

# Blackstart Distribution Grids using DERs and Dynamic Formation of Networked Microgrids

Zhaoyu Wang Professor Department of Electrical and Computer Engineering Iowa State University



## **Blackstart and Load Restoration**

• A procedure to restart a power grid after widespread outages.



## **Challenges of Blackstarting Dist. Sys. with DERs**



- Cranking paths and load pickup optimization depend on the number and locations of grid-forming resources.
- Modeling challenges of Grid-forming Inverters and their synchronization.
  - Grid-forming inverters are the root generators<sup>\*</sup>.
  - While synchronizing, for every two grid-forming inverters, one must change to non-root generator to satisfy radiality constraints.
- Incorporating binary switching decisions into a three-phase unbalanced power flow.
- Dynamic radiality constraints.
  - Radiality must be satisfied in every time step. However, existing studies only ensure radiality in the final topology.
  - Must have time-varying radiality constraints adaptive to changing numbers of active lines, buses, and root generators.
- Frequency stability constraints.
- Uncertainties.
  - Renewable generations and load demands.
  - Outage duration of the transmission grid.

\* Root generator is a mathematical concept in graph theory to define a radiality constraint. It doesn't change the control structure of grid-forming inverters.

## Blackstart and Load Restoration Problem

• The objective is to maximize the restored loads considering priorities.

$$\max_{x} \sum_{t \in \mathcal{T}} \left( \sum_{i \in \mathcal{B}_{CL} \cup \mathcal{B}_{NL}} P_{i,t} \right) \Delta t$$

- Subject to constraints:
  - Grid-forming inverter operation and synchronization.
  - Switching operations.
  - Dynamic radiality constraints.
  - Frequency constraints.
  - Distribution substation constraints (uncertain availabilities of transmission grid).
  - Three-phase unbalanced power flow constraints.
  - Cold load pick up
- Decision variables (*x*):
  - Sequence of energizing cranking paths.
  - Sequence of activating grid-following resources.
  - Sequence of synchronizing decisions.
  - Sequence of load pickup.

#### Nomenclature:

 $\mathcal{B}_{CL}$ : set of buses with switchable load  $\mathcal{B}_{NL}$ : set of buses with non-switchable load

 $\mathcal{T}\colon$  time horizon of problem

 $\Delta t$ : time step

 $P_{i,t}$ : power demand at time t in i<sup>th</sup> bus



4

## **Cranking Paths Formation with One Grid-forming Inverter**

- The distribution feeder comprises a chain of bus blocks separated by switches.
- A bus block refers to a cluster of buses that are interconnected by non-switchable lines.
- DERs with BESS are considered as Gridforming inverters.
- Grid-forming inverter initiates the blackstart.
- Switch is closed to energize bus blocks one after another to enable grid-following inverters to come online.
- A series of switching actions to establish cranking paths is shown in the figure beside.



## **Synchronization of Two Microgrids**

- Two GFMIs serve as root generators to initiate the blackstart at two locations.
- Switches are closed to expand the microgrid boundaries and cranking paths.
- Two microgrids are synchronized to interconnect the entire distribution grid.
   One of the GFMI is changed to non-root status to satisfy the radiality constraint.
- When the transmission grid is available, an entire distribution system is synchronized with the grid. To satisfy the radiality constraint, another GFMI is changed to non-root status.



Ŝ⇒IFFF

## **BES-based Grid-Forming Inverter (GFMI)**



• To comply with the branch-flow model, we will use the square of voltage magnitude as the control variable of GFMI, as:

$$\begin{aligned} v_{i,n,t} &= (V^*)^2 + \Delta v_{i,t}^{cc} & \forall i \in \mathcal{R}, n \in \Phi \\ (0.95V^*)^2 &\leq v_{i,n,t} \leq (1.05V^*)^2 \end{aligned}$$

