ol
<
-

H s o
.............
R TITn

AV|sor Z yu ang vl L
PGS I - ol State Unlvr5|ty - B Lt
\EEE PES \umn] -2 ; = . @lEEE :

UNIVERSITY",



Background

» With the increasing integration of DERS In roverGenerstion and tramsmission
power distribution systems, utilities need to ’
improve systematic situational awareness in
order to execute behind-the-meter (BTM)
load control strategies.

Customer &
Smart Meter

Customer &
Smart Meter

* Inrecent decades, the deployment of
advanced metering infrastructure (AMI) in
distribution systems has extended
monitoring capability to grid edges.
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« The core element of AMI is smart meter (@) | | (« N i @)
(SM) which is a device installed at customer | A’/ [ @dE A’/ L Af
house or facility. ) : r 3

SM data is a good resource for enhancing distribution grid monitoring and control
thanks to extensive customer-side installations!
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Available Utility Data

» General Description:

Total Customers
Customer  with Meters

3 3) 27 1726 9118 6631

Utilities  Substations Feeders Transformers

e Duration: 4 years (2014 - 2018)

* Measurement Type: Smart Meters and SCADA
« Data Time Resolution: 15 Minutes — 1 Hour

o Customer Type:

Residential Commercial Industrial
84.67% 14.11% 0.67% 0.55%
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Available Utility Data

Smart Meter Data For Grid Observability

Sample Customer Voltage
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Distribution System Data Sharing

—_ PINY R X
With permission from our utility partner, we share a real "1 o o on ::_:é '”“.. PR,
distribution grid model with one-year smart meter measurements. 3 SR S S o s
This dataset provides an opportunity for researchers and b Ll el ol el
engineers to perform validation and demonstration using real e

utility grid models and field measurements. B 5 o e o

L& prn e
: _ oo - e e
= The system consists of 3 feeders and 240 nodes and is located 5 2 P o
in Midwest U.S. ‘ ! T e T
T | Ml e .
. L) e o sk o0 ! o .
= The system has 1120 customers and all of them are equipped M N T E N E Bl
with smart meters. These smart meters measure hourly energy T_' M.—%—.—I—‘:—.—« PEC I -
consumption (kWh). We share the one-year real smart meter -I Lo o2 T .o
measurements for 2017. A ST SR S SR ™ o
[ O g B8 gu W0 . ]
. [ 20 o LR ) . . i
= The system has standard electric components such as .- e
overhead lines, underground cables, substation transformers " IR D &
with LTC, line switches, capacitor banks, and secondary R ] e

distribution transformers. The real system topology and

component parameters are included. Test system diagram

You may download the dataset at: http://wzy.ece.iastate.edu/Testsystem.html , including system
description (in .doc and .xIsx), smart meter data (in .xIsx), OpenDSS model, and Matlab code for
§ quasi-static time-series simulation!
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http://wzy.ece.iastate.edu/Testsystem.html

ADVANCED APPLICATIONS OF
SMART METER DATA
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Advanced Applications of SM Data

Smart Meter Data
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Customer Load Profiling
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» Customer typical load profiles are valuable for utilities to understand customer consumption behaviors.
» By using machine learning techniques, load profiling can be cast as an unsupervised clustering problem.
> Curse of Dimensionality > Algorithm-specific Limitations » Hyperparameter Calibration
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Demand-side Flexibility Quantification

» Coincident monthly peak contribution ‘ SM Data \ ‘ Bml;ﬂgim l
(CMPCQC): ratios of individual

. - " et o s o ot e . Ol et e .ot Ly T = e e D I e T =~
customers’ demands during daily peak 4 l \ ,’ , \
. . | L | Estimated CMPC for I
load times of the system to the daily | [ Em— ] [ pree ] o [ Unobservable J |
SyStem peak demand | Clustering Calculation I | Oust(;mers |
|
| ,_lﬁ | o |
e For unobservable customers without | Seasonal Typical [ cvre ) : WeisheOlisisewise |
- - - attern Ba ‘ ion [TTTTRRTTT : ' Regression Mode
SMs, a weighted clusterwise regression : — s } | PSSR |
method can be used to estimate CMPC | |1 . oz i | ' :
US|ng thelr m0nth|y bl”lng | } Caut » > Cat : Pattern | I Pattern-Context I
informatlon | } Cliwas G ‘ Identification «.I --------- "™ Data Mapping I
- O e S 1 I
. . . . : Determine 111 n2, n3, n4 o %11;:itbllljfi];flli1100d : | e Llikeli_hood Sl I
* The basic idea is to exploits the strong | ———— o Wapr=me :
correlation between CMPC and , [vahdatlon mde] [C"mcxtf’atﬂ P [Cf’mcxﬂ-"m) [Billing Data] |
mOﬂth'y energy Cons_umptlon_when the | Observable Customers ] I\ Unobservable Customers
customers’ load profiles are similar. N—————— e e i R o
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BTM Solar Disaggregation

T T I T T |
[— ® -Disaggregated — Real

* While customers have SMs, PV
generation and customer native demand ik , —
remain invisible to utilities. = = : :

Time (hour)

» Compared to model-based methods, data- ° '
driven methods do not require physical
parameters and only rely on historical
solar generation and customer

N L (2] e

Native Demand

consumption data to build the mapping ’ B e thowr
functions. g el — ~Disggrogaod —fial
» By designing a probabilistic learning- 8,1 |
based model, we exploit the temporal . | ‘
correlation between nocturnal and diurnal ’ * -

native demands and the spatial correlation .
between unknown BTM PVs and solar
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Topology and Parameter Identification

» A complete and accurate system model is essential for modern
distribution system operations and BTM load control.

» The goal of our work is to capture the inherent dependencies among
field measurements for topology and parameter identification.

» For topology identification, we model the distribution network as a
graph and identify its weighted Laplacian matrix using SM data

» [For parameter estimation, we design a bottom-up sweep algorithm
with a least absolute deviations model.

/ Start from Layer /=L /

Y

Compute Pu, Ou of layer ]
using P, Q of I+ layer
and SM data at nodes

Y

Solve r and x of each
branch in layer /

v

Update P, Q of layer ]

1=I-1
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Topology and Parameter Identification
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Conclusion

» Inthis article, an overview of AMI is first presented, including concept,
communications, and current applications.

« with permission from our utility partner, we have shared a real distribution grid model
with one-year SM data for researchers and engineers to perform validation and
demonstration.

* We introduce several advanced applications that allow unlocking the untapped
potential of AMI data using machine learning techniques.

« The proposed solutions can significantly improve system situational awareness and
provide valuable insights to better control BTM loads and DERs.
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