1
b ← 0; Rt+1

b ← Rk
t+1;

end if
else

Ct+1
b ← Ct

b + 1;
end if
if Ct

b > Cset then
ωt+1 ← max(0, ωt −�ω); Ct+1

b ← 0;
end if

are saved into A, the base for evaluating future parameter vec- 443

tors’ novelty changes and stimulates the algorithm to discover 444

unexplored parameter space. 445
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In addition to updating θk
t and A in each iteration, the446

dynamic weight, ωt, should also be updated for avoiding local447

optima. To do this, first, the latest reward, Rk
t+1, which is448

brought by θk
t+1, is calculated. We also define a “drag hand”,449

Rt
b, to record the best reward among historical rewards. Then,450

the dynamic weight in (17), ωt, is updated using Algorithm 1,451

where, �ω denotes the weight updating rate, and Ct
b counts452

the number of rewards that are less than Rt
b in succession.453

Cset is a threshold which determines the frequency of updat-454

ing ωt when the parameter vector is stuck in a local optimum.455

Also, Ct
b and Rt

b are updated in each iteration, as presented456

in Algorithm 1. Note that Step II to VI constitute the entire457

operation in each iteration t.458

V. CASE STUDY459

In this section, the proposed parameter sensitivity anal-460

ysis and parameter identification algorithms are validated461

using numerical experiments. Before performing verification,462

we firstly screen out the CMPLDWG parameters that are463

necessary to be identified. This screening is based on the464

consideration that CMPLDWG contains multiple types of465

parameters, of which some parameters can be determined by466

field measurements and engineering judgement. Specifically,467

the transformer impedance, substation shunt capacitive sus-468

ceptance, feeder impedance and capacitive susceptance can469

be accurately calculated using transformer, capacitor and470

feeder parameters [25], [26]. For the stalling and restarting471

of induction motors, engineering judgement can be lever-472

aged to estimate the settings [15], [27]. This is based on473

the observation that the stalling or restarting of a large num-474

ber of induction motors can cause abrupt current, voltage475

and power changes [28], [29], which can be further cor-476

roborated in [1]. Also, the tripping of a large number of477

induction motors can cause sudden current decrease, power478

decrease and voltage increase. Excluding the parameters which479

can be accurately calculated using the electric power grid480

modeling technique can significantly reduce the complexity481

of parameter identification process. On the other hand, indis-482

tinguishably identifying all CMPLDWG parameters can pose483

an unnecessary computational burden on the proposed param-484

eter identification algorithm. In our problem, 61 CMPLDWG485

parameters are screened out for parameter identification, as486

shown in Table III, and the remaining parameters are set with487

default values.488

In this case study, the Power System Simulator for489

Engineering (PSS/E) and the ACTIVSg500 test case are490

employed to generate voltage and power measurements491

for parameter identification [30]. The fault-induced voltage-492

recovery curves are shown in Fig. 4. MATLAB is used to493

execute the processes of parameter sensitivity analysis and494

parameter identification. The case study is conducted on a495

standard PC with an Intel Xeon CPU running at 3.70 GHz496

and with 32.0 GB of RAM.497

A. Parameter Sensitivity Identification498

To fully extract the sensitivity weights hidden in the499

randomly-generated parameter samples and corresponding500

Fig. 4. Fault-induced voltage-recovery curves at the load bus.

