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Project Background

Smart Meter Data: A Gateway for
Reducing Solar Soft Costs with Model-
Free Hosting Capacity (MoHCa) Maps

» The objective of the project is to develop
scalable algorithms for estimating the voltage-
constrained and thermal-constrained HC at
smart meter locations through Data-driven
Model-free HCA method.

» The developed algorithms will be validated on

utility datasets and incorporated into Open %%
Modeling Framework (OMF.coop) for over 260 &

utilities and vendors throughout the US to use.
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Secondary Network Voltage Calculation L
»Integrating DERs into distribution networks introduces voltage - no . o — wooeR

issues. 1.05

»Model-free voltage calculation is a promising approach, yet e

existing research still presents certain limitations:

'g_T 1.03
°
g
'(>5 1.02
= Overlooking low-voltage secondary distribution network (SDNets) [8][9]
1.01
= Performing poorly for high-impact, low-probability extreme voltage
scenarios [10][11] ! |
voltage dlrop caused by E\:{ charging u
] 'Il'y;r]ncally black-box, lacking physics-informed interpretability [12][13] 0.9 e
Time

The illustration of DER influence on customer voltage

»We propose a model-free voltage calculation method for integrated primary-secondary networks based on a
customized physics-inspired neural network (PINN) by using only smart meter data.

Note: Primary Distribution Network (PDNet)  Secondary Distribution Network (SDNet) Power Flow (PFlw)
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PDNet-SDNets Coupled Power Flow Model\

Head node voltage for the SDNet

. . L bus b bus . Yus . bus, | b
» To assist the design of PINN model structure, we RS NI L - el L ~al )bus o o

develop a coupled power flow (PFIlw) model for
integrated primary-secondary networks.

| ¢IEEE

» The PFlw model explicitly captures the SDNets
PFlw using linearized power flow equations, and

i* | j
implicitly considers the influence from PDNet o N, ; leeNS T T =
Transmission Distribution «uuy Distribution PDNet | _ SDNet EA  customer

PFlw changes.

{ network Substation 7YY Y transfomer
The structure of integrated primary-secondary dlstrlbutlon networks

PDNet-SDNets coupled PFlw model {-E};-:-“I}-q-“:;;l-; “\i Model the SDNets using linearized
Customers’ active power and reactive 7 BERET e e
power recorded by smart meters (T ;i;("p“-q“j ------ \ Consider the vo/tage variances at
SR o i > i customer nodes caused by the PFlw
L‘_)C_,: E:I_Zg' i H,‘_I_,' m i T(p 4. ) i Z(p .5V ) ________________________ changes in the PDNet.
\ e W N Compensate for the linearization
Squared voltages recorded by customers’ smart meters i\____{{(_!fc_’_?c_»_{’g) _______ ! error caused by lines’ and secondary

xfrms’ losses.



Physics-inspired Model-Free Voltage Calculation ( | SIEEE
> Inspired by the coupled PFlw model, we design a PINN model "PxE+QxH—m"

cd ¢
s praaneee s I' _________
i

| i |

i

-i----> = Physics-inspired module (PIM)
i v'We design the PIM module to capture the linearized power E

a

h

flow equations of the SNDets.

v'The inputs of the PIM module are P,Q data for all customers.

----- » = Linearized error compensation module (LECM)

v'"We use a fully connected neural network to capture the
linearization error caused by lines’ and xfrms’ losses.

v'Squared P, Q data and squared approximate V of each
customer are considered as inputs.

= Voltage variance capture module (VVCM)

v'"We utilize a fully connected neural network to capture the
customer voltage variance caused by PFlw changes in the
PDNet.

v'The P, Q data of each customer and total P, Q loads of all e '
The structure of the proposed PINN model

customers are the iniUtS.

} » Data Flow
—_ —>

Calculation

: . Input/Output
B e PP 4 Data

f: Tanh(-)

fi: Linear Activate
Function

IL: Input Layer

HL: Hidden Layer

OL: Output layer



Test Circuits and Simulation Setting \

» Three distribution feeder models are used to
perform case studies, and each model integrates
secondary xfrms and SDNets.

