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• Outages can lead to a sharp decline in grid resilience with significant socio-economic losses, which cost an average
of about $18 billion to $33 billion per year in the U.S.

• Outage detection and location is the first task after service disruptions.

• Most utilities still rely on customer reports to track outages, which can cause waste of up to 80% of the invaluable
restoration time. Hence, effective outage detection and location methods are critical to reduce outage duration.

In recent years, customers experienced longer outages. 
In 2018, each customer lost power for around 5.8 hours.

1.9 million customers in Midwest were affected by 
1.4 million outages between August 10 and 13.

Motivation of Data-Driven Outage Location

Source: https://www.eia.gov/   https://poweroutage.us 
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Outage Data Sources
• While SCADA reports main feeder outages, there are multiple data sources that report lateral and grid-edge outages:

Data Source Pros Cons

SM last gasp signal High accuracy, fast Limited sensor coverage 
communication failures

Social media data Generally available Misreports, unreliable

Customer trouble call Generally available Low report rate, misreports

Weather data Generally available Lack of detailed location information

• Combing SMs with conventional outage data sources is an ideal solution for outage detection, but it is difficult to 
achieve because:

– Heterogeneous characteristics: accuracy levels and reporting rates 

– Partially observable grids with limited sensors

– May provide conflicting or mis-information 3



• This combination means integrating evidences from different data sources as well as different customers:

 D and C represent the states of primary network branches and the connections of customers
 E is the multi-source evidence set (i.e., trouble call, last gasp signal)
 Uppercase: random and evidence variables; lowercase: realization of variables

• Existing methods to solve Eq. 1:

• Directly solving Eq. 1 using brute-force search over all possible combinations of branch/customer state ([1],[2])

 Limitation: computationally infeasible for large systems

• Assuming full independency among all data sources ([3]-[5])

 Limitation: outage data sources and branches/customers are interdependent

(1)

Combining Multiple Data Sources 
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𝑃𝑃𝑫𝑫,𝑪𝑪|𝐸𝐸(𝒅𝒅, 𝒄𝒄|𝒆𝒆)



Outage Location via Probabilistic Graph Learning
Leveraged the conditional independence inherent in distribution grids (rather than the assumed full independence in 
pooling methods) to encode the distribution network and its data into probabilistic graphs, i.e., Bayesian networks 
(BN) [6]

Node: states of branches/customers and outage data sources. Edge: probabilistic influence of one node on 
another. 

For example, if the utility knows that a customer is in outage, probabilities of receiving SM last gasp signals 
and trouble calls from that customer will be uncorrelated. 

Advantages: 

 Accurately decompose and efficiently compute Eq. 1

 Address the problem of insufficient evidences, i.e., low SM coverage or low customer report rates 

 Adaptable to newly added data sources

Single-source 
methods

Pooling models Brute-force search Proposed probabilistic graph

𝑃𝑃𝐷𝐷,𝐶𝐶|𝐸𝐸 𝑑𝑑, 𝑐𝑐 𝑒𝑒1 ∏𝑃𝑃𝐷𝐷𝑖𝑖|𝐸𝐸 𝑑𝑑𝑖𝑖 𝑒𝑒 ∏𝑃𝑃𝐶𝐶𝑗𝑗|𝐸𝐸 𝑐𝑐𝑗𝑗 𝑒𝑒 𝑃𝑃𝐷𝐷,𝐶𝐶,𝐸𝐸({𝑑𝑑𝑖𝑖}𝑖𝑖=1𝑛𝑛 , {𝑐𝑐𝑗𝑗}𝑗𝑗=1𝑚𝑚 , 𝑒𝑒)
∏ 𝑃𝑃𝐷𝐷𝑖𝑖|𝐷𝐷𝑖𝑖−1 (𝑑𝑑𝑖𝑖|𝑑𝑑𝑖𝑖−1) ∏ 𝑃𝑃𝐶𝐶𝑘𝑘|𝐷𝐷𝑖𝑖(𝑐𝑐𝑘𝑘|𝑑𝑑𝑖𝑖) ∏ 𝑃𝑃𝐸𝐸𝑘𝑘,𝑧𝑧|𝐶𝐶𝑘𝑘

(𝑒𝑒𝑘𝑘,𝑧𝑧|𝑐𝑐𝑘𝑘)

