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• Motivation of Multi-Agent Framework for Optimization and 
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• Power Management Problem of Networked Microgrids  
• Introduction of Reinforcement Learning  
• Proposed Multi-agent Safe Learning for Power Management 
of Networked Microgrids 

• Simulation Results 
• Conclusions and Future Works 
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Constraints  
• Bus active/reactive power 

balance 
• Bus voltage  
• Line active/reactive power 

flow 
• Flexible load 
• Generation power output 
• Network reconfiguration 
… 

Variables  
• Continuous variables  
• Discrete variables (binary, 

integer) 
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Optimization and Decision-Making Problem in Active Distribution Systems  

𝑚𝑖𝑖𝑖𝑚𝑖𝑖𝑖 𝑜𝑜 𝑚𝑚𝑚𝑖𝑚𝑖𝑖𝑖 𝑓(𝑚,𝑢) 

subject to 𝑔 𝑚,𝑢 = 0 

ℎ 𝑚, 𝑢 ≤ 0 

𝐿𝐿 ≤ 𝑚 ≤ 𝑈𝐿 

Objectives:  
• Economic dispatch 
• Power/energy 

management 
• Operational cost 
• Voltage and reactive 

(var) control  
• Active power losses 
• Selling/purchase power 
• Load restoration 
• Generation curtailment 
• Hosting capacity 
• Social welfare 
… 

Solution algorithm: 
• Centralized approach 

• Multi-agent (distributed) approach 
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Centralized approach:  
• Solve a large-scale problem 
• Require the system-wide collection of data 
• Require reliable communications between a 

control center and regulation devices 
• Susceptible to single point of failure 
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Centralized and Multi-Agent (Distributed) 

Multi-agent (distributed) approach: 
• Decompose the large-scale problem  
• Solve multiple small-scale problems 
• Maintain the data privacy and ownership 

of customers 
• Resilient against agent communication 

failure or limited communication  
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Multi-Agent Optimization and Learning 
Distributed conservation voltage reduction (CVR) in 
unbalanced distribution systems with high PV penetration 
• An optimization model is developed to facilitate 

voltage reduction and coordinate the fast-dispatch of 
photovoltaic (PV) inverters and the slow-dispatch of 
on-load tap changer (OLTC) and capacitor banks (CBs) 

• In order to ensure the solution optimality and maintain 
customer data privacy and ownership, a distributed 
solution method is proposed to decompose the large-
scale optimization problem into bus-level small-scale 
optimization problems.  

• Bus-level control agents are in charge of managing the 
local controllable resources and communicating with 
neighboring bus-level control agents.  

• A modified alternating direction method of multipliers 
(ADMM) algorithm is proposed to handle non-convex 
optimization problems with discrete switching and tap 
changing variables.  
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Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution 
Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 
5308-5319, Sept. 2019. 



Iowa State University 6 

Q. Zhang, Y. Guo, Z. Wang and F. Bu, “Distributed optimal conservation voltage 
reduction in integrated primary-secondary distribution systems," in IEEE Transactions on 
Smart Grid, under third round review. 

Distributed CVR in integrated primary-secondary 
distribution systems: 
• A Volt/Var optimization based CVR (VVO-CVR) is 

modelled in an integrated medium-voltage (MV) 
primary distribution network and low-voltage (LV) 
secondary distribution networks.  

• To solve the VVO-CVR problem in a distributed way, 
we first split the primary and secondary networks from 
modeling perspective, then introduce coupling 
constraints at boundary nodes, finally map the primary 
and secondary networks into leader and follower 
controllers in ADMM distributed framework.  

• We propose an online feedback-based linear 
approximation method, where the instantaneous power 
and voltage measurements are used as system feedback 
in each iteration of ADMM to linearize the nonlinear 
terms of power calculation for both power flow and 
ZIP load models.   

Multi-Agent Optimization and Learning 
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Q. Zhang, K. Dehghanpour, Z. Wang and Q. Huang, "A Learning-Based Power 
Management Method for Networked Microgrids Under Incomplete Information," in 
IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1193-1204, March 2020. 

A learning-based power management method for 
networked microgrids (MGs) under incomplete 
information: 
• A bi-level cooperative framework is proposed using a 

reinforcement (RL) based method for a distribution 
system consisting of multiple networked privately-
owned MGs. 

• At Level I, a non-profit cooperative RL agent 
maximizes the total MGs’ revenue by setting retail 
power price signal. By considering the model-free 
nature of our RL-based method, the data privacy of 
MGs and the data confidentiality of costumers are 
maintained. The power management problem is solved 
with access to only minimal and aggregated data.   

• At Level II,  each MG agent receives the price signals 
from Level I and solves a constrained mixed integer 
nonlinear programming (MINLP) to dispatch their 
local generation and energy storage system units.  

 

Multi-Agent Optimization and Learning 
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(Olivares 2014) 

Networked MGs 
MGs are active clusters of:  

• Distributed energy resources (DERs), such as diesel 
generators (DGs), photo-voltaic generators (PVs), wind 
generators (WTs).  

• Energy storage systems (ESSs) 
• Other onsite electric components 

Smart distribution systems may consist of multiple MGs 
and the coordinated control of the networked MGs can 
offer various benefits: 

• Higher penetration of local DERs 
• Improved controllability 
• Enhancement of power system resilience and reliability.  

Various ways to solving the power management 
problem of networked MGs : 

• Centralized and multi-agent (distributed) 
• Model-based and model-free 
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(Wang 2015) 
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Power Management Problem of Networked MGs  

The objective minimize MGs’ total cost of operation. 
• Each MG is assumed to have local DGs, ESS, solar PV panels and 

several loads. The control action vector is 
𝑃𝐷𝐷 ,𝑃𝐶ℎ ,𝑃𝐷𝐷𝐷 ,𝑄𝐷𝐷 ,𝑄𝑃𝑃 ,𝑄𝐸𝐸𝐸 ∈ 𝑚𝑝, 𝑚𝑞 .  

• The fuel consumption of DGs can be expressed as a quadratic 
polynomial function.   

• This optimization problem is solved over a moving look-ahead decision window 𝑡′ ∈ 𝑡, 𝑡 + 𝑇 . 
• Objective + Global constraints (whole distribution network) + Local constraints (inside each MG)  

min
𝑥𝑝,𝑥𝑞

� � −𝜆𝑛𝑅𝑃𝑛,𝑡′
𝑃𝐶𝐶 + 𝜆𝐷,𝑛𝐹 𝐹𝐷,𝑛,𝑡′

𝑇+𝑡

𝑡′=𝑡

𝑁

𝑛=1

 

s.t.  