= Two public testing circuits,
Secondary Topology Model
“EPRI12Bus” and EPRI Ck5 circuit.

namely, EPRI
marked as

= One real utility feeder marked as “Real40Bus”.

» We test the proposed model in five scenarios,
denoted as S1 to S5 in Table I.

» The PV load data comes from over 300 solar
inverters at 4-10 kW in Midwest U.S. The EV data
is collected from various real datasets and has
charging capacities at 3-10 kW.

Powe & E ergy Society®
4 Symbol Description
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Topologies of EPRI12Bus model (left) and Real40Bus model (right)

TABLE 1
SIMULATION SCENARIO GENERATION SETTING

Scenario  Training Testing PV Penetration(%)

EPRI12Bus/Real40Bus/EPRICKS

S1 basic basic 0%/ 0%/ 0%

S2 25%PV 25%PV 39%/ 56%/ 57%

S3 basic 25%PV 39%/ 56%/ 57%

S4 basic 50%PV 114%/ 108%/ 93%

S5 basic 50%PV + 20%EV 114%/ 108%/ 93%
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Results of Voltage Calculation et

» Models are built on one-year smart meter data, where 80% is used for training and 20% is used for
validating, and then tested on another one-year data. The errors of voltage calculation are shown below.

| ¢IEEE

0.0010 | EPRI 12 Bus Rea] 40 Bus EPRI Ck5
‘ e i Sy T denotes the MAE changes when SR
0.0008 — o ‘ ' = 'I;m error deployed in! data ' L=
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Si s2 S3
The MAE of three models over dlfferent scenarios based on accurate data and noise- added data
EPRI 12 Bus Real 40 Bus EPRI Ck5
s2 S3 S4 S5 S2 S3 S4 S5 S2 S3 S4 S5
0.003
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The error distribution of three models over different scenarios during daytime (6 a.m. to 6 p.m.) period and max absolute error in each scenarios
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Introduction to T-C Connectivity Grouping \ fops | @
Transmission Distribution

Generation substation substation

« Problem Statement: Transformer-customer

@_© Bum@i ) i (T-C) connectivity grouping refers to the

Subtransmission determination of the physical connections
between customers and the corresponding
transformers.

transmission

LV lateral

- Challenges and Difficulties:

% The numbers of transformers and

‘@/ customers are large.
ﬁ( ‘é{ hL/ % Lack of measurements at distribution

ﬁ transformers.

LV lateral . .
= < Outdated and erroneous connectivity
1 s

10pa3) AN

Q models.

—— Actual Connection —— Recorded Connection
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Literature Review and Limitations
Ref. Main Approach Data source and Prior Knowledge Limitations
Cubic SVM classifier ) : . .
[1] _— Customer smart meter V. (-) Need partial connectivity knowledge to train a

classifier. (-) Require prior knowledge on
transformer numbers and must be accurate. (-)
Not robust to bad/missing data. (-) Only for

K-means clustering, t-SNE, transformer numbers, partial

2
2] and self-organizingmap | knowledge of T-C pairs, drop line

Pearson correlation

Bl coefficient parameters model calibration not identification.
[4] Hausdorff similarity (-) Transformer-side measurements are not

assessment _ Customer smart meter P and V, always available. (-) Cluster stage is highly
5] , UEAEY randc?rr'\ =l DER P and V, transformer dependent on prior knowledge of transformer
[6] Silhouette coefficient and numbers, measurements on numbers. (-) Assumptions and data processing

power loss coefficient ’ o '
- Weighted convolution transformers technique are not a.Iways applicable on US
power optimization model distribution systems.

- Major limitations in existing works:
- Require accurate transformer numbers and/or partial T-C relationships.
- Require measurements on transformers.
- Can only do model calibration not identification.
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Methodology - Initial Clustering Phase ]

Customer Smart
Meter Data (P, V))

T

4 IEEE

Range of
Transformer
Number

Data Processing and Initial Clustering Phase:

v Find customer voltage measurements with a large AP
Those voltage data are assigned with larger weights.