 The quasi-steady state frequency of GFMI is defined as:

$$\begin{aligned} f_{i,t} &= f^* \left( 1 - \frac{\sum_{n \in \Phi} p_{i,n,t}^{ES}}{S_i^{rat}(D_i + K_i^f)} \right) \\ & \lfloor f^{qss} \rfloor \leq f_{i,t} \leq \lceil f^{qss} \rceil \end{aligned}$$

Nomenclature:  $v_{i.n.t}$ : square of voltage magnitude.  $V^*$ : Nominal voltage  $\mathcal{R}$ : Set of buses containing GFMI  $\Phi$ : Set of phases *f*<sup>\*</sup>: Nominal frequency  $H_i$ : Inertia constant D<sub>i</sub>: Damping constant  $K_i^f$ : Frequency droop  $S_i^{rat}$ : Inverter rating VSM characteristics  $\mathbf{p}^{ref}$ P 2Hs GFMI Q PI control

7

IFFF

## **Dynamic Frequency Response of GFMI**

• GFMI is required to comply its dynamic frequency response in terms of RoCoF and frequency-nadir for secure operation.

RoCoF:

$$f_{i,t}^{R} = \frac{\sum_{n \in \Phi} \Delta p_{i,n,t}^{ES}}{2S_{i}^{rat} H_{i}}$$

**G** Frequency nadir:

$$f_{i,t}^{nad} = f_{i,t} - f^* \frac{\sum_{n \in \Phi} \Delta p_{i,n,t}^{ES}}{S_i^{rat} \left( D_i + K_i^f \right)} \left( 1 + \gamma_i \right)$$

• Dynamic frequency constraints:

 $RoCoF^{min} \le f_{i,t}^{R} \le RoCoF^{max}$  $f^{min} \le f_{i,t}^{nad} \le f^{max}$ 

Power & Energy Society\*

#### Nomenclature:

 $f_{i,t}^{R}$ : Rate of change of frequency (ROCOF).  $p_{i,n,t}^{ES}$ : Active power BES-based GFMI  $\gamma_{i}$ : Constant exponential term  $\Phi$ : Set of phases  $f^{*}$ : Nominal frequency  $H_{i}$ : Inertia constant  $D_{i}$ : Damping constant  $K_{i}^{f}$ : Frequency droop  $S_{i}^{rat}$ : Inverter rating



## **Modeling Synchronization of GFMIs**

- GFMI needs to adapt its frequency set-points to allow synchronization with other GFMIs.
- It is achieved by allowing to change frequency-setpoint of GFMI while performing synchronization.

$$f_{i,t} = f^* \left( 1 - \frac{\sum_{n \in \Phi} p_{i,n,t}^{ES}}{S_i^{rat}(D_i + K_i^f)} \right) + \delta_{i,t} \Delta f_{i,t}^*$$



#### Nomenclature:

 $\Delta f_{i,t}^*$ : Perturbation in nominal frequency setpoint ( $f^*$ ).  $\delta_{i,t}$ : Binary decision variable, which is set to be 1 during synchronizing period.

- $\delta_{i,t}$  is a binary variable that is set to 1 only during the synchronizing.
- The above formulation leads to a master-slave synchronization, where
  a GFMI can only change its f\* when it is synchronizing.
- We implement a co-operative synchronization approach, allowing all GFMIs to decide a suitable synchronizing frequency, as:

$$f_{i,t} = f^* \left( 1 - \frac{\sum_{n \in \Phi} p_{i,n,t}^{ES}}{S_i^{rat}(D_i + K_i^f)} \right) + \left( \sum_{b \in \mathcal{R}} \delta_{b,t} \right) \Delta f_{i,t}^*$$

# Switching Structure of the Distribution System

- Blackstart and restoration depends on switching structure that may comprise of
  - Bus blocks
  - Energizing switches
  - Synchronizing switches

## **Modeling Bus Block Energization**

 A bus block is segregated by multiple switches and will be energized by closing any of them.

 $y_{m,t}^{BB} \ge y_{ij,t}^{SW} \quad \forall switches (i, j) in bus block m$ 

 After a bus block is energized, statuses of all buses and lines in this bus block must be changed to active.