∑𝑖𝑖 ∑𝑘𝑘{∏ 𝑃𝑃𝐷𝐷𝑖𝑖|𝐷𝐷𝑖𝑖−1 𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖−1 ∏ 𝑃𝑃𝐶𝐶𝑘𝑘|𝐷𝐷𝑖𝑖 𝑐𝑐𝑘𝑘 𝑑𝑑𝑖𝑖 ∏ 𝑃𝑃𝐸𝐸𝑘𝑘,𝑧𝑧|𝐶𝐶𝑘𝑘
𝑒𝑒𝑘𝑘,𝑧𝑧 𝑐𝑐𝑘𝑘 }

(2)
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Encoding Distribution Grids and Data into 
Probabilistic Graphs

Following these conditional independencies, customers can be 
modeled as parent nodes for outage data sources in the graph. 
Putting together these features, a simple directed graph for a radial 
system can be constructed, as shown in the right figure. 

𝐷𝐷𝑖𝑖 ,𝐶𝐶𝑖𝑖
𝑗𝑗: states of branches/customers

 𝐸𝐸𝑖𝑖𝑤𝑤,𝐸𝐸𝑖𝑖𝑣𝑣,𝐸𝐸𝑖𝑖𝑏𝑏,𝐸𝐸𝑖𝑖,𝑗𝑗𝑚𝑚,𝐸𝐸𝑖𝑖,𝑗𝑗ℎ ,Δ𝑇𝑇: outage data sources

Parent variable (variable at the end of the arrow) : the immediate 
causal source of influence for its child variables (variables pointed 
by the arrow). 

If the values of the parent variables are known, then the child 
variable becomes conditionally independent of variables that do 
not directly influence it.
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Salient Features of this Graphical Method:

It seamlessly integrates heterogeneous data sources. 
Different accuracy levels and reporting rates of various sources 
can be captured by conditional probabilities.

It is scalable and adaptive, as new data sources can be 
directly connected to their parent nodes in the graph without 
the need to re-learn the structure from scratch. The graph 
structure can be easily changed if there is a change in network 
topology.  

It is robust with respect to misreports and inconsistencies in 
outage evidences, as uncertainty of each data source is 
explicitly modeled using graph parameters. 
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Offline Parameter Learning and Online 
Inference in Graphical Models

Each edge in the constructed graph has a parameter that 
quantifies the probabilistic relationship between its parent and 
child nodes. A parameter is the conditional probability of effect
𝐴𝐴, given the value of cause 𝐵𝐵, represented as 𝑃𝑃𝐴𝐴|𝐵𝐵(𝑎𝑎|𝑏𝑏). 

(1)  𝑷𝑷𝑪𝑪𝒋𝒋𝒊𝒊|𝑫𝑫𝒊𝒊 𝒄𝒄𝒋𝒋𝒊𝒊 𝒅𝒅𝒊𝒊 : the chance of de-energization of 

customer if the state of its parent branch is known

 If parent branch is outaged, then customer is certainly 
outaged.

 If the branch is energized, the customer could still be 
outaged as a result of the customer's own failures, regardless 
of the states of the neighbor customers.

 The parameter is learned empirically from historic data.
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(2) 𝑷𝑷𝑫𝑫𝒊𝒊|𝑫𝑫𝒊𝒊−𝟏𝟏,𝑬𝑬𝒊𝒊
𝒘𝒘,𝑬𝑬𝒊𝒊

𝒗𝒗,𝑬𝑬𝒊𝒊
𝒃𝒃 𝒅𝒅𝒊𝒊 𝒅𝒅𝒊𝒊−𝟏𝟏,𝒆𝒆𝒊𝒊𝒘𝒘, 𝒆𝒆𝒊𝒊𝒗𝒗, 𝒆𝒆𝒊𝒊𝒃𝒃 : the chance of 

de-energization for a child branch if the state of its parent 
branch is known

 If the feeder is interrupted at any arbitrary node before node i, 
we can automatically conclude that 𝐷𝐷𝑖𝑖= 1, regardless of the 
values of the other variables.

 If the parent branch is energized, the child branch may still be de-
energized due to the branch's own failure (i.e., 𝑃𝑃𝑖𝑖

𝑓𝑓).