Power and Voltage Difference

AV =V(t+ 1) - V()] AV.(t) = [vf,vft ] . .
2P 1Pt 1) PO APE) — [0, v Customer voltage data is used to calculate the dynamic
; I * warping distance between any two customers. Shorter
—— distance = higher correlations.
Voltage Profile with A Large AP
= [pt pttl f = [pt pt+l . o . e ey
“F*'(T” ‘5“’;';1; o “CV’(” [”’:‘ V] v The distance matrix is then used to generate initial clusters.
op 5% — orresponding . .
Assign Higher Weights on Data Points For each customer, top x close distance customers are first
y ¥ grouped together. x = total customers / upper range of
Weighted Dynamic Time Warping Distance f b
Matrix with Shuffled Customer Index transtormer number.

WDIWEY) =mip D wiix Ik~ il v' One customer can be moved to another cluster if the total

¥ 4 DTW distance is shorter in the new cluster.

Initial Clusters Formation and Customer . s
Reposition Based on WDTW Distance and v" Each customer can only exist in one cluster.

Transitive similarity




Methodology - Cluster Adjustment Phase™~_ -~

Customer WDTW
Distance Matrix
o E

Range of
Transformer
Number

Complete Linkage Calculation
D(A,B) = max_d(a,b)
acA,beB

v ¥

Merge Two Clusters with Smallest
Complete Linkage

v v

Track Maximum Complete Linkage Change
& Update Distance Matrix

v v

Elbow Method to Find Linkage Spike After
Merging, Suggests Cut-off

v v

Transformer Estimation with T-C
Relationship Identification Results

@;Es

4 IEEE

Cluster Adjustment Phase:

v" Customer DTW distance matrix is used to calculate the maximum
Euclidean distance (complete linkage) between every two clusters.

v Iteratively merge two clusters with the smallest complete linkage
into one cluster to reduce the total number of clusters to the
lower bound of the transformer range.

v’ Track the maximum complete linkage at each merging step.

Cluster>1B, ¥ Use the elbow method to find a linkage spike after merging,
w/o Elbow which suggests a cut-off point where the two clusters being

Points merged are substantially different from each other.

Cluster Customer :
\A 5
20

i Elbow

_>
. Point
Complete Linkage




Case Study and Numerical Results L ]

4 IEEE

- Model test dataset: EPRI Secondary Topology (ST) Model and EPRI Ckt5 Model
- Input data: One year of customer smart meter voltage measurements at 15-min resolution.

EPRI Secondary Topology Model EPRI Ckt5 Model

Y ckt5:Power

=1 =i Bl ﬁ ﬁ ﬁ ﬁ =H 298000
-~
=t =il
~ £ T N 296000
=T} =l =l

= - o 294000
& Bl

@% P N ‘o) I~ fa I~ ) i~ (o) 7~ (2 @)
", Nl N N =/ N N ) \Z N 2 o 292000 -
Symbol  Description ﬁ
External Grid P AN 290000+
6% k onl
}E Substation . Sa Sagirea
Xirmer = =p =5 = B £ 288000 T L TS
Single-Phase E = k : . = e AP
. Load A A =l 4-_3'_-|~
= = P =1 i
%ﬂ LTC/VREG =t . =t 286000
Service Xfrmer AN ZAN LN AN N AN -
O =il el BE BE aa 8 =
A—B —C 2225000 2230000 2235000 2240000

Transformers: 12; Customers: 46 Transformers: 591; Customers: 1379
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Case Study and Numerical Results

1.0 045 A 1.0
040 - L. 004125 initial clusters,
Beciias o 0
i st 655 initial clusters, o es ¢ |12 transformer
g ¢ 1588 transformer estimation £ 9931 actimation
i FH © 030 1 3
3 gisstss RO6 o 06 ©
' £ 025 go‘oz-
: g _0'45 020 1 04y
- v
33 smmm am wnn mm = =
36 EESEICE 02 & 0151 p E001
39-nnm BEEEEE sEmEs-EE o mEEE -I. mEEE v : v}
42- = um = "apes 0.10 1
a8 12 t6 20 24 28 32 3 40 40 0 005+ B % 8 T 1500 o8 58 53 9 b ik 00 OO0 /N