𝐹𝐷,𝑡,𝑛 = 𝑚𝑛
𝑓 𝑃𝐷,𝑛,𝑡′

𝐷𝐷 2 + 𝑏𝑛
𝑓𝑃𝐷,𝑛,𝑡′

𝐷𝐷 + 𝑐𝑛
𝑓 

𝑉𝐷𝑚 ≤ 𝑉𝐷,𝑡′ ≤ 𝑉𝐷𝑀  

−𝐼𝐷𝑗𝑀≤ 𝐼𝐷𝑗,𝑡′ ≤ 𝐼𝐷𝑗𝑀  

Global constraints are defined over variables that are impacted by 
control actions of all the MGs: 
• Nodal voltage amplitude constraints for the entire nodes. 
• Branch current flow constraints throughout the network 

Our solution leverage AC power flow equations in an implicit way in the training process  
• Calculate the gradient factor of objective and constraints w.r.t. learning parameters 
• Ensure that the learning modules are generating feasible outcomes 
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Power Management Problem of Networked MGs  
Local constrains are defined over the local control actions of each 
MG: 
• DG active and reactive power output constraints. 
• DG ramp generation constraints. 

 

𝑆𝑆𝑆𝐷,𝑛,𝑡′ = 𝑆𝑆𝑆𝐷,𝑛,𝑡′−1 + ∆𝑡 𝑃𝐷,𝑛,𝑡′
𝐶ℎ 𝜂𝐶ℎ − 𝑃𝐷,𝑛,𝑡′

𝐷𝐷𝐷 𝜂𝐷𝐷𝐷⁄ /𝐸𝐷,𝑛
𝐶𝐶𝑝 

𝑆𝑆𝑆𝐷,𝑛𝑚  ≤ 𝑆𝑆𝑆𝐷,𝑛,𝑡′ ≤ 𝑆𝑆𝑆𝐷,𝑛𝑀  

0 ≤ 𝑃𝐷,𝑛,𝑡′
𝐶ℎ ≤ 𝑃𝐷,𝑛

𝐶ℎ,𝑀 

0 ≤ 𝑃𝐷,𝑛,𝑡′
𝐷𝐷𝐷 ≤ 𝑃𝐷,𝑛

𝐷𝐷𝐷,𝑀 

𝑃𝐷,𝑛,𝑡′
𝐶ℎ 𝑃𝐷,𝑛,𝑡′

𝐷𝐷𝐷 = 0 

𝑄𝐷,𝑛,𝑡′
𝐸𝐸𝐸 ≤ 𝑄𝐷,𝑛

𝐸𝐸𝐸,𝑀 

 

0 ≤ 𝑃𝐷,𝑛,𝑡′
𝐷𝐷 ≤ 𝑃𝐷,𝑛

𝐷𝐷,𝑀 

0 ≤ 𝑄𝐷,𝑛,𝑡′
𝐷𝐷 ≤ 𝑄𝐷,𝑛

𝐷𝐷,𝑀 

𝑃𝐷,𝑛,𝑡′
𝐷𝐷 − 𝑃𝐷,𝑛,𝑡′−1

𝐷𝐷 ≤ 𝑃𝐷,𝑛
𝐷𝐷,𝑅 

𝑄𝐷,𝑛,𝑡′
𝑃𝑃 ≤ 𝑄𝐷,𝑛

𝑃𝑃,𝑀 

𝑃𝑡,𝑛
𝑃𝐶𝐶 ≤ 𝑃𝑡,𝑛

𝑃𝐶𝐶,𝑀 

𝑄𝑡,𝑛
𝑃𝐶𝐶 ≤ 𝑄𝑡,𝑛

𝑃𝐶𝐶,𝑀 

• ESS state of charge (SOC) constraints 
• ESS maximum capacity constraints 
• ESS active charging and discharging power constraints.  
• ESS reactive power output constraints 

• Active and reactive power transfer constraints at the PCCs  

• PV reactive power output constraints  
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Literature Review 
Ref. Application Solution Model 

Wang 2015 Centralized power management of networked MGs Centralized Model-based 

Lu 2017 Centralized power management of networked MGs 

Farzin 2018 Enhancement of reliability performance of networked MGs  

Wang 2016 Consensus-based normal operation and self-healing of networked MGs Multi-agent 
(distributed) 

Mojtaba 2017 A multi-agent framework for fault resiliency enhancement of networked MGs 

Shi 2018 A distributed cooperative control framework for synchronized reconnection of networked MGs 

Zhang 2020 A bi-level learning-based power management method for networked MGs RL Model-free 

Limitations of model-based optimization methods: 
• Solve a large-scale optimization problem with numerous linear and nonlinear constraints  
• Relay heavily accurate knowledge of grid topology and parameters 

Potential infeasibility of model-free machine learning methods: 
• Conventional RL methods train black-box functions to approximate the state-action through trial and error.  
• The trained black-box functions can fail to satisfy critical operational constraints. 
• This can lead to unsafe operational states and control action infeasibility. 
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Introduction: Conventional RL 

Challenges of conventional RL: 
• Incorporating constraints into the training process of conventional black-box RL methods 
• A large-scale training problem, inefficient implementation and potential violation of customers’ privacy  

 

Conventional RL: 
• Learn to make a good sequence of decisions and maximize the expected cumulative reward  
• Markov decision process (MDP), 𝑆𝑡, 𝐴𝑡, 𝑃𝑡, 𝑅𝑡 
• Repeated interactions (environment, distribution system) 
• Do not need reliable and complete distribution network model 
• Policy is the agent’s behavior and a map from state to action, 𝑚 = 𝝅(𝑠) 
• Offline centralized training 
• Online centralized implementation (well trained) 

 

(Sutton 2017) 
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Literature Review: Multi-Agent and Safe RL 

Safe RL: 
• Large number of constraints 
• Manually design penalty coefficients for constraint violations, which either offers inadequate penalization 

of the constraint violations or excessive punishment for the constraints 
Multi-agent RL (distributed training and implementation): 

• Privacy of each control agent 
• Efficiency of training process 
 

 
 
 

Ref. Application Solution algorithm Constraints 

Zhang 
2020 

Power management 
of networked MGs 

• Offline centralized training 
• Online centralized implementation  

Constraints are considered in a lower-level optimization 
problem 

Ye 
2020 

Power management 
of residential house  

Constraint violations are penalized in the reward function 

Sun 
2021 

Volt/Var control  • Offline centralized training 
• Online distributed implementation  

Gao 
2021 
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Problem Overview 
The general framework of the proposed supervised multi-agent safe policy learning (SMAS-PL) method is shown as follows: 

• To ensure safety of control policies, MG agents receive the observations from the distribution grid and determine gradient 
factors of the objective and constraints w.r.t. to learning parameters of policy functions.   

