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Problem Summary

Problem statement: Wind turbine generators are not completely
understood, and there is room to make better use of renewable
energy resources to improve power system performance.

1) A discrepency exists between claimed and measured DFIG
reactive power capability and requires investigation.

2) Misconceptions exist regarding the cability of DFIG rotor inertia
In providing frequency regulation in high-wind power systems.

3) A gap exists in DFIG control capability when applied in low-
Inertia power systems.



Project Components

1) Discrepancy with turbine manufacturer and measured reactive power capability
a. Derivation and case-studies to prove the discrepancy.

b. Propose an improvement of range with alternative terminal connection (grid-
connected rotor vs. grid-connected stator).

2) DFIG inertial frequency response capability
a. Investigate response of electromagnetic coupling to rotor mass.
b. Test a generator's inertial response with hub-emulating flywheel.

c. Demonstrate natural frequency response capability, but what control is
needed?

3) Transient frequency control for low-inertia power systems
a. Develop control technique to complement existing DFIG systems.

b. Creates a specified balance of 'electrical’ and 'mechanical’ dynamics
(deviation of grid frequency v.s. deviation of rotor speed).



Objective I

Objective Il

Objective I

Objectives

Verify claims of reactive power capability to meet RTE
requirement of providing Qgrig = 1£0.3Prated VAR,

particularly at low wind speeds.

Hardware demonstration of the hypothesis that it is
possible to rely on physical inertia of DFIG wind
turbines to support load-transients in power systems
having low inertia and portfolios rich in wind energy.

Fill the gaps of DFIG inertial-response capability to
achieve reliable frequency regulation via wind power.



Proposed Approaches

For Objective I

a) Perform analytical derivations of reactive power generation limits
over the wind speed range to validate claims.

b) Propose a type-lll wind turbine configuration with grid-connected
rotor windings for increased reactive power capability.

For Objective II:

a) Linearize inertial frequency response without controller
Influence to evaluate natural ability for load-transient support.

b) Simulate existing wind turbine inertial response to local-
Islanding and load-transient (step-change) operation.

For Objective Il

a) Develop new fast-transient control technique to leverage wind

turbine physical inertia to support frequency during load transient.
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OQutcomes

» Case studies of two DFIGs (one theoretical and one in hardware) show
that these generators can meet and exceed requirements of reactive power
capability . We do not see theoretically diminished limitation at low wind speed.

» Theoretical inertial response analysis suggests a natural capability for stable
load-change support from DFIG wind turbine generators, similar to the action of
synchronous generators.

= Developed an inertial response control method to prescribe balance of
transient In electrical and mechanical systems (with hardware experimental

proof).

Publications:;

[1] N. David and Z. Wang, “Rotor-Tied Configuration of DFIG Wind Turbines for Improving Reactive Power
Support Capability,” accepted for 2018 IEEE General Meeting, August 2018.

[2] N. David and Z. Wang, “Physical rotor inertia of DFIG wind turbines for short-term frequency regulation in
low-inertia grids,” in 2017 IEEE General Meeting, July 2017.

[3] N. David, Z. Wang, F. Xavier, and T. Prevost, “Fast frequency response by DFIG wind turbines for power
systems with low physical inertia,” in review for IEEE Transactions on Energy Conversion.



Objective | — DFIG reactive power capability
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Objective | — DFIG reactive power capability

Theoretical results of machine-to-grid reactive power

Investigation:

O We evaluate equivalent
circuit parameters, with
core loss consideration,
at nameplate limits.

O We Concur with notion for
reactive power capability
beyond RTE requirement.

1 Possible cause for reduced
Q at low wind — turbine is

configured for high slip, and
the converter voltage is low

considering filter drop.
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Objective | — DFIG reactive power improvement

We showed the capability, but can we improve it? Extract more??

MGT Reactive Power
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Objective Il — DFIG inertial capability

Experimental system:

Dyno control DFIG Flywheel (CB1 Dynamometer CB2 Local loads
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» Flywheel added for hub mass.
= Torque controlled by converter.
= Circuit breakers to induce load transient.
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Objective Il — DFIG inertial capability
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= Transient transferred to rotor shaft.

Af, Hz

= Frequency is within =500 mHz.

» Torque adjusts to match the load.
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 Natural inertial capability (when torque and reactive power control

Influences are neglected) is sufficient to ride through a 10% load change
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Objective Il — DFIG inertial response, State of art

Deficencies: _ _ _
Response in low-inertia system:

Slower torque control, A — E extends time to
nadir. Droop control (F) oscillates.

= Droop control is a
‘proportional’ method, with
steady-state error and
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= Direct voltage controllers 0 005 01 015 02 025 03 035
are very fast but create
current harmonic

distortion. Goals to striving for:

= Stability of droop is not O Frequency response which is inertial,
guaranteed. fast, and without steady-state error.

» Very-fast phase-locked- O Capitalize on natural capability of the
loops require high- physical rotor inertia of DFIG turbine.

performance and
expensive controllers. 12



Proposed Control for fast DFIG Inertial response
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Conclusion and Future Work

* DFIG wind turbines can be used in alternative ways which improve
power system performance and reliability while making better use of
the renewable energy asset.

= Stated reactive power claims may be underperforming.

* DFIG wind turbines are capable of providing inertial frequency
response to support load transients.

» Depth and duration of DFIG wind turbine inertial response can be
prescribed using the proposed control scheme.

= Ancillary performance benefits can be obtained without hardware or
communication additions.

= We will perform similar work for PMSG in the final quarter.
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