 $y_{ij,t}^{L} = y_{m,t}^{BB}$   $\forall lines in bus block m and <math>y_{i,t}^{B} = y_{m,t}^{BB}$   $\forall buses in bus block m$ • Once a bus block status is active, it should not be inactive again.

 $y_{m,t}^{BB} \ge y_{m,t-1}^{BB}$ 

**IEFF** 

Nomenclature:

 $y_i^B$ : status of i<sup>th</sup> bus

 $y_{ii}^L$ : status of a line (i, j)

 $y_m^{BB}$  : status of bus block m

# **Modeling Energizing Switch (ESW)**

1: cannot be closed 2: may be closed 3: may be closed 4: after closing

- ESWs are turned ON to power the inactive bus blocks.
- Breaker, reclosers, or tie-switches.
- An energizing switch (i, j) may have five states while blackstarting.

starting.  $y_{i,t}^{B}$ : status of i<sup>th</sup> bus  $y_{ij,t}^{SW}$ : status of a switch (i, j)  $\Delta y_{ij,t}^{SW}$ : change of switch status  $f_{i,t}$ : frequency at bus i

Nomenclature:

All five states of the switch can be defined as:

| states            | $y_{i,t-1}^B$ | $y^B_{j,t-1}$ | $y_{ij,t-1}^{SW}$ | $\Delta y^{SW}_{ij,t}$        |
|-------------------|---------------|---------------|-------------------|-------------------------------|
| 1                 | 0             | 0             | 0                 | $\Delta y_{ij,t}^{SW}$ =0     |
| 2                 | 0             | 1             | 0                 | $\Delta y^{SW}_{ij,t} \leq 1$ |
| 3                 | 1             | 0             | 0                 | $\Delta y^{SW}_{ij,t} \leq 1$ |
| 4 (after closing) | 1             | 1             | 1                 | $\Delta y_{ij,t}^{SW}$ =0     |
| 5                 | 1             | 1             | 0                 | $\Delta y_{ij,t}^{SW}$ =0     |

 $y_{ij,t}^{SW} \le y_{i,t-1}^{B} + y_{j,t-1}^{B}$  $\Delta y_{ij,t}^{SW} = y_{ij,t}^{SW} - y_{ij,t-1}^{SW}$  $\Delta y_{ij,t}^{SW} \le 2 - y_{i,t-1}^{B} - y_{j,t-1}^{B}$  $\Delta y_{ij,t}^{SW} \ge 0$ 

• When a switch (i, j) is closed,  $f_i = f_j$ , whereas when switch is open  $f_i \neq f_j$  $-(1 - y_{ij,t}^{SW})M \le f_{i,t} - f_{j,t} \le (1 - y_{ij,t}^{SW})M$ 



5: cannot be closed

# Modeling a Synchronizing Switch (SSW)

- Switch equipped with Intelligent Electronic Device that facilitate synchronization.
- SSWs can energize bus blocks or synchronize the microgrids.
- An SSW (*i*, *j*) may have five states while blackstarting. 1: cannot be closed 2: may be closed 3: may be closed 4: after closing 5: may be closed



• All five states of the switch can be defined as:

| states             | $y_{i,t-1}^B$ | $y_{j,t-1}^B$ | $y_{ij,t-1}^{SW}$ | $\Delta y^{SW}_{ij,t}$        |
|--------------------|---------------|---------------|-------------------|-------------------------------|
| 1                  | 0             | 0             | 0                 | $\Delta y_{ij,t}^{SW} = 0$    |
| 2                  | 0             | 1             | 0                 | $\Delta y^{SW}_{ij,t} \leq 1$ |
| 3                  | 1             | 0             | 0                 | $\Delta y^{SW}_{ij,t} \leq 1$ |
| 4 (after closing)  | 1             | 1             | 1                 | $\Delta y_{ij,t}^{SW} = 0$    |
| 5 (before closing) | 1             | 1             | 0                 | $\Delta y^{SW}_{ij,t} \leq 1$ |