• The multi-agent framework employs local communication between MGs agents and exchange the dual Lagrangian 
variables (not critical and private information).   

• Each MG is controlled by an agent 
• State 𝑆 
• Action 𝑚 
• Observation 𝑆 
• Policy function 𝜋 
• Update rule 𝑈 
• Learning parameter 𝜃 
• Gradient ∇𝜃𝐽 
• Lagrangian 𝜆 
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Contributions 

15 

We propose SMAS-PL method for optimal power management of networked MGs in distribution 
system. 
• Compared to conventional black-box RL, our proposed SMAS-PL:  

• Calculates gradients of all the operational constraints w.r.t. actions to promote the safety and 
feasibility of control policies.  

• Considers a backtracking mechanism into the PL framework to perform a final verification of 
feasibility before issuing control commands to the assets. 

 
• Compared to conventional centralized RL, our proposed SMAS-PL:  

• Preserves the privacy of MG agents, including their control policies parameters and structures, 
operation cost functions, and local asset constraints;  

• Enhances computational efficiency and maintains scalability as the number of learning 
parameters grows into a humongous size. 

Note that the proposed method introduces a trade-off between model-free and model-based methods 
and combines the benefits offered by both sides. 
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Constrained MDP 
To transform an optimal power management problem into a SMAS-PL problem, we introduce 
constrained MDP:      

(1) Agents: Each control agent is dispatching the resources within an individual MG.  

(4) Observation set: The observation variable vector at time t is defined as 𝑆𝑡:  

𝑆𝑛,𝑡 = 𝐼𝑛,𝑡′
𝑃𝑃 ,𝑃�𝑛,𝑡′

𝐷
𝑡′=𝑡
𝑡+𝑇

 

• 𝐼𝑛,𝑡′
𝑃𝑃  and 𝑃�𝑛,𝑡′

𝐷  are the vectors of predicted aggregate internal load power and 
solar irradiance of n’th MG at time t’, respectively.  

• The prediction errors follow random distributions with zero mean and the 
standard deviations selected from the beta and Gaussian distributions. 

(3) Action set: The action vector for the n’th MG agent at time t is defined as 𝑚𝑛,𝑡 over time 
window 𝑡, 𝑡 + 𝑇 :  

𝑚𝑛,𝑡 = 𝑃𝑛,𝑡′
𝐷𝐷 ,𝑃𝑛,𝑡′

𝐶ℎ ,𝑃𝑛,𝑡′
𝐷𝐷𝐷,𝑄𝑛,𝑡′

𝐷𝐷 ,𝑄𝑛,𝑡′
𝑃𝑃 ,𝑄𝑛,𝑡′

𝐸𝐸𝐸
𝑡′=𝑡
𝑡+𝑇

 

𝑆𝑡 = 𝑉𝑡, 𝐼𝑡  
• 𝑉𝑡 and 𝐼𝑡 are the vectors of grid’s nodal voltages and current injections.  
• The observation variables are implicitly determined by the agents’ control 

actions 

(2) State set: The state vector for the n’th MG agent at time t is defined as 𝑆𝑛,𝑡 over time window 
𝑡, 𝑡 + 𝑇 : 
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Constrained MDP 
(5) Control policy: the control policies are modelled as multivariate Gaussian distributions as follows:  

(6) Reward: the reward function is defined as the discounted negative accumulated operational cost of 
individual MG over [t, t+T]:  

(7) Constraint return: the constraint return is defined as the discounted accumulated constraint value 
over [t, t+T]:  

𝑚𝑛~𝜋𝑛 𝑚𝑛|𝜃𝑛 =
1

Σ𝑛 2𝜋 𝐷𝑛
𝑖−

1
2 𝐶𝑛−𝜇𝑛 𝑇Σ𝑛−1 𝐶𝑛−𝜇𝑛  

𝜇𝑛 = 𝐷𝐷𝐷(𝑆𝑛|𝜃𝜇𝑛) 

Σ𝑛 = 𝐷𝐷𝐷(𝑆𝑛|𝜃Σ𝑛) 

𝐽𝑅𝑛 𝜋𝑛 = 𝐸𝜋𝑛 � 𝛾𝑡′
𝑡+𝑇

𝑡′=𝑡

𝑅𝑛,𝑡′ ,∀𝑖 ∈ {1 …𝐷} 

𝐽𝐶𝑚 𝜋 = 𝐸𝜋 � 𝛾𝑡′
𝑡+𝑇

𝑡′=𝑡

𝑆𝑚,𝑡′ = 𝑜𝑜 ≤ 𝑑𝑚,∀𝑚 ∈ {1 …𝑀𝑐} 

• Gaussian distribution allow for explicit learning of both 
expectations and uncertainties of control policies: mean vector 
𝜇𝑛 and covariance matrix Σ𝑛.  

• Control policy (𝜇𝑛 and Σ𝑛) is parameterized by deep neural 
network (DNN) with weights and bias 𝜃𝜇𝑛 and 𝜃Σ𝑛 

• Discount factor 𝛾 determines each MG agent’s bias towards 
reward at different time instances 

• Expectation operator 𝐸𝜋𝑛  is used to calculate reward w.r.t. the 
future expected action-states, which is impacted by the 
uncertainties of states and observations.   

• 𝑆𝑚,𝑡′ is the return value of m’th constraint under the control 
policy 

• 𝑑𝑚 is the upper-boundary of the m’th constraint 
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Safe Policy Learning Formulation 
• Given the definitions of constrained MDP, the power management problem of the networked MG is 

first transformed into an intractable and non-convex PL problem [Achiam 2017]. 

𝜋𝑡+1 = 𝑚𝑜𝑔 max
𝜋1,…𝜋𝑛

� 𝐽𝑅𝑛 𝜋𝑛

𝑁

𝑛=1

 

s.t.  
𝑚𝑛~𝜋𝑛 𝑆𝑛  

𝐽𝐶𝑚 𝜋 ≤ 𝑑𝑚,∀𝑚 

∆ 𝜋𝑛,𝜋𝑛𝑡 ≤ 𝛿,∀𝑖 

• 𝜋 = {𝜋1, …𝜋𝑛} denotes the set of control policies of all 
agents. 

