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Abstract—This paper presents a novel data-driven method that5
determines the daily consumption patterns of customers without6
smart meters (SMs) to enhance the observability of distribution7
systems. Using the proposed method, the daily consumption of un-8
observed customers is extracted from their monthly billing data9
based on three machine learning models. In the first model, a spec-10
tral clustering algorithm is used to infer the typical daily load11
profiles of customers with SMs. Each typical daily load behav-12
ior represents a distinct class of customer behavior. In the second13
module, a multi-timescale learning model is trained to estimate the14
hourly consumption using monthly energy data for the customers15
of each class. The third stage leverages a recursive Bayesian learn-16
ing method and branch current state estimation residuals to esti-17
mate the daily load profiles of unobserved customers without SMs.18
The proposed data-driven method has been tested and verified

Q1

19
using real utility data.20

Index Terms—Observability, spectral clustering, machine21
learning, distribution system state estimation.22

I. INTRODUCTION23

ADVANCED Metering Infrastructure (AMI) enables util-24

ities to perform energy consumption measurement,25

demand-side control, tampering detection, and voltage moni-26

toring [1]. The core element of AMI is smart meters (SMs).27

Compared to conventional electromechanical meters that sim-28

ply record the monthly energy consumption data, SMs record29

the real-time load consumption of customers. Recently, a rapid30

growth of SMs has been observed in distribution systems. Ac-31

cording to statistical data provided by the U.S. Energy Informa-32

tion Administration (EIA), the nationwide number of SMs was33

estimated to be 70.8 millions in 2016 with an annual growth of34

6 million devices from the previous year [2]. Nonetheless, due35

to financial limitations and cyber-security issues, the number of36

SMs in many distribution networks is still limited. Hence, many37

utilities still rely on traditional monthly consumption data to38

obtain load behaviors. This lack of knowledge of real-time load39

behaviors inhibits effective monitoring and control of the sys-40
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tem. One approach for solving this problem is to widely install 41

SMs, which is cost prohibitive. As an alternative solution, we 42

will design data-driven real-time load estimation techniques for 43

inferring customers’ behaviors [3]. 44

In recent years, several papers have focused on load estima- 45

tion, including missing data reconstruction, communication de- 46

lay compensation, and unobserved customer behavior inference. 47

The previous works in this area can be classified into two cat- 48

egories based on the temporal granularity of customer datasets 49

used for model development: Class I: A number of articles use 50

data with at least hourly resolution for training load estimation 51

methods [4]–[8]. In [4], a K-means-based load estimation ap- 52

proach is proposed to estimate the missing measurements by 53

using historical half-hourly energy consumption data. In [5], a 54

truncated Fourier series representation and cluster analysis are 55

utilized to estimate a hybrid model of consumer load during 56

summers. In [6], several linear Gaussian load profiling tech- 57

niques are employed to capture customer behaviour using SM 58

data analysis. In [7], in addition to SM data, the context informa- 59

tion of customers, such as operation time during the weekends 60

and economic codes, are leveraged to allocate the respective 61

load profiles among particular groups, utilizing a probabilistic 62

neural network (PNN)-based approach. In [8], power flow sim- 63

ulation data with half-hourly temporal resolution is exploited to 64

obtain load estimation using Artificial Neural Networks (ANN). 65

Class II: Instead of using data with high temporal resolution, 66

a number of papers estimate the hourly customer energy con- 67

sumption by converting the monthly billing data into daily load 68

profiles [9]–[11]. In [11], hourly load estimation is performed 69

using uniform energy allocation, where the mean and variance 70

of estimated load is adjusted in real-time utilizing supervisory 71

control and data acquisition (SCADA) devices. In [9], typical 72

load profiles are assigned to the unobserved customers by com- 73

paring average daily consumption values with the daily energy 74

levels of the representative load profile obtained from observed 75

customers. The pseudo load profiles of unobserved customers 76

are scaled by multiplying the estimated average consumption 77

with the corresponding load pattern. Based on the monthly en- 78

ergy level, the daily load profile of unobserved customer can 79

be obtained using representative curves from statistical analysis 80

of residential, commercial, and industrial consumers’ historical 81

data [10]. 82

While previous works provide valuable results, many ques- 83

tions remain open with respect to the real-time load estima- 84

tion in distribution systems. For example, accurate performance 85
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of Class I models depends on high penetration of real-time86