660 640 620 600 580 560 540 520 500
Estimated Transformer Number

26252428322120191817161514131211109 8 7 6 5
Estimated Transformer Number

Customer DTW distance heatmap for
EPRI ckt5 model (partial). Darker
green = shorter distance

Maximum complete linkage changes Customer DTW distance heatmap for EPRI
by cluster merging iteration (ckt5) ST model. Darker green = shorter distance

Maximum complete linkage changes
by cluster merging iteration (ST)

Actual Transformer Estimated Transformer Error Transformer with Correct
Model ] ) Accuracy
Transformers Range Transformers Margin Customer Grouping
EPRI ST 12 5-25 12 0 12 100%
EPRI ckt5 591 495-655 588 -3 583 98.6%

» A larger transformer range is selected to test the algorithm’s robustness.

» Accuracy = Number of transformers with correct customer groupings / actual transformer number.




Sensitivity and Comparison Analysis
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. T-G Grouping Accuracy vs.SMData Length T-C Grouping Accuracy Using Different Methods
L N ‘-Proposed method IK-means clustering and self-organizing map [CJPearson correlation coefficient
—~EPRI ckt5 100 )
- |—EPRI ST A
% .
B 1
> 80 |
L - [&]
g
: . . |
- 4 Q
<
o 60 8
L. — C
3
S 50 8
- 4 9
(D —
i 1o 40
|_
30 .
20 2
1 | | | | | 10
One day One week One month Three months Six months One year EPRI ST EPRI ckt5
SM Data Length Test Model
Sensitivity analysis on customer SM data length vs. T-C Comparison test using proposed method vs. existing works;
relationship identification accuracy data length = three months

One month (EPRI ST) and three months (EPRI ckt5) of SM data is sufficient to obtain good T-C grouping results.

Comparison test indicates the proposed method outperformed the existing works on the larger system.
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Conclusion and Future Work \ feps |4

« It is possible to identify the T-C connectivity using only smart meter data without any
prior knowledge of transformer numbers and transformer-side measurements.

« Leveraging the structure inspired by the PDNet-SDNets coupled PFlw, the PINN model
shows potentials for extrapolation and capturing physical characteristics of the electrical
network.

« Evaluations using two public testing systems and a real utility feeder model confirmed
the effectiveness of the model in voltage calculation. The testing results also prove the
proposed model’s extrapolation, which is the ability to handle unseen scenarios.

« Future work will assess the model’s adaptability to topology change.










Proposed Methodology - Overview \

Input data: Power and voltage measurements from
smart meters, range of transformer number

: :For each customer:
|;J> Weighted Dynamic Time

Warping distance
calculation

Power and voltage
data processing

......................................

Iteratlon based
clustering
adjustment

Generate initial
connectivity :
groups

Slmllarlty based :
cIuster merglng <:I

R %aauunnssnnunnannsasannnsnnunnasasannns

Flow chart of the proposed method

IEEE
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We propose a multi-stage framework to identify the
T-C connectivity:

v/ Use voltage correlations between customers to
develop a customer clustering algorithm.

v' The accurate number of service transformers in
the system is not known as a priori.

v The range of transformer number is estimated.

v" An initial cluster set is formed based on the
voltage correlations using weighted dynamic time
warping (WDTW).

v’ Estimate the transformer number by a similarity-
based cluster merging algorithm.
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Customer WDTW .
Distance Matrix Range of Cluster Adjustment Phase:
l:IIE
sait Transformer
- Number v/ Based on the hierarchical clustering idea, we
merge two clusters into one iteratively until the
Complete Linkage Calculation total number of clusters reaches the transformer
D(A,B) = max d(a,b) estimation LB.
y - y v' The distance between two clusters is the
Merge Two Clusters with Smallest . di b cL . | A
Complete Linkage Cluster > LB, maximum distance between any point in cluster
I i w/o Elbow ,
/o Elb and any point in cluster B, noted as complete
Points Iinkage-
Track Maximum Complete Linkage Change )
& Update Distance Matrix Distance(A, B) = max(dist(a, b)) (2)
v v
Elbow Method to Find Linkage Spike After . L. . L.
Merging, Suggests Cut-off where a is a point in cluster 4, and b is a point in
v v cluster B.
Transformer Estimation with T-C
Relationship Identification Results LB: Lower bound; UB: Upper bound
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Methodology - Cluster Adjustment fer=