• Agent’s policy is a function of the state vector 
𝑚𝑛~𝜋𝑛 𝑆𝑛 . 

• The expected constraint return value are used to ensure 
the satisfaction of m’th constraint based on control 
policies. 

• ∆ is the Kullback Leibler (KL) divergence function that 
serves as a distance measure between the previous 𝜋𝑛𝑡  and 
the updated policy 𝜋𝑛𝑡+1. 

• Step size 𝛿 

• The control policies of the agents are updated at time t, around their latest values, by maximizing a 
reward function, while satisfying constraint return criteria, as follows:   
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Safe Policy Learning Formulation 
• Then, the intractable non-convex PL problem can be solved by a trust region policy optimization 

method (TRPO), and further transformed into a tractable convex iterative quadratically constrained 
linear program (QCLP), which enables learning the PL parameters 𝜃1, …𝜃𝑛.  

𝜋𝑡+1 = 𝑚𝑜𝑔 max
𝜋1,…𝜋𝑛

� 𝐽𝑅𝑛 𝜋𝑛

𝑁

𝑛=1

 

s.t.  
𝑚𝑛~𝜋𝑛 𝑆𝑛  

𝐽𝐶𝑚 𝜋 ≤ 𝑑𝑚,∀𝑚 

∆ 𝜋𝑛,𝜋𝑛𝑡 ≤ 𝛿,∀𝑖 

𝜃𝑡+1 = 𝑚𝑜𝑔 max
𝜃1,…𝜃𝑛

�𝑔𝑛𝑇 𝜃𝑛 − 𝜃𝑛𝑡
𝑁

𝑛=1

 

s.t.  
𝐽𝐶𝑚 𝜃𝑡 + 𝑏𝑚𝑇 𝜃 − 𝜃𝑡 ≤ 𝑑𝑚,∀𝑚 

1
2 𝜃𝑛 − 𝜃𝑛𝑡 𝑇𝐻𝑛 𝜃𝑛 − 𝜃𝑛𝑡 ≤ 𝛿,∀𝑖 

• Before obtain 𝜃𝑛 ∈ 𝜃𝜇𝑛 ,𝜃Σ𝑛 , we must calculate the gradient factors 𝑔𝑛 and 𝑏𝑚 first based on power 
flow formulations.    

• 𝑔𝑛=∇𝜃 𝐽𝑅𝑛  and 𝑏𝑚=∇𝜃  𝐽𝐶𝑚 are the 
gradient factors of the reward and 
constraints returns with respect to 
the learning parameters 𝜃. 

• The KL divergence function is 
transformed by using the Fisher 
information matrix 𝐻𝑛. 

• Our solution leverages the linear approximations of the objective and constraint returns around the 
latest parameter value 𝜃𝑡 [Achiam 2017]:   
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Gradient Factor Determination: Chain Role 
To determine gradient factors 𝑔𝑛 and 𝑏𝑚, the following information are used:  
• Observation variable, including nodal voltages and current injections;  
• Latest system state of each MG agent;  
• Latest control actions of each MG agent;  
• Latest learning parameters;  
• Network parameters, including the nodal admittance matrix.    

𝑔𝜇𝑛=
𝜕𝐽𝑅𝑛
𝜕𝐶𝑛

𝜕𝐶𝑛
𝜕𝜋𝑛

 𝜕𝜋𝑛
𝜕𝜇𝑛

 𝜕𝜇𝑛
𝜕𝜃𝜇𝑛

 

𝑔Σ𝑛=
𝜕𝐽𝑅𝑛
𝜕𝐶𝑛

𝜕𝐶𝑛
𝜕𝜋𝑛

 𝜕𝜋𝑛
𝜕Σ𝑛

 𝜕Σ𝑛
𝜕𝜃Σ𝑛

 

𝑏𝑚,𝜇𝑛,=
𝜕𝐽𝐶𝑚
𝜕𝐶𝑛

𝜕𝐶𝑛
𝜕𝜋𝑛

 𝜕𝜋𝑛
𝜕𝜇𝑛

 𝜕𝜇𝑛
𝜕𝜃𝜇𝑛

 

𝑏𝑚,Σ𝑛=
𝜕𝐽𝐶𝑚
𝜕𝐶𝑛

𝜕𝐶𝑛
𝜕𝜋𝑛

 𝜕𝜋𝑛
𝜕Σ𝑛

 𝜕Σ𝑛
𝜕𝜃Σ𝑛

 

• 𝜕𝐽𝑅𝑛
𝜕𝐶𝑛

 and 
𝜕𝐽𝐶𝑚
𝜕𝐶𝑛

: use current injection-based AC power flow equations.  

• 𝜕𝐶𝑛
𝜕𝜋𝑛

: use the latest value of 𝑚𝑛 and the probability density function of 
multivariate Gaussian distribution 𝜋𝑛. 

• 𝜕𝜋𝑛
𝜕𝜇𝑛

  and 𝜕𝜋𝑛
𝜕Σ𝑛

: use the latest values of 𝜇𝑛, Σ𝑛 and the probability density 
function of multivariate Gaussian distribution 𝜋𝑛. 

• 𝜕𝜇𝑛
𝜕𝜃𝜇𝑛

 and 𝜕Σ𝑛
𝜕𝜃Σ𝑛

: use back-propagation process of two DNNs, 𝜇𝑛 and Σ𝑛 are 

the outputs of DNNs, and 𝜃𝜇𝑛  and 𝜃Σ𝑛 are weights and bias of DNNs. 

Using the above information and chain rule, the gradients 𝑔𝑛 = 𝑔𝜇𝑛,𝑔Σ𝑛  and 𝑏𝑚 = 𝑏𝑚,𝜇𝑛,𝑏𝑚,Σ𝑛  can 
be obtained as follows: 
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Gradient Factor Determination 
The gradients of the expected reward 𝐽𝑅𝑛 and the expected constraint return 𝐽𝐶𝑚 w.r.t. control action 𝑚𝑛,  𝜕𝐽𝑅𝑛

𝜕𝐶𝑛
 and 

𝜕𝐽𝐶𝑚
𝜕𝐶𝑛

 can be obtained by a four-step process and current injection-based AC power flow equation.  