 To deal with data scarcity,  a fragility model is utilized to 
estimate 𝑃𝑃𝑖𝑖

𝑓𝑓 based on wind speed 𝒆𝒆𝒊𝒊𝒘𝒘, vegetation information 𝒆𝒆𝒊𝒊𝒗𝒗, 
and grid parameters 𝒆𝒆𝒊𝒊𝒃𝒃 [7].

 Fragility mode: a series model with the fragility analysis of each 
pole and conductor within the individual branch.
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(3) 𝑷𝑷𝑬𝑬𝒊𝒊,𝒋𝒋𝒉𝒉 |𝑪𝑪𝒊𝒊
𝒋𝒋,𝚫𝚫𝑻𝑻 𝒆𝒆𝒊𝒊,𝒋𝒋𝒉𝒉 𝒄𝒄𝒊𝒊

𝒋𝒋,𝚫𝚫𝒕𝒕 : the probability of receiving human-

based evidence (i.e., customer call and social media) if the state of the 
corresponding customer is known

 Δ𝑇𝑇: waiting time of outage location inference (i.e., 10 minutes).

 When Δ𝑇𝑇 increases, utilities can receive more human-based 
evidence.

 This CDF is formulated using an exponential distribution. The 
parameter is learned empirically from historic data. 

(4) 𝑷𝑷𝑬𝑬𝒊𝒊,𝒋𝒋𝒎𝒎|𝑪𝑪𝒊𝒊
𝒋𝒋 𝒆𝒆𝒊𝒊,𝒋𝒋𝒎𝒎 𝒄𝒄𝒊𝒊

𝒋𝒋 : the probability of receiving meter-evidence 

(i.e., last gasp signal) if the state of the corresponding customer is 
known, which depends system observability and SM accuracy levels. 

 Delivered instantaneously.

 The parameter is learned empirically from historic data. 
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• In general, Eq. 1 can be directly solved by applying chain rule to graph parameters, as follows: 

𝑃𝑃𝑫𝑫,𝑪𝑪|𝑬𝑬 𝒅𝒅, 𝒄𝒄 𝒆𝒆

=
∏𝑃𝑃𝑫𝑫𝒊𝒊|𝑫𝑫𝒊𝒊−𝟏𝟏,𝑬𝑬𝒊𝒊

𝒘𝒘,𝑬𝑬𝒊𝒊
𝒗𝒗,𝑬𝑬𝒊𝒊

𝒃𝒃 𝒅𝒅𝒊𝒊 𝒅𝒅𝒊𝒊−𝟏𝟏,𝒆𝒆𝒊𝒊𝒘𝒘, 𝒆𝒆𝒊𝒊𝒗𝒗, 𝒆𝒆𝒊𝒊𝒃𝒃 ∏𝑃𝑃𝑪𝑪𝒋𝒋𝒊𝒊|𝑫𝑫𝒊𝒊 𝒄𝒄𝒋𝒋𝒊𝒊 𝒅𝒅𝒊𝒊 ∏𝑃𝑃𝑬𝑬𝒊𝒊,𝒋𝒋𝒉𝒉 |𝑪𝑪𝒊𝒊
𝒋𝒋,𝚫𝚫𝑻𝑻 𝒆𝒆𝒊𝒊,𝒋𝒋𝒉𝒉 𝒄𝒄𝒊𝒊

𝒋𝒋,𝚫𝚫𝒕𝒕 ∏𝑃𝑃𝑬𝑬𝒊𝒊,𝒋𝒋𝒎𝒎|𝑪𝑪𝒊𝒊
𝒋𝒋 𝒆𝒆𝒊𝒊,𝒋𝒋𝒎𝒎 𝒄𝒄𝒊𝒊

𝒋𝒋

∑𝑖𝑖 ∑𝑘𝑘{∏𝑃𝑃𝑫𝑫𝒊𝒊|𝑫𝑫𝒊𝒊−𝟏𝟏,𝑬𝑬𝒊𝒊
𝒘𝒘,𝑬𝑬𝒊𝒊

𝒗𝒗,𝑬𝑬𝒊𝒊
𝒃𝒃 𝒅𝒅𝒊𝒊 𝒅𝒅𝒊𝒊−𝟏𝟏,𝒆𝒆𝒊𝒊𝒘𝒘, 𝒆𝒆𝒊𝒊𝒗𝒗, 𝒆𝒆𝒊𝒊𝒃𝒃 ∏𝑃𝑃𝑪𝑪𝒋𝒋𝒊𝒊|𝑫𝑫𝒊𝒊 𝒄𝒄𝒋𝒋𝒊𝒊 𝒅𝒅𝒊𝒊 ∏𝑃𝑃𝑬𝑬𝒊𝒊,𝒋𝒋𝒉𝒉 |𝑪𝑪𝒊𝒊