Nomenclature:  $y_{i,t}^{B}$ : status of i<sup>th</sup> bus  $y_{ij,t}^{SW}$ : status of a switch (i, j)  $\Delta y_{ij,t}^{SW}$ : change of switch status  $f_{i,t}$ : frequency at bus i

IFFF

$$y_{ij,t}^{SW} \le y_{i,t-1}^{B} + y_{j,t-1}^{B}$$
$$\Delta y_{ij,t}^{SW} = y_{ij,t}^{SW} - y_{ij,t-1}^{SW}$$
$$\Delta y_{ij,t}^{SW} \ge 0$$

• When a switch (i, j) is closed,  $f_i = f_j$ , whereas when switch is open  $f_i \neq f_j$  $-(1 - y_{ij,t}^{SW})M \leq f_{i,t} - f_{j,t} \leq (1 - y_{ij,t}^{SW})M$ 

12

## **Power Flow Constraint for SSW**

- While closing an SSW, ideally the power flow across it should be zero.
- This is imposed to match the voltage magnitude and angle of bus i and j across the switch (i, j).



Nomenclature:  $P_{ij,t}$ : Active power across (i, j)  $Q_{ij,t}$ : Reactive power across (i, j)  $z_{ij,t}$ : binary variable defining synchronizing instant.

IFFF

• At synchronizing time-step, the following condition holds.

$$z_{ij,t} = \Delta y_{ij,t}^{SW} (y_{i,t-1}^B + y_{j,t-1}^B - y_{ij,t}^{SW}) \quad \rightarrow 1$$

• The above three states of power flow across SSW is defined with respect to  $z_{ij,t}$ .

$$-(1 - z_{ij,t})M - \epsilon \le P_{ij,t} \le \epsilon + (1 - z_{ij,t})M$$
$$-(1 - z_{ij,t})M - \epsilon \le Q_{ij,t} \le \epsilon + (1 - z_{ij,t})M$$

13

#### **Dynamic Radiality Constraints**

- Generally, radiality constraint states:  $\sum lines = \sum buses \sum root buses$
- In black start problem, the number of active lines, buses, and root buses are dynamic.

$$\begin{split} \sum_{(i,j)\in\mathcal{L}} y_{ij,t}^{L} &= \sum_{b\in\mathcal{B}} y_{b,t}^{B} + \sum_{b\in\mathcal{B}_{SS}} y_{b,t}^{SS} - R_{t} \\ & where, \\ R_{t} &= \sum_{b\in\mathcal{R}} y_{b,t}^{ES} + \sum_{b\in\mathcal{B}_{SS}} y_{b,t}^{SS} \\ & y_{b,t}^{ES} \leq y_{b,t-1}^{ES} \quad \forall b \in \mathcal{R} \end{split}$$



Nomenclature:  $y_{ij}^L$ : status of line (i, j)  $\mathcal{L}$ : set of lines  $y_i^B$ : status of i<sup>th</sup> bus  $\mathcal{B}$ : set of buses  $y_{b,t}^{SS}$ : status of substation bus  $\mathcal{B}_{ss}$ : set of substation buses  $R_t$ : number of root buses, i.e., gridforming inverters  $y_{i,t}^{ES}$ : status of GFMI as a root generator  $\mathcal{R}$ : set of buses with GFMI.

- Considering  $R_t$  as an optimization variable allows synchronization of islands.
- GFMI are assigned to be root generator ( $y_{b,t=0}^{ES} = 1$ ) when the black start is initiated.
- When a GFMI generator is switched to non-root status, the synchronizing binary variable ( $\delta_{b,t}$ ) is activated, as:

$$y_{b,\tau}^{ES} = 1 - \sum_{t \in [t_0,\tau]} \delta_{b,t} \ \forall b \in \mathcal{R}$$

#### Verification of Dynamic Frequency Response from a GFMI

- RMS model of IEEE 123 feeder with VSG-based GFMI was developed in DigSILENT PowerFactory.
- The dynamic frequency responses of GFMI are recorded for 1, 2, and 10 MW load pickups.
- Measure the estimation accuracy for
  - Quasi-steady state frequency
  - RoCoF
  - Frequency nadir
- The estimation accuracy are above 90%.
- Note that, the dynamic frequency responses are estimated without requiring to run dynamic models.