Customer WDTW
Distance Matrix
. E

4 IEEE

Cluster Adjustment Phase (con’d):

Range of
Transformer
Number

v From the calculated linkage distances, identify the
smallest linkage distance. The two clusters associated

Complete Linkage Calculation with this smallest distance are the ones that will merge
D(A,B) = aé:ﬁia.bgBd(a, b) next.
v v v' After merging, update the distance matrix to reflect the
Merge Two Clusters with Smallest distances between the new merged cluster and all
Complete Linkage Cluster > LB, h .. |
; T w/o Elbow other remaining clusters.
Points i i i i i
Track Maximum Complete Linkage Change v Mf)nltorlng complete linkage -changl.ng in each process,
& Update Distance Matrix using the elbow method to find a linkage spike after a
¥ ¥ merging process.

Elbow Method to Find Linkage Spike After v The "elbow" of this curve is the point where the linkage

Merging, Suggests Cut-off

v v

Transformer Estimation with T-C
Relationship Identification Results

distances start to increase substantially. It represents a
cut-off point where clusters being merged are becoming
substantially different from each other.
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Complete Diameter and Complete Linkagk e

cluster Customer

T~

Complete Diameter

Complete Linkage

* The Complete Diameter of a cluster is the maximum distance between any two points within that cluster.
This metric is often used to characterize the extent or size of a cluster in terms of how spread out its data
points are.

* Complete linkage is a method for hierarchical clustering. When determining which two clusters should be
combined, the complete linkage method considers the distance between the two most distant points (or
farthest neighbors) in the different clusters.
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Applications of PINN-based Voltage Calculation Model @ES

» The designed model demonstrates excellent potential
extrapolation capabilities due to the special structure,
making it suitable for calculating voltages in high-
penetration PV scenarios.

» The Real40Bus model is selected to complete the HC
analysis. The performance of our model is competitive
compared to previous locational HC work[7].
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3.0

MAE (kW)
= o o2 B

=
n

1234567 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950
Customers

g
1=

Average MAE of maximum accessible PV power for all customers

v The proposed PINN model, featuring a well-designed
physics-inspired module, offers novel perspectives
on solving transformer-customer (TC) connectivity
problems.

v’ The designed method leverages the abundant
physical information contained in W{a,b}
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With permission from our utility partner, we share a real distribution = 3

grid model with one-year smart meter measurements. This dataset s—¢—+—¢—+—%—=% ~F . o o o o

provides an opportunity for researchers and engineers to perform e o Heii oy Iﬁ: LT

validation and demonstration using real utility grid models and field ¢ AN R e

measurements. P f : : o e

= The system consists of 3 feeders and 240 nodes and is located in  *” ent .
Midwest U.S. : e T

= The system has 1120 customers and all of them are equipped with  [* * ......'...Hocnu o
smart meters. These smart meters measure hourly energy =+3%:3+ et |
consumption (kWh). We share the one-year real smart meter ‘|~ . E:; AT e¥ 1
measurements for 2017. :::: ::: > .‘.: : 1____‘_ _____ .

= The system has standard electric components such as overhead .'.’* .“HH“H. :
lines, underground cables, substation transformers with LTC, line P R LRI

switches, capacitor banks, and secondary distribution transformers.

) Test system diagram
The real system topology and component parameters are included.

You may download the dataset at: http://wzy.ece.iastate.edu/Testsystem.html, including system
description (in .doc and .xIsx), smart meter data (in .xlsx), OpenDSS model, and Matlab code for quasi-
static time-series simulation.