• Step 1: Obtain the partial derivations of real and imaginary parts of nodal current injection w.r.t. control actions 
𝜕𝐼𝑅𝑅

𝜕𝐶𝑛
 and 𝜕𝐼

𝐼𝑚

𝜕𝐶𝑛
     

𝐼𝐷,𝑡′𝑅𝑅 =
𝑝𝐷,𝑛,𝑡′𝑉𝐷,𝑡′𝑅𝑅 + 𝑞𝐷,𝑛,𝑡′𝑉𝐷,𝑡′𝐼𝑚

𝑉𝐷,𝑡′2
 

𝐼𝐷,𝑡′𝐼𝑚 =
𝑝𝐷,𝑛,𝑡′𝑉𝐷,𝑡′𝐼𝑚 − 𝑞𝐷,𝑛,𝑡′𝑉𝐷,𝑡′𝑅𝑅

𝑉𝐷,𝑡′2
 

𝑝𝐷,𝑛,𝑡′ = 𝑃𝐷,𝑛,𝑡′
𝐷 − 𝑃𝐷,𝑛,𝑡′

𝐷𝐷  − 𝑃𝐷,𝑛,𝑡′
𝑃𝑃  + 𝑃𝐷,𝑛,𝑡′

𝐶ℎ  − 𝑃𝐷,𝑛,𝑡′
𝐷𝐷𝐷  

𝑞𝐷,𝑛,𝑡′ = 𝑄𝐷,𝑛,𝑡′
𝐷 − 𝑄𝐷,𝑛,𝑡′

𝐷𝐷  − 𝑄𝐷,𝑛,𝑡′
𝑃𝑃  + 𝑄𝐷,𝑛,𝑡′

𝐸𝐸𝐸  

Nodal current injection: 

Nodal power balance: 

Partial derivations of 𝐼𝐷,𝑡′𝑅𝑅  and 𝐼𝐷,𝑡′𝑅𝑅  w.r.t 𝑚𝑛  
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Gradient Factor Determination 
• Step 2: Using 𝜕𝐼

𝑅𝑅

𝜕𝐶𝑛
 and 𝜕𝐼

𝐼𝑚

𝜕𝐶𝑛
 from Step 1, 𝜕𝑃

𝑅𝑅

𝜕𝐶𝑛
 and 𝜕𝑃

𝐼𝑚

𝜕𝐶𝑛
 are obtained by employing the network-wide 

relationship between nodal voltages and current injections:       

𝜕𝑃𝑅𝑅

𝜕𝐶𝑛
𝜕𝑃𝐼𝑚

𝜕𝐶𝑛

=
𝑌𝑅𝑅 − 𝑌𝐷

(𝑅𝑅,𝑅𝑅) −𝑌𝐼𝑚 − 𝑌𝐷
(𝑅𝑅,𝐼𝑚)

𝑌𝐼𝑚 − 𝑌𝐷
(𝐼𝑚,𝑅𝑅) 𝑌𝑅𝑅 − 𝑌𝐷

(𝐼𝑚,𝐼𝑚)

−1

 

𝜕𝐼𝑅𝑅

𝜕𝐶𝑛
𝜕𝐼𝐼𝑚

𝜕𝐶𝑛

 

The elements in diagonal matrices 𝑌𝐷
(𝑅𝑅,𝑅𝑅), 𝑌𝐷

(𝑅𝑅,𝐼𝑚), 𝑌𝐷
(𝐼𝑚,𝑅𝑅) and 𝑌𝐷

(𝐼𝑚,𝐼𝑚) 

𝑌𝐷
(𝑅𝑅,𝑅𝑅) (i, i) = 𝑝𝑖,𝑛,𝑡′

𝑃𝑖,𝑡′
2  −

2𝑃𝑖,𝑡′
𝑅𝑅 𝑝𝑖,𝑛,𝑡′𝑃𝑖,𝑡′

𝑅𝑅+𝑞𝑖,𝑛,𝑡′𝑃𝑖,𝑡′
𝐼𝑚

𝑃𝑖,𝑡′
4  

𝑌𝐷
(𝑅𝑅,𝐼𝑚) (i, i) = 𝑞𝑖,𝑛,𝑡′

𝑃𝑖,𝑡′
2  −

2𝑃𝑖,𝑡′
𝐼𝑚 𝑝𝑖,𝑛,𝑡′𝑃𝑖,𝑡′

𝑅𝑅+𝑞𝑖,𝑛,𝑡′𝑃𝑖,𝑡′
𝐼𝑚

𝑃𝑖,𝑡′
4  

𝑌𝐷
(𝐼𝑚,𝑅𝑅) (i, i) = 𝑞𝑖,𝑛,𝑡′

𝑃𝑖,𝑡′
2  −

2𝑃𝑖,𝑡′
𝑅𝑅 𝑝𝑖,𝑛,𝑡′𝑃𝑖,𝑡′

𝐼𝑚−𝑞𝑖,𝑛,𝑡′𝑃𝑖,𝑡′
𝑅𝑅

𝑃𝑖,𝑡′
4  

𝑌𝐷
(𝐼𝑚,𝐼𝑚) (i, i) = 𝑝𝑖,𝑛,𝑡′

𝑃𝑖,𝑡′
2  −

2𝑃𝑖,𝑡′
𝐼𝑚 𝑝𝑖,𝑛,𝑡′𝑃𝑖,𝑡′

𝑖𝑚−𝑞𝑖,𝑛,𝑡′𝑃𝑖,𝑡′
𝐸𝑅

𝑃𝑖,𝑡′
4  
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Gradient Factor Determination 
• Step 3: Using the branch current flow equations, the gradients of branch current flows are determined as a 

function of the derivatives of nodal voltages and current injections:       