#### VSG-BASED GFMI PARAMETERS

| Parameters            | values in pu     |  |  |
|-----------------------|------------------|--|--|
| $(H, D, K^f, \gamma)$ | (4,1, 89, 0.093) |  |  |



VALIDATION OF ESTIMATED FREQUENCY RESPONSES

| Pick-up load (MW)          | 1       | 2       | 10      |
|----------------------------|---------|---------|---------|
| Measured $\dot{f}$ (Hz/s)  | -0.3529 | -0.7058 | -3.6106 |
| Estimated $\dot{f}$ (Hz/s) | -0.3780 | -0.7500 | -3.7500 |
| Accuracy of $\dot{f}$ (%)  | 92.89   | 93.74   | 96.14   |
| Measured $f^{nad}$ (Hz)    | 59.9629 | 59.9251 | 59.6161 |
| Estimated $f^{nad}$ (Hz)   | 59.9635 | 59.9272 | 59.6357 |
| Accuracy of $f^{nad}$ (%)  | 98.38   | 97.20   | 94.89   |
| Measured $f^{qss}$ (Hz)    | 59.9662 | 59.9316 | 59.6490 |
| Estimated $f^{qss}$ (Hz)   | 59.9666 | 59.9333 | 59.6666 |
| Accuracy of $f^{qss}$ (%)  | 98.82   | 97.51   | 94.99   |

♠IFFF

#### **Case Studies with IEEE 123-Bus System**

GFMI

089r

Elements

Color index for lines/nodes

2**-**\$

3-0

21

**B**3

**B2** 

B1

150

+150r

Trans.

grid (TG)

149



Color index for load



#### **System Information:**

• Peak demand = 3.49 MW; 60% of loads are nonswitchable; 11 bus blocks and 11 switchable lines.

**B**11

- Black start resources: Two BES inverters
- Non-black start resources: 965 kW of distributed PVs

IEEE

#### Simulation Results with TG recovering at 12:00

TG recovers at 12:00 which is 180 min after blackstart

- Blackstart initiated at 8:45.
- Cranking paths from two grid-forming inverters extend at each time step.
- Note that there are two islands until 9:45.
- Islands merge at 10:00, where GFMI2 changes to nonroot generator to support synchronization.
- At 12:15, the entire distribution system is synchronized with the transmission grid, while GFMI1 changes to non-root generator.
- Note that the system is radial at each intermediate stage of black start.





IFFF

#### **Results: Node Voltages on Bus Blocks**

- When black start is initiated at 8:45, only root bus 51r and 89r is active.
- Bus blocks B4 and B11 are energized at 9:00.
- B2, B7, and B9 are energized at 9:15.
- The last bus block B8 is energized at 12:30.
- Node voltages at the active bus blocks are all within 0.95 to 1.05 pu.



IFFF

### **Results: Frequency**

- Frequency of GFMIs are at 60 Hz when they are started.
- Their frequency dropped while restoring loads.
- Two GFMIs is synchronized at 10:00.
- Both GFMIs are synchronized and reconnected with TG at 12:15.
- RoCoF and frequency nadir are within the secure limits in the entire process.
- Security limits are:
  - RoCoF: (-4 to 4 Hz/sec)
  - Frequency nadir: (57.8 to 61.8 Hz)





## Benchmark Model for Blackstart and Load Restoration

- Proposed Model:
  - Both energizing and synchronizing switching are optimized.
- Benchmark Model:
  - Only Energizing switches are optimized.
  - Synchronizing of microgrid islands is conducted after TG comes online, where the islands are connected one after another.



