IOWA STATE UNIVERSITY

ECpE Department

EE 303 Energy Systems and Power Electronics

Energy Overview

GRA: Prashant Tiwari Advisor: Dr. Zhaoyu Wang 1113 Coover Hall, Ames, IA wzy@iastate.edu

Energy Related Statistics

IOWA STATE UNIVERSITY

Generation

Transmission

Subtransmission

Distribution

IOWA STATE UNIVERSITY

Electricity Generation by Fuel – 1990-2040

Thousands of terawatt hours

Image Source: www.exxonmobil.com

IOWA STATE UNIVERSITY

Electricity Demand by Fuel and By Sector – 2000-2040

Image Source: www.exxonmobil.com

5

IOWA STATE UNIVERSITY

Electricity Use by Region

Image Source: www.exxonmobil.com

IOWA STATE UNIVERSITY

CO₂Emission Plateau Energy-Related CO₂ Emissions by Region Billion Tonnes

Image Source: www.exxonmobil.com

7

IOWA STATE UNIVERSITY

Earth Average Temperature Increase – 2011-2099

Three Scenarios:

Image Source: www.epa.gov

IOWA STATE UNIVERSITY

Renewable Energies – Wind and Solar

EU Installed Power Per Year in MW and RES Share (%)

Image Source: www.ewea.org

IOWA STATE UNIVERSITY

Renewable Energies – Wind and Solar

Fixed Voltage at Fixed Frequency

IOWA STATE UNIVERSITY

ECpE Department

10

Renewable Energies – Wind and Solar

Fixed Voltage at Fixed Frequency

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

ECpE Department

15

IOWA STATE UNIVERSITY

ECpE Department

16

17

IOWA STATE UNIVERSITY

Wind Turbine

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

ECpE Department

20

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

24

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

26

IOWA STATE UNIVERSITY

27

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

Here is a quick quiz on several energy-related issues:

<u>ht t p: // cor por at e. exxonmobi l. com/ en/ company/ mul t i medi a/ ener gy-l i ves-</u> <u>her e/ qui z</u>

IOWA STATE UNIVERSITY

Main components of Power system

31

IOWA STATE UNIVERSITY

Categorization of transmission lines

IOWA STATE UNIVERSITY

Power plants: Nuclear, Hydro and Thermal

(c)

IOWA STATE UNIVERSITY

Main components of Power System

Transmission line tower.

34

IOWA STATE UNIVERSITY

Insulators

35

IOWA STATE UNIVERSITY

Distribution line tower

IOWA STATE UNIVERSITY

Bundled Conductor

37

IOWA STATE UNIVERSITY

Bundled Conductor with four sub-conductors

IOWA STATE UNIVERSITY

Power System Basics

Notation: Power

- Power: Instantaneous consumption of energy
- Power Units
 - Watts = voltage x current for dc (W)
 - kW 1 x 103 Watt
 - $MW 1 \ x \ 106 \ Watt$
 - GW 1 x 109 Watt
- Installed U.S. generation capacity is about 1,100 GW (about 3.5 kW per person)

IOWA STATE UNIVERSITY

Notation - Energy

- Energy: Integration of power over time; energy is what people really want from a power system
- Energy Units

Joule = 1 Watt-second (J) kWh = kilowatt hour (3.6 x 106 J) 1 Watt-hour = 3.4121 BTU

• U.S. annual electric energy consumption is about 4,000 billion kWh (about 13,000 kWh per person, which means on average we each use 1.5 kW of power continuously)

Electric Power System

Usually Divided into:

- Generation: Source of power, ideally with a specified voltage and frequency.
- **Transmission:** Transmits power; ideally as a perfect conductor.
- Loads: Consumes power; ideally with a constant resistive value.

IOWA STATE UNIVERSITY

Electric Power System

Complications:

- No ideal voltage sources exist,
- Loads are seldom constant,
- Transmission system has resistance, inductance, capacitance and flow limitations,
- Simple system has no redundancy so power system will not work if any component fails.

IOWA STATE UNIVERSITY

US Electric Power Generation

IOWA STATE UNIVERSITY

Energy Flow

1 QUAD = 10₁₅ BTU

IOWA STATE UNIVERSITY

Electric Power Generation

45

IOWA STATE UNIVERSITY

Electric Power Transmission

IOWA STATE UNIVERSITY

Electric Power Distribution

47

IOWA STATE UNIVERSITY

Goals of Power System Operation

- Supply load (users) with electricity at:
 - \checkmark Specified voltage (120 ac volts common for residential),
 - ✓ Specified frequency,
 - \checkmark With minimum cost (usually).

Major Impediments

• Load is constantly changing.

- Power system is subject to disturbances, such as lightning strikes.
- Engineering tradeoffs between reliability and cost.

IOWA STATE UNIVERSITY

Brief History of Electric Power

- Early 1880's –Edison introduced Pearl Street dc system in Manhattan supplying 59 customers
- 1884 Sprague produces practical dc motor
- 1885 –Invention of transformer
- Mid 1880's Westinghouse/Tesla introduce rival ac system
- Late 1880's Tesla invents ac induction motor
- 1893 –First 3 phase transmission line operating at 2.3 kV
- 1896 –ac lines deliver electricity from hydro generation at Niagara Falls to Buffalo, 20 miles away
- Early 1900's –Private utilities supply all customers in area (city); recognized as a natural monopoly; states step in to begin regulation.

IOWA STATE UNIVERSITY

Contd...

- By 1920's –Large interstate holding companies control most electricity systems.
- 1935 –Congress passes Public Utility Holding Company Act (PUHCA) to establish national regulation, breaking up large interstate utilities
- 1935/6 Rural Electrification Act brought electricity to rural areas
- 1930's –Electric utilities established as vertical monopolies

1930's: Vertical Monopolies

- Within a particular geographic market, the electric utility had an exclusive franchise.
- In return for this exclusive franchise, the utility had the obligation to serve all existing and future customers at rates determined jointly by utility and regulators.
- It was a "cost plus" business.

IOWA STATE UNIVERSITY

Contd, 1930's: Vertical Monopolies...

- Within its service territory each utility is the only game in town.
- Neighboring utilities functioned more as colleagues than competitors.
- Utilities gradually interconnected their systems so by 1970 transmission lines crisscrossed North America, with voltages up to 765 kV.
- Economies of scale keep resulting in decreasing rates, so everyone was happy.

Contd, History – 1970's...

- 1970's brought inflation, increased fossil-fuel prices, calls for conservation and growing environmental concerns.
- Increasing rates replaced decreasing ones.
- As a result, U.S. Congress passed Public Utilities Regulator Policies Act (PURPA) in 1978, which mandated utilities must purchase power from independent generators located in their service territory.
- PURPA introduced some competition.

Contd, History – 1990's...

- Major opening of industry to competition occurred as a result of Federal Power Act of 1992
- This act mandated that utilities provide "nondiscriminatory" access to the high voltage transmission
- Goal was to set up true competition in generation markets
- Result over the last few years has been dramatic restructuring of electric utility industry

Utility Restructuring

- Driven by significant regional variations in electric rates.
- Goal of competition is to reduce rates through the introduction of competition.
- Eventual goal is to allow consumers to choose their electricity supplier.

State Variation in Electric Rates

ECpE Department

Industry Forces Today

IOWA STATE UNIVERSITY

Thank You!

IOWA STATE UNIVERSITY

ECpE Department

59