𝒋𝒋,𝚫𝚫𝑻𝑻 𝒆𝒆𝒊𝒊,𝒋𝒋𝒉𝒉 𝒄𝒄𝒊𝒊
𝒋𝒋,𝚫𝚫𝒕𝒕 ∏𝑃𝑃𝑬𝑬𝒊𝒊,𝒋𝒋𝒎𝒎|𝑪𝑪𝒊𝒊

𝒋𝒋 𝒆𝒆𝒊𝒊,𝒋𝒋𝒎𝒎 𝒄𝒄𝒊𝒊
𝒋𝒋 }

(3)

• This approach takes advantage of the conditional independence inherent in the graphs, rather than simply assuming 
full independence as with the pooling method.

• Instead of a brute-force enumeration of all possible {D,C} values from scratch, the proposed graphical technique 
relies on graph parameters to decompose 𝑃𝑃𝑫𝑫,𝑪𝑪|𝑬𝑬 𝒅𝒅, 𝒄𝒄 𝒆𝒆 , which leads to an exponential reduction in outage detection 
time. 
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• Challenge: solving Eq. 3 requires running computationally 
expensive summation operations over all nodes of the graph 
simultaneously, which is not scalable for large distribution grids. 

• Solution: Using fast particle-based inference methods, such as 
Gibbs sampling [7], to perform graphical inference efficiently. 

• Particle-based methods sample from individual nodes in the 
graph repeatedly at each iteration while fixing all the others to 
their latest samples. 

• The key idea is to limit computation to a single node at each step 
while still considering nodal interdependence, which enables 
immense acceleration of outage inference in large grids. 
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Numerical Results
• Tested on three real distribution feeders, 51-, 77-, and 

107-node test feeders.

• Evaluated the proposed method under three different 
observability levels, 25%, 50%, 75% for each test 
feeder.

• Generate 1500 outages for each case (a total of 9 cases).

• In each outage, the outage location is randomly chosen.

• The amount and location of meter-based evidence in 
each scenario is determined system observability.

• The human-based evidence is generated using a pre-
defined exponential PDF (different from (3)) given 
∆T=10 minutes. 
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 Observability is determined by the number of SMs.
 The performance of the proposed outage location method improves as the observability increases, due to the high 

confidence levels of meter-based evidence.
 The proposed algorithm shows almost the same level of performance over the different test networks.
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Comparison results of the 51-node test system

Comparison results of the 106-node test system

Comparison results of the 77-node test system

 Compared with two existing outage location methods, a SVM-
based approach [8] and a probabilistic approach [9].

 [9] and our method generally outperform [8], especially for system 
with low observability. 

 Among the data fusion-based methods, our method performs better 
than [9] because the proposed method not only uses data from 
smart meters, but also effectively combines data from non-metered 
data sources.
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 Conducted on two additional real-world distribution feeders: a 17-node and 164-node feeders to provide a 
comprehensive computational complexity analysis.

 Using our method, the average computational time for outage location has an approximately linear, rather than 
exponential, relationship with the size of the distribution grid.
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Conclusions

• Combining heterogenous data sources can significantly improve outage detection accuracy.

• Outage data sources are conditionally independent.

• Our method encodes the network’s topology and the causal relationship between outage
evidence and branch states into BNs by leveraging the conditional independence inherent
in distribution grids.

• The proposed graphical method, by the merit of its multi-source nature, is highly robust
against low observability, while at the same time maintaining high detection speed.

• Future study will seek to extend the proposed method in meshed grids with high
penetration distributed energy resources.
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Thank you!
Q&A



Encoding Distribution Grids and Data into 
Probabilistic Graphs

The edge directions are important.

Variable Z is cause of Y and effect of X. In (b), 
variable Z is a common effect for both X and Y.

X Z Y

(a) Causal Chain

X Z Y

(b) Common Effect

20

For (a),  X cannot influence Y via Z if Z is observed.

For (b), X can influence Y via Z, but only if Z is not 
observed.
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