𝜕𝐼𝐷𝑗,𝑡′
𝑅𝑅

𝜕𝑚𝑛,𝑡′
 = 𝑦𝐷𝑗𝐼𝑚

𝜕𝑉𝐷,𝑡′𝐼𝑚

𝜕𝑚𝑛,𝑡′
−
𝜕𝑉𝑗,𝑡′

𝐼𝑚

𝜕𝑚𝑛,𝑡′
− 𝑦𝐷𝑗𝑅𝑅

𝜕𝑉𝐷,𝑡′𝑅𝑅

𝜕𝑚𝑛,𝑡′
−
𝜕𝑉𝑗,𝑡′

𝑅𝑅

𝜕𝑚𝑛,𝑡′
 

𝜕𝐼𝐷𝑗,𝑡′
𝐼𝑚

𝜕𝑚𝑛,𝑡′
 = 𝑦𝐷𝑗𝐼𝑚

𝜕𝑉𝐷,𝑡′𝑅𝑅

𝜕𝑚𝑛,𝑡′
−
𝜕𝑉𝑗,𝑡′

𝑅𝑅

𝜕𝑚𝑛,𝑡′
+ 𝑦𝐷𝑗𝑅𝑅

𝜕𝑉𝐷,𝑡′𝐼𝑚

𝜕𝑚𝑛,𝑡′
−
𝜕𝑉𝑗,𝑡′

𝐼𝑚

𝜕𝑚𝑛,𝑡′
 

• Step 4: Using the gradients obtained from Steps 1, 2, and 3, 𝜕𝐽𝑅𝑛
𝜕𝐶𝑛

 and 𝜕𝐽𝐶𝑚
𝜕𝐶𝑛

 can be determined through 
straightforward algebraic manipulations.  
 

• As an example, the gradient of reward function w.r.t. the action 𝑃𝑛,𝑡′
𝐷𝐷  is calculated as:        

𝜕𝐽𝑅𝑛
𝜕𝑃𝑛,𝑡′

𝐷𝐷  = � 𝜆𝐷,𝑛𝐹 2𝑚𝑓 + 𝑏𝑓 − 𝜆𝑛𝑅
𝜕𝑉𝐷,𝑡′𝑅𝑅

𝜕𝑃𝑛,𝑡′
𝐷𝐷 𝐼𝐷𝑗,𝑡′

𝑅𝑅 + 𝑉𝐷,𝑡′𝑅𝑅
𝜕𝐼𝐷,𝑡′𝑅𝑅

𝜕𝑃𝑛,𝑡′
𝐷𝐷 +

𝜕𝑉𝐷,𝑡′𝐼𝑚

𝜕𝑃𝑛,𝑡′
𝐷𝐷 𝐼𝐷𝑗,𝑡′

𝐼𝑚 + 𝑉𝐷,𝑡′𝐼𝑚
𝜕𝐼𝐷,𝑡′𝐼𝑚

𝜕𝑃𝑛,𝑡′
𝐷𝐷

𝑡+𝑇

𝑡′=𝑡
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Consensus-based Multi-agent Learning 
• Using the gradient factors, the QCLP is fully specified and can be solved at each policy update 

iteration for training the agents’ policy learning framework.  

Step I Initialize:  

Step II Weighted averaging operation (global constraints):  

𝜃𝑛𝑡(0) ← 𝜃𝑛𝑡−1 
• The previous values of learning parameters 𝜃𝑛𝑡−1 are considered 

as initial values for 𝜃𝑛𝑡(0).  

�̅�𝑛 𝑘 = � 𝑤𝑛(𝑖′)𝜆𝑛′(𝑘)
𝑁𝑛

𝑛′=1

 
• For global constraints, MG agent 𝑖 receives the Lagrangian 

multiplier 𝜆𝑛′(𝑘) from its neighboring MG agents and combines 
the received estimates using weighted 𝑤𝑛(𝑖′) averaging �̅�𝑛 𝑘 .   

• Two challenges when solving this problem:  
(i) the size of the DNN parameters 𝜃 can be extreme large, which results in high computational 

cost during training;  
(ii) the control policy privacy of the MG agents might not have access to each other’s control 

policies, cost functions, and local constraints on assets.  

• We propose a multi-agent consensus-based constrained training algorithm:  
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Consensus-based Multi-agent Learning 
Step III Primal gradient update (global constraints):  

Step IV Projection on local constraints:  

�̅�𝑛 𝑘 = 𝜃𝑛𝑡 𝑘 − 𝜌1 𝑔𝑛𝜃𝑛𝑡 𝑘 + 𝑏𝑚′𝜃𝑛𝑡 𝑘 �̅�𝑛 𝑘  • MG agent 𝑖 updates 𝜃𝑛𝑡  by employing a gradient descent 
operation with 𝑔𝑛, 𝑏𝑚′ and step size 𝜌1.  

• MG agent 𝑖 projects the local learning parameters 𝜃𝑛𝑡  to the 
feasible region defined the gradients of the local constraints.  

𝜃𝑛𝑡 𝑘 + 1 = 𝑚𝑜𝑔min
𝜃

�̅�𝑛 𝑘 − 𝜃  
s.t.  

𝐽𝐶𝑚 𝜃𝑛𝑡(0) + 𝑏𝑚𝑇 𝜃𝑛𝑡(0) − 𝜃 ≤ 𝑑𝑚,∀𝑚 

1
2 𝜃𝑛𝑡(0) − 𝜃 𝑇𝐻𝑛 𝜃𝑛𝑡(0) − 𝜃 ≤ 𝛿,∀𝑖 

Step V Dual gradient update:  

𝜆𝑛(𝑘) = �̅�𝑛 𝑘 + 𝜌1 𝑏𝑚′𝜃𝑛𝑡 𝑘 + 1 − 𝑑𝑚′
+

 • MG agent 𝑖’s estimations of dual variable 𝜆𝑛 for the global 
constraints can be updated using a gradient ascent process over �̅�𝑛.  

Note that MG agent 𝑖 only shares the Lagrangian multiplier with its neighboring MG agents, not critical 
control policy and actions.    
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SMAS-PL Training and Implementation  
• Offline Training: 

• A multi-agent framework is used to train 
the policy function of each MG agent 

• The agents repeatedly estimate and 
communicate the Lagrangian multiplier of 
global constraints.  

• The agents solve its own local constraints.  
• Online Implementation: 

• First, the agents receive the latest states 
and input them into the trained DNNs to 
obtain the mean and covariance matrices 
of the policy functions.  

• Then samples are generated from the 
multivariate Gaussian distributions.  

• These samples are averaged and passed to 
the local controllers of each controllable 
asset as a reference signal.  
 

Update states 

Calculate 
gradient factors 

Distributed policy 
optimization 

Update actions 

Check convergence 

Output trained policy 

Initialization 
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Backtracking Strategy  To ensure feasibility, we can add a backtracking strategy 
into the proposed solution: 

𝑑𝑚∗ = 𝜏 × 𝑑𝑚 

1. Power flow engine (PFE):  
• The PFE receives the control actions from the agents and 

runs a simple power flow program.  
• If no constraint is violated, the control signals are passed 

to controllable assets.  
• If some constraints are violated, then the PFE will engage 

the backtracking process 
2. Backtracking module:  

• The backtracking module tightens the upper-bound 
limits (𝑑𝑚) for the constraints that have been violated. 

