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Presentation Overview
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» Qutage Detection in Partially Observable Systems
— Existing Work and Challenges
— Outage Detection Zone Definition and Selection
— GAN-based Outage Detection

e Conclusion and Future Work



Data in Power Distribution Grids
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» \Where does the data come from?

» » SCADA (supervisory control and data
St acquisition); Smart Meters; Protection
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* What are smart meters?
e Stay in your homes
* Measure energy and voltage
» 15/30/60-minute resolution

Smart
Meters

A Power distribution grid
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Exemplary Real Data from Utilities

Account time kWH or V time kWH or VvV time
100000001 KWH 201704010100 0.392 201704010200 0.257 201704010300
100000001 VOLTS 201704010100 239 201704010200 239 201704010300
100000002 KWH 201704010100 0.245 201704010200 0.204 201704010300
100000002 VOLTS 201704010100 241 201704010200 240 201704010300
100000003 KWH 201704010100 1.479 201704010200| 0.417 201704010300
100000003 VOLTS 201704010100 240 201704010200 239 201704010300
100000004 KWH 201704010100 1.009 201704010200 0.555 201704010300
100000004 VOLTS 201704010100 241 201704010200 237 201704010300
100000005 KWH 201704010100 0.798 201704010200 0.809 201704010300
100000005 VOLTS 201704010100 239 201704010200 238 201704010300
100000006 KWH 201704010100 0.109 201704010200| 0.188 201704010300
100000006 VOLTS 201704010100 241 201704010200 240 201704010300
100000007 KWH 201704010100 1.199 201704010200 1.512 201704010300
100000007 VOLTS 201704010100 241 201704010200 240 201704010300
100000008 KWH 201704010100 0.422 201704010200 0.419 201704010300
100000008 VOLTS 201704010100 239 201704010200 239 201704010300
100000009 KWH 201704010100 2.288 201704010200 2.278 201704010300
100000009 VOLTS 201704010100 243 201704010200 242 201704010300
100000010 KWH 201704010100 0.223 201704010200| 0.257 201704010300
I%EEE 100000010 VOLTS 201704010100 242 201704010200 241 201704010300
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Smart Meter Data-driven Outage Detection

* OnAugust 10, a weather complex known as a
“derecho” sent intense winds and thunderstorms
over a 700-mile stretch in Midwest. Between
August 10 and 13, total outaged customers were
1.9 million in lowa.

» The delay and inaccuracy of outage detection
can cause waste of up to 80% of the invaluable
restoration time.

» Conventional expert-experience-based methods
that use customer calls are laborious, costly, and ' B
time-consuming. Ames, lowa, 8/10/2020
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Outage Detection in Partially Observable Systems

* Problem Statement: Developing a data-driven method for outage detection using smart
meter data in partially observable distribution systems.

Multi-label support vector machine

[2] Smart meter-based Fuzzy Petri nets-based approach System is fully observable.
[3] Probabilistic model-based method
[4] Non-smart meter-based Hypothesis testing-based framework

(i.e., real-time power flow . . A
[5] measurement, weather, Social network-based method Limiting data availability
[6] social network data) Boosting algorithm
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[4]1R. A. Sevlian, Y. Zhao, R. Rajagopal, A. Goldsmith, and H. V. Poor, “Outage detection using load and line flow measurements in power distribution systems,” IEEE Trans. Power Syst., vol. 33,

no. 2, pp. 2053- 2069, Mar. 2018.
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Outage Detection in Partially Observable Systems

Challenges:

» Smart meters can send last-gasp signals. However, most distribution systems are only
partially observable (i.e., not every customer has smart meter).

» Most of the previous works handle the partially observable problem by involving extra
data sources, such as real-time power-flow measurements and social network data.

» Outage detection can be considered as a classification problem (separating the data
samples of normal and outage). However, the size of the outage data is far smaller
compared to the data in normal conditions, which leads to a data imbalanced problem.
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Outage Detection in Partially Observable Systems

Our Solution:

v" Decomposing large-scale distribution networks into a set of intersecting outage detection
zones and performing zone-based outage detection rather than branch-based outage detection.

v" Optimizing the zone decomposition by exploiting the tree-like structure of distribution networks
and the system observability (i.e., when system is fully observable, our method provides
branch-based results).

v Developing an unsupervised-based model for outage detection (only utilize the data in normal
conditions for model training).

v Providing an anomaly score coordination process to accelerate outage location in large-scale
networks.

Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "Outage Detection in Partially Observable Distribution Systems using Smart Meters and
(EEE Generative Adversarial Networks, " IEEE Trans. Smart Grid, vol. 11, no. 6, pp. 5418-5430, November 2020.
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Outage Detection Zone Definition

Definition: In a radial network, an outage detection zone, W;, is defined as ¥; = {S,1, So2, 2w},
where S,1 and S,, are two observable nodes, with S, being upstream of S,,,, and Zy, is the set
of all the branches downstream of S, .

v’ Give that an outage event anywhere in the zone

will lead to deviations from the (voltage-power) Po ¥ Pua¥  Pors ¥ Pon(¥)  Pauis
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Step I: Breath-First Search-Based Zone Selection

* Problem: How to optimally sectionalize networks into multiple zones based on the
limited observability to maximize outage detectability?

« Qur Solution: Proposing a breadth-first search-based mechanism to use all
observable node pairs to build the zones.

» Each branch in the system belongs to at least one zone.