power residuals, first, we have created a comprehensive library 501

containing 40,000 parameter vector and residual pairs which 502

are divided into two sections, training dataset and test dataset, 503

for cross-validation. Note that the dataset size is determined 504

based on our numerical experiment result that once the dataset 505

size exceeds 16,000, the FWKL gives us stable extracted 506

parameter weights for different sets of the randomly selected 507

parameter vector and residual pairs. Generating each pair of 508

the parameter vector and the corresponding residual takes 509

about 0.3 seconds. Then, the tuning parameters of FWKL are 510

determined using grid search with cross-validation based on 511

the training and test datasets [31]. Finally, the FWKL algo- 512

rithm is applied to the entire dataset to conduct parameter 513

sensitivity analysis. Based on our sensitivity analysis result, 514

the load fraction parameters, the synchronous and subtransient 515

reactances of three-phase induction motors, and the exponen- 516

tial load torque coefficients of three-phase induction motors 517

have a significant effect on the load dynamics in the fault 518

event specified in Fig. 4, as shown in Fig. 5. The remaining 519

parameters have small or no effect on the dynamic procedure. 520

It should be noted that the values of parameter sensitivity 521

weights change according to specific dynamic events since 522

the weight vector in (9) partially depends on the voltage and 523

power measurements, which are determined by specific fault 524

cases. Therefore, PSA should be conducted on a case-by-case 525

basis to obtain more accurate parameter sensitivity weights for 526

specific fault events. 527

B. Parameter Identification 528

The extracted parameter sensitivity weights are integrated 529

into EDRL algorithm with IE to perform parameter identifi- 530

cation using given voltage and power measurements. There 531

are only a couple of published technical reports involved with 532
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TABLE III
REAL AND IDENTIFIED CMPLDWG PARAMETERS

Fig. 5. Sensitivity weights of WECC composite load model parameters.

WECC model parameter settings. In this paper, the numerical533

intervals of parameters for randomly selecting initial values are534

determined based on [32], [33], along with our experience on535

deriving detailed mathematical representation of WECC com-536

posite load model [22]. The numerical intervals are presented537

in Table II, where, LB denotes lower bound and UB denotes538

upper bound. Table III shows the real and corresponding iden-539

tified parameter values of CMPLDWG. As can be observed,540

the EDRL with IE can give us satisfying identified param-541

eters. The identification accuracy is further corroborated by542

Fig. 6, in which, the estimated active and reactive power curves543

can closely fit the actual curves. While our approach is not544

designed for online parameter identification, it is of impor-545

tance to examine the computational time. In our case studies,546

each iteration takes about 2 seconds.547

It is also of significance to examine the collected best548

reward Rt
b and dynamic weight ωt in each iteration, which549

are shown in Fig. 7 and 8, respectively. In Fig. 7, the loss550

corresponding to the collected best reward, et
b, is also shown551

for examining parameter identification performance. It can be552

seen that during Iteration 1 to 1226, the proposed parameter553

identification approach simultaneously performs exploitation 554

and exploration, and the best reward increases continuously, 555

as shown in Fig. 7. The corresponding learning process in 556

this iteration range can be confirmed in Fig. 8, in which 557

ωt is firstly initialized as 0, once it stays invariant for 10 558

continuous iterations (Cset), it is decreased in a step size of 559

0.05 (�ω) to force the parameter identifier to follow more 560

closely with novelty gradient. Once an unseen better reward 561

occurs, ωt gradually increases to 1 to encourage the identi- 562

fier to act following the approximated performance gradient. 563

During Iteration 1 to 1226, although ωt alternatively decreases 564

and increases, it does not reach 0. From Iteration 1227 to 1717, 565

the parameter identifier is stuck in a local optimum and the 566

best reward stays invariant, as shown in Fig. 7. During this 567

iteration range, first, ωt is designed to gradually decrease to 568

0, which means the identifier is stimulated to explore more 569

aggressively in the unseen parameter space, as presented in 570

Section IV. This is verified by the variation of dynamic weight 571

ωt, as shown in Fig. 8, where, from Iteration 1227 to 1717, ωt 572

decreases to 0 and keep unchanged, which means the identi- 573

fier completely inhibits the performance gradient. At Iteration 574
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Fig. 6. The real power curves and the estimated power curves using the
identified parameters.

Fig. 7. The best reward and corresponding loss.