measurement units and availability of a sizable data history,87

which renders their practical implementation costly. On the88

other hand, Class II methods are generally based on the sim-89

plified assumption that the total daily energy consumption for90

each customer remains almost constant during a month. This91

assumption reduces the estimation accuracy. While in [9] a sep-92

aration between weekday and weekend consumption data was93

introduced to alleviate this problem, this approach falls short of94

distinguishing load behavior in different individual days. In or-95

der to address these shortcomings, in this paper, a spectral clus-96

tering (SC)-based multi-timescale learning (MTSL) framework97

is proposed to estimate hourly load consumption for customers98

without SMs, using monthly billing data. In addition to identifi-99

cation of the typical daily load behaviors for observed customers100

[12], [13], the proposed method focuses on enhancing distribu-101

tion network observability by inferring actual load characteris-102

tics of unmetered customers from those monitored with SMs.103

Unlike previous Class II methods that utilize the average daily104

consumption value to assess the daily load profile, the proposed105

model estimates the consumption values at different timescales106

to improve the load estimation performance. To achieve this,107

three stages are included in the load estimation framework: 1)108

Typical daily load profiles are classified and stored in a databank109

using a SC algorithm trained by the AMI dataset of observed110

customers (i.e., customers with SMs) [14]. 2) For each class of111

typical load behavior, a multi-layer MTSL model is developed,112

which can decompose the monthly consumption into different113

timescale components, such as weekly, daily, and hourly con-114

sumption. At each layer, a series of machine learning models are115

used to allocate energy consumption at slower timescale among116

faster timescale consumption variables. 3) Due to the absence of117

real-time data for unobserved customers without SMs, a branch118

current state estimation (BCSE)-aided method is proposed to119

identify their underlying typical daily consumption [15]. The120

residuals of BCSE are used to calculate the probability of all121

classes using a recursive Bayesian learning (RBL) approach122

[16]. The class with the highest probability is selected as the123

underlying typical load behavior for the unobserved customer.124

While this method is trained using SM data from observed dis-125

tribution systems, it can be employed to estimate the hourly126

load data for a fully unobservable network without SMs. In127

[17] and [18], a conceptually-similar three-stage framework is128

provided to perform peak demand estimation for unmonitored129

low voltage (LV) substations using typical substation-level load130

profiles. However, our work pursues a distinct goal of inferring131

hourly demand for the unobserved customers at the grid-edge.132

The difficulty we face at the grid-edge, is the higher uncertainty133

of customer-level load, which makes the construction of pattern134

bank and demand inference challenging. Meanwhile, to monitor135

the system states, it is necessary to obtain the time-series cus-136

tomer pseudo load rather than the daily substation peak demand.137

Moreover, another challenging issue at the grid-edge is the un-138

available context information of customers. Our multi-timescale139

three-stage customer demand inference model addresses these140

challenges by only relying on monthly billing data of unob-141

served customers, SM data of observed customers, and SCADA142

measurements. The proposed method has been tested using real 143

utility data and compared with existing methods in the literature. 144

The rest of this paper is constructed as follows: Section II 145

introduces the proposed observability enhancement framework. 146

In Section III, a SC algorithm is utilized to build the consumption 147

pattern bank for different types of customers. In Section IV, the 148

MTSL method is presented. Section V formulates the BCSE- 149

aided pattern identification approach. The numerical results are 150

analyzed in Section VI. Section VII concludes the paper with 151

major findings. 152

II. INTRODUCTION TO REAL DATA AND PROPOSED 153

OBSERVABILITY ENHANCEMENT FRAMEWORK 154

A. AMI Data Description 155

The available AMI data history contains several U.S. mid- 156

west utilities’ hourly energy consumption data (kWh) for over 157

6000 customers. The data ranges from January 2015 to May 158

2018. While a few industrial consumers are included in the 159

dataset, over 95% of customers are residential and commercial 160

loads. The hourly data was initially processed to remove missing 161

data caused by communication error. Then, the AMI dataset was 162

divided into six separate subsets where each subset corresponds 163

to weekday or weekend load profiles of residential, commercial 164

and industrial customers. 165

B. Proposed Observability Enhancement Framework 166

The objective of this paper is to design a load estimation ap- 167

proach for fully or partially unobservable networks to avoid 168

overmuch assumptions in the location/type of measurement 169

units and availability of context information. Given that monthly 170

billing data of consumers is generally available in all distribution 171

systems, the data resource required for training the proposed 172

load estimation approach consists of unobserved customers’ 173

monthly billing data and a limited number of AMI data from 174

other observed networks. Extra available context information 175

can also be added to improve the performance of the model but 176

is not required. Different stages of the proposed observability 177

enhancement framework are presented in Fig. 1. 178
� Stage I - Consumption Pattern Bank: Based on the six 179

data subsets defined above, a SC algorithm is used to de- 180

tect similarities in the diverse daily load profiles and define 181

customer classes accordingly. As shown in Fig. 1, the re- 182

sults of clustering, {C1 , C2 , . . . , CM }, are stored in the 183

specific consumption pattern bank according to the cus- 184

tomer type, with each cluster representing a typical daily 185

load profile. The pattern bank clustering results are stored 186

and employed for the development of machine learning 187

models (detailed in Section III). 188
� Stage II - Multi-Timescale Consumption Inference: A 189

separate multi-layer MTSL model is trained for each class 190

of customers using SM data of observed customers to con- 191

vert the monthly billing data to hourly load values. In each 192

MTSL model, machine learning algorithms are developed 193

based on various pre-determined timescales. The customer 194
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Fig. 1. Proposed observability enhancement framework.