♠IFFF

#### **Cranking Paths with Benchmark Model** Cranking paths with benchmark 08:45 09:00 09:15 09:30 model slightly different than the proposed model. The difference is due to delayed synchronization. 09:45 11:45 12:00 This also led to delayed energization of bus block B8. 12:15 12:30 12:45 **TG** synchronization MG synchronization 22

•

•

# System Frequency Results with Benchmark

- GFMI1 is synchronized with TG at 12:15.
- GFMI2 is synchronized with TG at 12:30.
- RoCoF and frequency nadir are under secure limits.



IEEE

PES

#### **Restoration metrics: Proposed vs Benchmark**



- 1. Customer hours restored
- 2. Restoration time
- For the case, where TG is recovered at 12:00, the proposed method has 1.46% better customer hours restoration metrics.
- And the proposed method is faster by 15 mins in restoration.
- The improvement on the metrics for longer outage durations improved marginally for 2-GFMI case.



PROPOSED VS. BENCHMARK METHODS: 2-GFMIs CASE

| TG re- | Customer hours<br>restored (MWh) |           | % im-  | DS restoration<br>time (min) |           | impr-  |
|--------|----------------------------------|-----------|--------|------------------------------|-----------|--------|
| at     | proposed                         | benchmark | proved | proposed                     | benchmark | (mins) |
| 10:00  | 26.99                            | 26.93     | 0.22   | 105                          | 105       | 0      |
| 11:00  | 26.25                            | 25.95     | 1.16   | 165                          | 180       | 15     |
| 12:00  | 23.67                            | 23.33     | 1.46   | 225                          | 240       | 15     |
| 13:00  | 21.11                            | 20.74     | 1.78   | 285                          | 300       | 15     |
| 14:00  | 18.05                            | 17.61     | 2.5    | 345                          | 360       | 15     |

**SIFFF** 

## **Restoration metrics: Proposed vs Benchmark (4-GFMIs case)**



| Case studies →     | 2-GFMIs        | 4-GFMIs                       |  |  |
|--------------------|----------------|-------------------------------|--|--|
| Location: capacity | 51r: 2.45/4.6  | 51r: 1.25/2.5, 89r: 1.5/2.35, |  |  |
| (MVA/MWh)          | 89r: 2.65/3.42 | 29r: 0.95/1.17, 152r: 1.3/2.0 |  |  |

PROPOSED VS. BENCHMARK METHODS: 4-GFMIs CASE

| TG re-<br>stored<br>at | Custon<br>restore<br>proposed | ner hours<br>d (MWh)<br>benchmark | % im-<br>proved | DS res<br>time (n<br>proposed | storation<br>min)<br>benchmark | impr-<br>-oved<br>(mins) |
|------------------------|-------------------------------|-----------------------------------|-----------------|-------------------------------|--------------------------------|--------------------------|
| 10:00                  | 27.86                         | 26.57                             | 4.86            | 105                           | 135                            | 30                       |
| 11:00                  | 26.59                         | 25.28                             | 5.18            | 165                           | 195                            | 30                       |
| 12:00                  | 23.96                         | 22.64                             | 5.83            | 225                           | 270                            | 45                       |
| 13:00                  | 21.35                         | 19.54                             | 9.26            | 285                           | 330                            | 45                       |
| 14:00                  | 18.29                         | 16.41                             | 11.46           | 345                           | 390                            | 45                       |

 11.46% improvement in customer hours restored and 45-minute improvement in restoration time.





25

### Conclusion



- A comprehensive bottom-up framework for blackstart and load restoration is studied.
- The framework integrated (a) Blackstart capable GFMIs, (b) Sequential expansion of microgrid boundaries to establish cranking paths to energize GFLIs, and (c) Synchronization of islands to TG.
- The framework integrated quasi-steady state and dynamic frequency constraints to ensure frequency security.
- Timely synchronization of microgrid islands during the process adds up total capacity, allowing more loads to be picked up.
- The benefits of optimizing synchronizing decisions become larger with more grid-forming inverters and delayed transmission grid recovery.



# Thank you! Q&A

wzy@iastate.edu https://wzy.ece.iastate.edu