1718, the identifier discovers a parameter vector which can575

give higher reward than any of the previous best rewards. As576

expected, ωt immediately jumps to 1 to avoid possible sliding577

out from the newly explored optimum with higher reward, due578

to novelty exploration inertia. From Iteration 1718 to 2342,579

the identifier simultaneously performs exploitation and explo-580

ration as shown in Fig. 7, accordingly, ωt varies in the range581

of a non-zero value to 1, as shown in Fig. 8. This is simi-582

lar to the process which occurs in the range of Iteration 1 to583

1226. Similar with the range of Iteration 1227 to 1717, in the584

range of Iteration 2343 to 3324, ωt decreases to 0 and Rt
b stays585

invariant, as shown in Fig. 8 and 7, respectively. At Iteration586

3325, ωt jumps to 1 to force the identifier immediately per-587

form exploitation, which is similar at Iteration 1718, as shown588

in Fig. 8. Also, the best reward starts to increase at Iteration589

3325, as shown in Fig. 7. The aforementioned cyclic process590

continues to pursue better rewards as the number of iterations591

increases, as shown in Fig. 7 and 8.592

It is interesting to examine the efficaciousness of integrating593

sensitivity weights into the IE module. To do this, we perform594

additional CMPLDWG parameter identification using EDRL595

with IE without revising parameter vector novelty scores.596

Fig. 8. Variation of the time-varying dynamic weight.

Fig. 9. The introduction of parameter sensitivity weights into EDRL with
IE improves learning performance.

Fig. 9 shows two best reward collection curves corresponding 597

to EDRL with IE by integrating W and without integrating W, 598

respectively. As can be seen, the introduction of W acceler- 599

ates the exploitation and exploration in reaching the same best 600

reward. 601

It is also significant to compare the proposed parame- 602

ter identification approach with the presented algorithms in 603

previous works. First, we focus on comparing our algorithm 604

with the proposed parameter identification approach in [1], 605

which also aims to identify a large number of parameters. 606

The comparison shows that our approach can achieve better 607

parameter identification accuracy and does not rely on a priori 608

knowledge. And also, our method is easier to implement due to 609

the utilization of mathematical representation of CMPLDWG 610

model. In addition, the parameter identification accuracy using 611

the proposed approach in [1] significantly relies on a priori 612

knowledge about parameter setting. We have also compared 613

the performance of our proposed approach with that of two 614

other state-of-the-art optimization algorithms, Salp Swarm 615

algorithm (SSA) and deep Q-networks (DQN). SSA is a newly 616

proposed metaheuristic optimizer inspired by the process of 617

looking for a food source by salps. SSA has demonstrated 618

satisfying performance compared with other metaheuristic 619

algorithms [34]. DQN is a cutting-edge reinforcement learning 620

technique designed for sequential decision-making tasks [35]. 621

The performance of the three algorithms (EDRL, SSA and 622

DQN) is shown in Fig. 10. It can be seen that our proposed 623

approach outperforms the other two methods in terms of the 624

average fitness error, et
b. In comparison, SSA shows the fastest 625

convergence rate. DQN takes the longest time to converge and 626

shows the largest average fitness error. It is also important to 627
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Fig. 10. Performance comparison of EDRL, SSA and DQN.

point out that DQN needs a significantly longer time to train628

a stable actor with satisfying identification performance.629

VI. CONCLUSION630

This paper presents a parameter identification approach for631

WECC composite load model. The proposed method employs632

a data-driven nonlinear feature selection technique to perform633

parameter sensitivity analysis, which avoids solving highly634

complex analytical derivatives caused by the high order and635

nonlinearity of differential equations of WECC composite load636

model. After that, the proposed method utilizes a cutting-637

edge approach inspired by evolutionary reinforcement learning638

technique, which is hybridized with an intelligent exploration639

mechanism to perform parameter identification. The parameter640

sensitivity weights are innovatively embedded in the reinforce-641

ment learning process to achieve efficient exploration. The642

numerical experiments demonstrate that the proposed approach643

can achieve promising accuracy. It is also shown that the644

proposed identifier can escape from local optima through the645

assistance of the intelligent exploration mechanism when stuck646

in local optima. Finally, it is verified that the integration of647

sensitivity weights into the reinforcement learning process648

accelerates the learning rate.649

While our proposed approach can perform parameter iden-650

tification of WECC composite load model with satisfying651

accuracy, the computational cost hinders its online appli-652

cation. Also, the model complexity stands in the way of653

widely applying WECC composite load model in the electric654

power industry. Considering this, one prospect for research655

on CMPLDWG is to simplify the model or develop a surro-656

gate model to significantly reduce the computation cost and/or657

model complexity, while keeping the primary characteristics658

of WECC model.659
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