 Introducing a topological ordering, which simplifies outage location
identification process.

e R IEEE



Step I: Breath-First Search-Based Zone Selection

51} /
Topological Order 1
. W = {51, 5; or S5} [
{$2, 53,54} -
Topological Order 2 R

ﬁss; S} |_
Topological Order 3
'/{510» Sul = —_—
Topological Order 4 | Y, = {Ss,S
4 — 125 11}
-
. Observable Node ====9 Breath-First Zone Search

O Unobservable Node

« Each zone is determined by two neighboring observable nodes and contains all branches
downstream of these two nodes.

» Selecting the zones using observable nodes at the present layer before moving on the
observable nodes at the next topological layer.

(eres & IEEE
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Step Il: Zone-Based Data Distribution Learning

Challenge: Learning the distribution of measured variables
X = {4Vt Bt, Pt v} —; within a time-window with length T
(i.e., T = 3) for each zone (high-dimensional distribution).

Existing methods:

o Parametric-based methods require distributional
assumptions.

» Traditional nonparametric-based methods (e.g., KDE)
lack of scalability for large dataset.

Our Solution: Using Generative Adversarial Network
(GAN) to implicitly and efficiently represent complex
distributions without any distributional assumptions.

» To address data imbalanced problem, we only use the
data in normal conditions.

( ;EEES
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D: Distinguishing the generated data from real data

@d Time-Window v \
— Historical normal .
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G: Generating data using random noise

Objective Function: V(D,G) =
min max [ExWi~pxq,i (X‘Pi) [log (D (X‘Pl))]

¢ bp
+E,p,([log (1= D(6(2)))]

Probability of D assigning the correct label to real samples.
Probability of D assigning the incorrect label to artificial samples




Step lll: Zone-Based Outage Detection

» Zone-based outage detection is achieved by defining a GAN-based anomaly score that quantifies
deviations between the learned normal data distribution and real-time measurements.

» The deviation is defined as follows:
C\l’i('{ﬁf},eu;) - ( )\) 63( nmu) + A éD(InF”U})

& IS the residual error that describes the extent to which new measurement follows the learned
distribution of the GAN:

éH( nf”w) — Hélﬂ ‘ Inww G(Z)‘

&p Is the discriminator error that measures how well the optimal solution of the above optimization
(z*) follows the learned data distribution of the GAN.

/, (}U( :wm) = —l()gD( TI.P’UJ) o l()g(l o D(G(’z*)))
s ——TSED. @IEEE



Step ll: Zone Based Outage Detection

-Normal Condition
[0utage Condition|

Frequency

1.26 1.28 1.3 1.32 1.34 1.36 1.38
Anomaly Score

v A high anomaly score implies outage somewhere in the zone

AR
(el>)



4
Step IV: GAN-Based Zone Coordination

* Problem: Multiple zones may contain the same outaged branch. How to down select the zone?
« Solution: Using the topological ordering and multiple anomaly scores.

» Zone coordination follows a bottom-up fashion until no outage-related zone exits.

q’l e > l'pn_l > qjﬂ > lpn+1
Zonel < > ZoneN-1CT > ZoneNT > Zone N+1T_ >

Multiple zones include the outage location (i.e., Zone 1, Zone N-1, etc).
Zone N contains the maximum information on the outage event.

f' : The minimum branch candidates are Zy \Zy,,,

IEEE
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Numerical Results: 164-node Feeder Topology

» Six observable nodes are assumed in
this feeder (Node 1, 22, 31, 83, 109,
158).

* Five zones are defined based on these
nodes¥; > ¥, >¥; >Y¥, > Y.,

* Three outage events are simulated
with different outage magnitudes
(Case 1: 20 customers are
disconnected; Case 2: 50 customers
are disconnected; Case 3: 80
customers are disconnected.)

—— — — Zonel — — — — Zone2 — — — — Zone3} — — — — Zone4 — — — — Zone §
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Numerical Results: Accuracy Analysis

80 T ;
Outage Detection
Accuracy

EEProposed Methad {
EESYM-based Method([1]

-
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Target Accuracy

Target Accuracy 93.64% Target Accuracy
80.34% 94.63%

o
(=]

'§50
Case 1 80.34% 0
Case 2 93.64% el _
Case 3 94.63% %0
o EEE ] I

Case 1 Case 2 Case 3

v" The previous method uses the last gasp signal from
smart meters as the input of SVM to identify event
location.

v" The previous method requires a much higher level of
observability (i.e., around 10 times) to achieve similar
accuracy as our method.

Z. S. Hosseini, M. Mahoor, and A. Khodaei, “AMI-enabled distribution network line outage identification via multi-label SVM,”

ﬂ h IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 5470-5472, Sep. 2018.
(@PEs
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v" For three cases, we have tested if our
method can detect outages in zone 5. The
table shows the results for three cases.

v We have conducted numerical comparisons
with a previous method.




Sensitivity Analysis and Method Adaption
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v The performance of our model can reach
reasonable detection accuracy with a small
training set (around 3 days of data, hourly
smart meter data).

\

v Our method can adapt to changes in system
conditions (i.e., capacitor switching) with a
relatively short time (around 1 day).




Conclusion and Future Work

« Smart meter data, although may be of low resolution and limited measurement variables,
can be used to significantly enhance distribution system outage management.

» Many utilities do not have full smart meter coverage. \We demonstrated how to use
available smart meter data together with machine learning to detect outages in partially
observable systems.

 In the future, we will focus on using smart meter data with other available data sources
to perform branch-level outage detection and location.
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Thank you!
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