• The parameters of the trained DNNs will be re-updated 
and with the modified upper-bounds.  

• The purpose of tightening the upper-bound is to provide 
a safety margin.  

• In this paper the tightening process is performed using a 
user-defined coefficient multiplier, 0 < 𝜏 < 1, as 
follows. 
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Test system: 
• Modified 33-bus distribution system 
• Modified 13-bus MG system 
• The average capacities for DGs in MGs are 60 kWh.  
• The average capacities for ESSs in MGs are 20 kWh, the 

maximum charging/discharging rate is 4 kW, and the 
charging/discharging efficiencies are 95% and 90%, 
respectively.  

28 

Simulation: Setup 

Taring and testing data: 
• The input data for load have PV have 15 min time 

resolution are obtained from smart meter database to 
provide realistic numerical experiments.  

• The training and testing datasets are selected through 
uniform randomization to ensure that the proposed 
solver functions reasonably.  



Iowa State University 29 

• All hyperparameters have been selected through 
cross-validations, including repeated try-outs.  

• Each episode is a learning update iteration based 
on the data that comes from one moving decision 
window.  

• The length of the moving window is 4 samples 
with a 15-minute time step, which gives us a 1-
hour window.  

• The DNNs have 3 hidden layers, 1 input layer, 
and 1 output layer, where each hidden layer 
consists of 10 neurons.  

• The activation function of each layer of the DNN 
is hyperbolic tangent sigmoid transfer function 
(tansig).  

Simulation: Hyperparameters 
All selected DNN hyperparameters and other user-defined coefficients in simulations are summarized in the 
following table:  
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Simulation: Results 
• In the case study, action selection is performed by sampling 100 times from the trained policy functions 

(distribution).  
• A trade-off is involved in choosing the number of action samples: 

• If this number of samples is too large, then the selected action will converge to the policy mean, which 
implies that model uncertainties are ignored. 

• If this number of samples is too small, then the outcome can deviate from the learned mean value, which can 
also result in low-quality outcomes.  

• Then the dispatch action is obtained by averaging the selected samples.  
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Simulation: Benchmark Methods 
To demonstrate the effectiveness of SMAS-PL, two benchmark RL methods have been considered: 

𝑅𝑡′ = − � � −𝜆𝑛𝑅𝑃𝑛,𝑡′
𝑃𝐶𝐶 + 𝜆𝑛𝐹𝐹𝑛,𝑡′

𝑡+𝑇

𝑡′=𝑡

𝑁

𝑛=1

− 𝜌𝑚′ � � 𝐽𝐶𝑚′,𝑡′−𝑑𝑚′,𝑡′

𝑡+𝑇

𝑡′=𝑡

𝑀𝑐
𝐺

𝑚′=1

− 𝜌𝑚 � � 𝐽𝐶𝑚,𝑡′−𝑑𝑚,𝑡′

𝑡+𝑇

𝑡′=𝑡

𝑀𝑐
𝐿

𝑚=1

 

ℒ𝜃 = 𝐸 𝑅𝑡′ + 𝛾max
𝐶𝑡′+1

𝑄𝜃∗ 𝑠𝑡′+1, 𝑚𝑡′+1 − 𝑄𝜃 𝑠𝑡′ 𝑚𝑡′
2  

𝜃 ← 𝜃 + 𝛿
𝜕ℒ𝜃
𝜕𝜃  

• The benchmark unconstrained policy learning (U-PL) method leverages the same algorithm as the proposed 
SMAS-PL, however, certain constraints are removed during the training process of U-PL.  

• The benchmark deep Q-network (DQN), which uses DNNs to approximate the Q-function and provide Q-value 
estimation for discretized control actions.  

• To consider constraints in DQN, penalty terms are added to the reward function of the benchmark DQN to discourage 
constraint violation 

• The DNN is parameterized by 𝜃 as a function approximator to represent the Q-value function. The temporal 
difference (TD) learning algorithm is used to train the DNN by minimizing the mean-squared TD error ℒ𝜃 



Iowa State University 32 

Simulation: Comparison  

• Both SMAS-PL and U-PL both outperform DQN in 
term of the total reward.  

• Both SMAS-PL and U-PL both leverage the proposed 
iterative and distributed technique to adaptively tune 
the Lagrangian multipliers through information 
exchange between MG agents.  

• DQN needs to manually design penalty coefficients for 
constraint violations, which either offers inadequate 
penalization of the constraint violations or excessive 
punishment for the constraints.  

• The rewards under SMAS-PL, U-PL, and DQN are compared with each other.  
• Note that here, the moving average rewards and the episode rewards of different methods are depicted by dark 

and light curves.  
• Two cases are considered in implementing U-PL: (i) no DG capacity constraints for MG1 and MG2; (ii) no DG 

capacity constraints for MG1-MG5.  
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Simulation: Comparison  
This table presents comparisons between the benchmark optimization-based method, the benchmark DQN and the 
proposed SMAS-PL, including the average daily cost of operation over numerous scenarios, average online decision 
time, and MG privacy maintenance. 

• The daily cost for the proposed SMAS-PL is close to the centralized optimization solver. 

• The online decision time for the proposed SMAS-PL is 1.4 seconds per agent (samples the actions from the 
learned multivariate Gaussian distributions), which is shorter than the 10.3 seconds for DQN (solve an 
optimization problem for optimal action) and 145.5 seconds for the centralized optimization solver (solve a 
large-scale optimization problem).  

• Due to its distributed nature, the proposed SMAS-PL method maintains the privacy and data ownership 
boundaries of individual MG.  
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Simulation: Convergence 

• The changes in 𝜃𝜇are relatively larger than 
that of 𝜃Σ.  

• This is due to the higher levels of sensitivity 
of MG agents’ objective functions to the mean 
𝜇 of the control actions compared with their 
covariance Σ. 

The following figures show the convergence of a selected group of learning parameters,  and  
during the training process, for each MG agent. 
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This figure shows the constraint return values during the training iterations. 
• Two cases are built with and without DG capacity constraints in 𝑀𝑀1. 
• The dark blue and red curves represent averaged constraint returns and the light blue and red areas around 

the average curves represent variation ranges of the constraint return for the SMAS-PL and black-box RL, 
respectively.  

• U-PL violates the upper boundary for DG 
generation limit (i.e., local constraint case 
study).  

