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Background and motivation
• A simple power system model is a graph with transmission lines as edges and 

substations as vertices.
• Power systems are interconnected, so outages can propagate in the network.
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Background and motivation
• A cascade is a sequence of outages that starts with initial outages and then propagates.
• Initial outages: random outages at random times.
Various causes initiate cascading, like weather, earthquakes, human, tree, equipment failures, operational or 
planning errors, etc.
• Propagating outages: arise jointly from the preceding outages and the changing power system state. 
Outages propagate because of transmission line overload, hidden failures of protection systems, misoperations
or designed operations, etc.
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Background and motivation
• Cascading is one of the main causes of blackouts.
• Large cascading outages are rare but have high impact. 
• A small set of system components contributes to large blackouts. 
• Upgrade critical components to mitigate blackouts and reduce risk. 
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Table. The total number of power outages recorded in the US from 2008 to 2016

Source: Eaton, Blackout tracker United States annual report 2016.



Background and motivation
• Transmission Availability Data System(TADS) 

collects outage data in North America.

• Bonneville Power Administration(BPA) makes its 
outage data public. 
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Out 
Datetime

In Datetime Name Voltage
(kV)

Duration
(minutes)

Outage
Type

Dispatcher 
Cause

Field Cause System In 
Control

MW Intrpt District Outage
ID

01/29/1999 08:10 01/29/1999 08:10 xxx 115.0 0 Auto Weather BPA Trouble Unknown LGV 114174

01/29/1999 08:10 01/29/1999 08:10 xxx 34.5 0 Auto Weather BPA Trouble Unknown LGV 114175

01/29/1999 08:10 01/29/1999 08:10 xxx 115.0 0 Auto Weather BPA Trouble Unknown LGV 114176

Source: Bonneville Power Administration

Table. Raw outage data
Figure. BPA area



Background and motivation
Why use historical outage data?
• Standard outage data is routinely collected; some data is publicly available. 
• Studying real outage data does not need to make assumptions about cascading 

mechanisms. 
• Model-based approaches can only approximate a subset of cascading 

mechanisms. 
• Simulation is just starting to be benchmarked and validated.
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Problem statement
Given historical outage data, 
• how are cascading outages propagating in power systems?
• which lines contribute most to the propagation of outages?
• which lines have high outage rates? 
• how to test the mitigation effect after upgrading critical lines?

A challenge is that historical outage data is limited. 
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Objective
Develop statistical methods applied to real outage data so that we can 
understand the propagation of cascading outages, identify critical lines in 
propagating outages and initial outages, and evaluate the mitigation effect.

In particular,
• form a Markovian influence graph that describes probabilities of transitions 

between line outages. The quasi-stationary distribution of this Markov chain 
identifies critical lines that are most involved in the propagation of large 
cascades.
• build a Bayesian hierarchical model leveraging partial transmission line 

dependencies to estimate individual transmission line outage rates. 
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Literature review
• Influence graph models
• Influence is the relation between two components in terms of outages; influence graph 

model visualizes influences on a graph. 
• are first proposed in [1], and further developed in [2][3].
• quantify influences between component outages in three ways: (1) conditional 

probabilities [1-3]; (2) line outage distribution factors [4]; (3) correlations [5]. 
• previous influence graphs consider single components and do not exploit Markov 

structure. 

• Our influence graph is formed from real outage data, solves sparse data 
problem, has multiple outages as states, exploits Markov structure, and 
computes uncertainty of results. 
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Literature review
• Estimating transmission line outage rates:
• Some research uses Bayesian models, estimates outage rates for a group of 

components: outage counts in a substation district [8], counts in arbitrary areas [9], 
counts in distribution feeders [10].
• Many researchers study predicting outage probabilities in a short term according to 

weather conditions [11][12][13]. 

• little research is on individual transmission line outage rates.
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Part 1. Markovian influence graph driven 
by historical data
Collaborators:
Arka Ghosh, Department of Statistics, Iowa State University
Alexander Roitershtein, Texas A&M
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Markovian influence graph 
(red) from real data 
on real grid (blue)
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Physical network and influence graph
• Components interconnected with 

each other form a physical network.
• Influence graph describes influences 

between components 
probabilistically in cascading 
outages.  



Introduction
• Why a new influence graph?
• Form a influence graph from historical data. 
• Simultaneous outages are common. Previous influence graphs consider single 

components [2][3][9]. 
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Introduction
• Group line outages into cascades, then into generations within each cascade 

according to outage times.
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Out 
Datetime

In Datetime Name Voltage
(kV)

Duration
(minutes)

Outage
Type

Dispatcher 
Cause

Field Cause System In 
Control

MW Intrpt District Outage
ID

01/29/1999 08:10 01/29/1999 08:10 xxx 115.0 0 Auto Weather BPA Trouble Unknown LGV 114174

01/29/1999 08:10 01/29/1999 08:10 xxx 34.5 0 Auto Weather BPA Trouble Unknown LGV 114175

01/29/1999 08:10 01/29/1999 08:10 xxx 115.0 0 Auto Weather BPA Trouble Unknown LGV 114176



Objective:
Form a rigorous Markovian influence graph using historical outage data to 
identify critical lines and test mitigation of large cascades. 

Introduction
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• Markovian influence graph is a rigorous Markov chain:
• Discrete;
• States: generations of cascades, multiple outages as a single state;

A toy example
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What type of Markov chain
• This Markov chain has an absorbing state: {} or {no line}.

