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Presentation Overview 
• Introduction to PMU Data 

• Deep Graph Learning for Real-Time Event Identification  

– Existing Work and Challenges 

– Graph Structure Parameterization  

– Multi-Scale Data Feature Extraction 

• Conclusion and Future Work 

 



• This work is supported by the U.S. Department of Energy Office of Electricity under 
DEOD0000910. It focuses mainly on the use of real PMU data to develop real-time 
event identification using machine learning techniques.  
 

• The available PMU data is obtained from 440 PMUs installed across three U.S. 
transmission interconnections that include Texas, Western, and Eastern 
interconnection. Most data segment is archived at 30 frames/s and the remaining is 
archived at 60 frames/s. The total size of the dataset is more than 20 TB in Parquet 
form.  
 

• A total of 6767 event labels recorded by utilities are utilized to provide the ground 
truths.  

Background 



Introduction to Real-world PMU Data 
  Interconnection A Interconnection B Interconnection C 

Number of PMUs 212 43 188 

PMU Reporting Rate 
(Samples/sec) 

30 30, 60 30 

Data Size 3 TB 5 TB 12 TB 

Record Period 1 Year 2 Years 2 Years 

No. of Data Files 2576 4365 10496 

Total Number of Events 29 4854 1884 

% of Good Data 66% 
 70% (30 samples/sec) 
 75% (60 samples/sec) 

67% 



Event period 

Introduction to Real-world PMU Data 



Challenges: 
 Event identification based on a single PMU’s data may be inaccurate and unreliable. 

 
 How to take full advantage of all PMUs’ data to improve the accuracy of event 

identification? 
 

 The event identification model may suffer the curse of dimensionality if all PMUs’ 
data is used. 
 

 Feature reconstruction may be challenging if multiple PMUs’ data is used. As the 
number of PMUs increases, the computational complexity of the feature 
reconstruction grows significantly, which impacts the real-time performance of the 
event identification model. 

Challenges of Data-driven Event Identification 



Solutions 
Previous Solution: 
 The graph learning task and event identification 

task are separated (suboptimal). 
 The graphs are not event type-specific. 
 Generating a single statistical graph for entire 

dataset (ignore the uncertainty of event locations). 

Our Solution: 
 Joint learning of the latent interaction and the event 

identification model. 
 The graphs are event type-specific. 
 Generating one interaction graph for each single event.   



Graphical PMU-based Event Identification 
Encoder: Graph 
Inference 

Encoder: Graph 
Sampling 

Decoder: Data 
feature extraction 

Decoder: Event 
identification  

• The overall model follows an 
auto-encoder structure. 
 

• Encoder: inferring the 
interaction graph given PMU 
data streams. 
 

• Decoder: performing the event 
classifier by combining the 
features and the constructed 
graph 



• Node: PMU 

• Edge: The interdependence between two PMUs. 

• Node/Edge Embedding: Using a vector to 
represent a node/edge.  

• We have utilized the Bernoulli distribution to 
represent the graph structure.  

• We have utilized the deep relational network for 
inferencing the latent relationship between 
different nodes. 

Edge 
embedding 

Node 
embedding 

Edge 
embedding 

Node 
embedding 

Concatenation 
operation 

Aggregation 
operation 

Graphical PMU-based Event Identification 



Graph Structure Parameterization (Encoder)  
Learned Bernoulli Distribution  

• For each event, one interaction graph is sampled 
from the learned Bernoulli distribution, which 
can handle the uncertainty of event locations. 
 

• We have tested three different graphing sampling 
methods: 
• Stochastic Sampling (unweighted graph) 
• Deterministic Thresholding (unweighted 

graph)    
• Continuous Sampling (weighted graph) 



Graph Structure Parameterization – Graph Sampling   
Since Bernoulli distribution-based parameterization imposes a challenge on 
differentiability back-propagation process, we have utilized the Gumbel 
reparameterization technique: 
 

 
 
 

where, 𝑔𝑚 is independent and identically distributed (i.i.d) sample drawn from 
Gumbel distribution with 0 location and 1 scale parameters, τ is a smooth 
coefficient and is assigned as 0.5 in this work.  



Multi-Scale Data Feature Extraction (Decoder) 
Our Solution: 
 Using inception-based model to capture multi-scale 

data features. 
 Using dilated convolution layer to replace standard 

convolution layer for reducing the complexity of the 
model. 

Standard Feature Extractor  Inception-based Model 

Previous Solution: 
 Wavelet transform-based multi-resolution 

analysis (high computation burden). 
 MTF-based feature reconstruction (high 

computation burden). 
 Standard CNN-based feature extractor (only 

capture single-scale feature). 

Wavelet Transform 

 Convolutions with 
multiple kernel 

sizes (high model 
complexity) 



• The main idea of dilated convolution is to insert 
zeros between two consecutive features in the 
convolutional kernels, which significantly 
increases the receptive filed. 
 

• Based on the figure, it is clear a dilated 3×3 
convolutional kernel with d = 2 has a similar 
receptive field with a standard 5×5  
convolutional kernel. 
 

• d is a dilation rate that defines a spacing between 
the values in a convolutional kernel. 

Same kernel size but 
larger receptive field  

Standard 
Convolution Layer 

d-2 Dilated 
Convolution Layer 

Multi-Scale Data Feature Extraction (Decoder) 



Hyperparameter Tuning 
• Hyperparameter: Adjustable parameter whose value is used to control the learning 

process.  

• Hyperparameters are tuned via a grid search strategy: the number of hidden neurons, 
the threshold of graph sampling, the smooth coefficient of Gumbel-Max technique, 
dilated rate, the number of graph-layer.  

• The proposed method is verified using the data of one interconnection. The event logs 
are utilized as the ground truths (around 9600 data samples: 4800 event samples + 
4800 normal operation samples).  

• We perform a temporal 70/15/15 split for training, validation, and testing, respectively. 



Numerical Results 
• We compare three different event identification methods: 

Our proposed method: graph neural network-based method with interaction graphs. 

Non-deep learning method without interaction graphs: support vector machine 
(SVM).  

Deep learning method without interaction graphs: CNN-based method.  

• All methods are evaluated using the mean absolute percentage error (MAPE). 

• The average online computation time for performing the proposed method is around 
0.0156 s (using a standard PC with an Intel(R) Xeon(R) CPU running at 4.10GHZ and 
with64.0GB of RAM and an Nvidia Geforce GTX 1080ti 11.0GB GPU). 



• In this case, the deterministic thresholding method shows a slightly better performance than 
two other sampling methods. 

• The difference between the training and testing accuracy indicates the overfitting problem. 

Comparison of Three Graph Sampling Methods 



• Based on different overfitting strategies,  the training accuracy decreases from around 84% to 
around 82%; the testing accuracy increases from 68% to around 78%.  
 

Comparison of Three Methods to Prevent Overfitting 



• This table summarizes the event classification testing accuracy of the proposed model and 
existing two methods. 
 

• Based on testing accuracy, the proposed method has a better performance (78%) than other 
methods ({60%,63%}) in this case, indicating that data-driven inference of interaction graphs 
is effective. 

Comparison of Three Event Identification Methods 



Conclusion and Future Work 

• PMUs provide high-granularity and synchronized measurements, including voltage and 
current phasor, frequency, and frequency variation, which enables capturing most 
dynamics of power systems. 
 

• We demonstrated how to use multiple PMU data streams together with deep learning 
for identifying system events. 
 

• In the future, this work will be extended by integration with semi-supervised learning 
and federated learning techniques and to deal with the event mismatch and data privacy 
problems prevalent in real-world grids. 



Thank you! 
Q&A 
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