• SMAS-PL solver satisfies the DG generation 
capacity constraints, which implies that the 
local constraints can be safely maintained 

Simulation: Check Local Constraints  
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Simulation: Check Global Constraints  
This figure shows one example of the iterative distributed training convergence process for a policy gradient 
update step. 

• Dashed curves represent the Lagrangian multipliers for network branch current constraints 

• Solid curves represent the Lagrangian multipliers for network nodal voltage constraints 

• As can be seen, the Lagrangian multipliers  
reach zero over iterations of the proposed multi-
agent algorithm,  

• It indicates that all the global constraints, 
including nodal voltage and branch current 
limits, are satisfied and feasible solutions are 
obtained.  

• It also means that the bus voltage and line 
current constraints are not binding for this case. 



Iowa State University 37 

Simulation: Check Global Constraints  
When handling binding global constraints. 
• The first figure shows a line flow constraint in the grid under 

the proposed SMAS-PL and a U-PL baseline.  
• The U-PL has generated infeasible decisions that violate the 

constraint, while SMAS-PL has prevented the flow to go 
above its upper bound. 

• In second figure, the Lagrangian multipliers for this binding 
constraint reach a non-zero constant number over iterations.  

• This also shows the agents’ estimations of Lagrange 
multipliers for a global line flow constraint. 

• The proposed SMAS-PL can reach consensus between 
agents on the value of the multiplier without having any 
access to each other’s policy functions,  
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Simulation: Impact of Backtracking 
To validate the tightening parameters level (𝑑𝑚∗ = 𝜏 × 𝑑𝑚) in backtracking strategy, we have studied the impact 
of different 𝜏 values on the reward.  

• At episode 400, the value of 𝜏 is decreased from 1 to 0.95, 0.9 or 0.85. 

• When 𝜏 is close to 1 (i.e., 0.95 or 0.9), the 
reward values are very close to each other. When 
𝜏 =0.85, the reward drops significantly. 

• In our simulation, we have observed that 𝜏 =0.9 
is sufficient for ensuring feasibility for those few 
constraints that have been marginally violated in 
certain operation scenarios after one to two 
rounds of backtracking.  

• Note that this threshold needs to be fine-tuned 
for specific grids.  
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Simulation: Impact of Bad Network Data 
To validate the SMAS-PL under network data imperfection, we have compared the average reward obtained 
with perfect knowledge of network parameters and under bad network parameter information. 
• To simulate the impact of bad network parameter data on model performance, we have added random errors 

(with a 10% variance) to the network resistance (R) and reactance (X) parameters during the training 
process.  

 

• The bad network data will lead to errors in 
gradient factors. 

• Even though the learning process with bad 
network data shows more volatility and needs 
more time to reach convergence, the model 
still reaches reward values close to the ideal 
case.  

• However, due to the imperfect information, a 
loss of reward is inevitable.  

• We put topology change in the future work.  



Iowa State University 40 

• Conventional model-based optimization methods suffer from high computational costs when solving 
large-scale multi-MG power management problems. On the other hand, the conventional model-free 
methods are black-box tools, which may fail to satisfy the operational constraints. 

• Our proposed SMAS-PL method exploits the gradients of the decision problem to learn control 
policies that achieve both optimality and feasibility. 

• To enhance computational efficiency and maintain the policy privacy of the control agents, a 
distributed consensus-based training process is implemented to update the agents’ policy functions 
over time using local communication. 

 

Conclusions 
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1. During the service restoration process for low-inertia inverter-dominated MGs, then the frequency 

response due to large load pick up shall be considered.  

• We are developing a frequency dynamics constrained sequential service restoration method.  

2. If the topology changes, the policy function for each MG agent needs to be re-trained to guarantee 

the satisfaction of constraints.  
• Meta learning + RL: Meta learning is “learn to learning”. The meta-parameters such as learning 

rate, exploration rate and discount factor, can be pre-trained.  
• Topology embedded graph convolutional network (GCN) + RL: GCN develops an explicit way 

of integrating topological structures into the convolution algorithm. The basic idea behind GCN 
is to distill the high-dimensional information about a node’s graph neighborhood into a vector 
representation with dimension reduction.  

 

 

 

Future Work 
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Gradient Factor Determination 
The gradients 𝜕𝐶𝑛

𝜕𝜋𝑛
, 𝜕𝜋𝑛
𝜕𝜇𝑛

 and 𝜕𝜋𝑛
𝜕Σ𝑛

 are obtained using the probability density function of multivariate Gaussian 
distribution. The multivariate Gaussian distribution is:  

𝑓(𝑚;𝜇, Σ) =
1

Σ 2𝜋 𝐷
𝑖−

1
2 𝑥−𝜇 𝑇Σ−1 𝑥−𝜇  

𝜕𝑓
𝜕𝜇 =

Σ−1 𝑚 − 𝜇

Σ 2𝜋 𝐷
𝑖−

1
2 𝑥−𝜇 𝑇Σ−1 𝑥−𝜇  

The derivative of distribution function 𝑓 w.r.t. mean vector 𝜇 and covariance matrix Σ can be written as follows:    

𝜕𝑓
𝜕Σ

= −
1
2
Σ−1 − Σ−1 𝑚 − 𝜇 𝑚 − 𝜇 𝑇Σ−1

Σ 2𝜋 𝐷
𝑖−

1
2 𝑥−𝜇 𝑇Σ−1 𝑥−𝜇  

The derivative of distribution function 𝑓 w.r.t. variable x is shown as follows:    

𝜕𝑓
𝜕𝑚 =

Σ−1 𝑚 − 𝜇

Σ 2𝜋 𝐷
𝑖−

1
2 𝑥−𝜇 𝑇Σ−1 𝑥−𝜇  
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Gradient Factor Determination 
The gradients of DNNs’ outputs w.r.t. DNN parameters 𝜕𝜇𝑛

𝜕𝜃𝜇𝑛
 and 𝜕Σ𝑛

𝜕𝜃Σ𝑛
 are obtained by using a back-

propagation method: 
• In each iteration, the latest values of state variables are employed as inputs of the DNNs.  
• The back-propagation process exploits chain rule for stage-by-stage spreading of gradient 

information through layers of the DNNs, starting from the output layer and moving towards 
the input layer.  

• To enhance the stability of the back-propagation process, a simple batch approach is adopted, 
where the gradients obtained from serval sampled actions are averaged to ensure robustness 
against outliers.  
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