• Transition matrices Pk is variant with time step k to capture increasing propagation rates.
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• Three steps to mitigate the problem of limited data:
• group data of high generations together;
• Bayesian methods estimate stopping probabilities;
• adjust transition matrices to match propagation rates.

Methods of estimating transition matrices
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Transition count matrix



Compute cascade size distribution and its uncertainty
• Verify the model by comparing empirical 

cascade size (number of generations) 
distribution and distribution produced by 
the influence graph. 
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• Use bootstrap to estimate 95% confidence 
intervals.
• Probability of large cascades (> 9 generations) 

is within a factor of 1.5. 



• identify 10 critical lines (1.6% of total lines) in propagation by calculating the quasi-
stationary distribution, which is the dominant left eigenvector of submatrix of transition 
matrix;
• test mitigation: upgrade critical lines by reducing the corresponding columns of transition 

matrices by 80%, and recompute the cascade size distribution.

Identify critical lines and test mitigation
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The new influence graph generalizes and improves previous work in several 
ways:
• uses real outage data routinely collected by utilities.
• mitigates limited data problem with several new methods. 
• obtains a clearly defined Markov chain by including multiple outages as 

states. 
• exploits Markov structure to identify critical lines for mitigation.
• uses bootstrap to estimate uncertainty.

Summary
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Part 2. Bayesian hierarchical model of 
individual transmission line outage rates
Collaborators: 
Louis Wehenkel, University of Liege Belgium
James R. Cruise, Riverlane Research England
Chris J. Dent, Amy L. Wilson, University of Edinburgh Scotland 
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Introduction
Problem:
• Line outage rates are fundamental to reliability, but there is limited data.

Objective:
• Get better estimates of individual line outage rates by exploiting partial 

dependencies between transmission lines.
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Introduction
Two existing ways of estimating line outage rates. 
• A straightforward way assumes independent lines:

!""#!$ %#&!'( )!&( %* ! $+"( = %#&!'( -%#"&.
"#/0() %* 1(!).

the estimate is highly variable due to limited data.
• Group similar lines assuming perfect dependencies within a group, 

such as estimate a single outage rate for all 230kV lines or all lines in 
an area. 
• The is a middle ground between the two methods. 
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Introduction
Line outage rates are 
correlated in several ways
• Length, voltage rating, 

geographical location, 
network proximity
• Modeling dependencies: 

adjacency matrix, Gamma 
field.
• Our solution is the Bayesian 

hierarchical model.
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average number of outages in a year (transformed by log)



Introduction
Utility transmission line outage data
• Outages of 549 lines over 14 years.
• Neglect scheduled and momentary outages.
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Source: Bonneville Power Administration transmission services operations & reliability website.” [Online]. Available: https://transmission.bpa.gov/Business/Operations/Outages



Bayesian hierarchical model

• Considering line similarities between length !" and voltage rating !#. 
• Covariance matrix                                 models line spatial dependencies
• Σ% : districts. 
• Σ& : network distance. 
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Bayesian hierarchical model
• Weak informative priors have typical values as their means and have large 

variances.

• We use Hamiltonian Monte Carlo to draw posterior distribution samples. 
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Bayesian model produces uncertainty of outage rates
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95% credible intervals (blue bars) of outage rates 
and posterior means (black dots). 

Probability distribution of the outage rate 
for line number 12.



Bayesian estimates have better individual outage rates

• Bayesian estimates are less variable: they effectively double the data 
in terms of standard deviation. 
• That is, standard deviation of Bayesian estimates using 1-year data is equivalent 

to that of straightforward estimates using 2-year data. 

• Bayesian estimates are reasonable for rare counts.
• For example, both Line 29 and Line 11 have 0 count in the first year, but the 

estimated rates are 0.32 and 0.36 because line 29 has no outages, while line 11 
has 2 outages in the next 6 years. 
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Applying Bayesian estimates of individual outage rates

Detect lines with reduced reliability
• Does the outage rate in the 2nd 7-year 

increase significantly?
• Check probability 
• 8 lines are identified.
• Only 1 line is identified using the 

straightforward method. 
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Conclusions
The Markovian influence graph
• uses real data observed and routinely collected by utilities.
• mitigates limited data problem by several new methods.
• obtains a clearly defined Markov chain by including multiple outages as states.
• exploits asymptotic property to identify lines most involved in large cascades.
• estimates uncertainty of cascade size distribution.

The Bayesian hierarchical model
• estimates individual transmission line outage rates.
• leverages partial similarities between lines, including proximity, length, and rated 

voltage.
• has estimates with a lower SD for given data, or the same SD for less data.
• benefits reliability evaluation. 
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• Combining historical and simulated data
• The Markovian influence graph driven by historical data and the model-based simulation are 

complementary. 
• We can combine the two approached through the influence graph by forming the Markovian 

influence graph from historical data and simulation data for the same system, then taking the 
weighted sum of the two transition matrices. 

• Testing the Markovian influence graph in terms of load shed
• The Markovian influence graph in this work measures the cascade size in number of 

generations as a result of limitations of real outage data. 
• We can develop and test the Markovian influence graph in terms of load shed on three 

simulation models.
• Exploring the spatial characteristics of cascading propagation

• The spatial characteristics of cascading outages are not well studied. We can study the spatial 
patterns of cascading outages using some methods from the graph theory, such as minimum 
cuts and motifs. 

• Finding these patterns in cascading is very challenging, and no clear patterns may exist, but we 
have the data to be able to explore this.

Future work plan
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Thank you!
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