consumption at these timescales are defined as monthly195

consumption EM , weekly consumption EW , daily con-196

sumption ED , and hourly consumption EH . The monthly197

data is regarded as the input for the first layer of the model198

and the hourly consumption variables appear in the out-199

put of the final layer. After the individual MTSL model of200

different classes are developed, the hourly estimation of201

unobserved customers are inferred by these models (de-202

tailed in Section IV).203
� Stage III - Consumption Pattern Identification: In prac-204

tice, the real hourly load of unobserved customers are un-205

available a priori to determine the homologous daily load206

patterns. Hence, to assign a class from the daily pattern207

databank (Stage I) to unobserved customers, a BCSE-aided208

RBL method is proposed to identify these customers’ un-209

derlying daily load profiles. Different daily profiles and210

their respective MTSL models are used for running BCSE211

over the target network for a period of time. The mea-212

surement residuals for each daily pattern are observed and213

utilized to make a connection between unobserved cus-214

tomers and their correct daily consumption patterns. Based215

on the observed residuals, a RBL method is employed to216

recursively assign a probability value to each typical daily217

consumption pattern for each unobserved customer. Then,218

the model with the highest probability is identified as the219

“correct” daily profile. The MTSL corresponding to the220

identified class for an unobserved customer is used to gen-221

erate hourly pseudo measurements for that customer pro-222

viding the redundancy to enhance the system observability223

(more details in Section V).224

III. PROPOSED CLUSTERING ALGORITHM225

With the advent of AMI systems, typical daily load profile226

classification can be performed using different clustering algo-227

rithms, such as K-means, self-organizing maps, and hierarchical228

clustering [19]. In this paper, a graph theory-based clustering229

technique known as SC is utilized to distinguish the typical load230

profiles of observed customers and to create the typical con- 231

sumption pattern bank. According to the properties of graph 232

Laplacian, SC algorithm employs eigenvectors of graph ma- 233

trices for data reconstruction. This reconstruction process en- 234

hances the cluster-properties in the data, so that clusters can be 235

easily detected from the reconstruction datasets [20]. The im- 236

proved cluster-properties of reconstructed datasets reduce the 237

sensitivity of the clustering process to outliers [21]. Hence, the 238

SC is robust and outperforms traditional clustering techniques, 239

such as k-means, when tested on complex and unknown cus- 240

tomer load shapes [22], [23]. In this paper, we apply automatic 241

neighbor detection to avoid error from manual parameter selec- 242

tion and the main steps of SC are listed as follows [14]: 243
� Step I: As a graph theoretic clustering approach, SC al- 244

gorithm transforms AMI dataset into a similarity graph 245

G = (V,E), which consists of a set of vertices V and a set 246

of edges E connecting different vertices. For our problem, 247

vertices V are constructed by using the average daily load 248

profile of observed customers. Hence, Vi is the average load 249

consumption of i’th customer: Vi = [Ei
H 1 , . . . , E

i
H 24 ], 250

where Ei
H j indicates the average load value at the j’th 251

hour of the i’th customer. The average hourly load pro- 252

file is computed by Ei
H j = 1

Nd

∑Nd

d=1 Ei
H j (d), where Nd 253

is the total number of recorded days in the training set. 254

Two vertices are connected if the corresponding pair-wise 255

similarity is non-zero. In this paper, a technique is utilized 256

for constructing fully-connected graphs, in which vertex 257

Vi is connected to all vertices that have positive similar- 258

ity with Vi . The goal of similarity graph is to model local 259

neighborhood relations between data points. The value of 260

similarity relies on a scaling parameter α that controls 261

how rapidly the similarity weights, Wij , fall off with the 262

distance between vertices. Note that the distance between 263

vertices a and b is defined as ||a − b|| [20]. Instead of 264

using a single α, we calculate a local αi for each vertex 265

Vi that allows self-tuning of the point-to-point distances, 266

as αi = ||Vi − VK ||, where VK is the K’th neighbor of 267

vertex Vi . 268
� Step II: Based on the local scaling parameter αi , 269

the weighted adjacency matrix of the graph W = 270

(wi,j )i,j=1,...,n is developed. We have adopted the Gaus- 271

sian kernel function to build the adjacency matrix W as 272

follows: 273

wi,j = exp

(−||Vi − Vj ||2
αiαj

)

(1)

� Step III: After the weighted adjacency matrix is built, 274

SC converts the clustering process to a graph partitioning 275

problem, which divides a graph into k disjoint sets of 276

vertices by removing edges connecting each two groups. 277

When the edges between different sets have low weight 278

and the edges within a set have high weight, a satisfactory 279

partition of the graph is obtained [22]. Hence, the objective 280

function of graph partitioning is to maximize both the 281

dissimilarity between the different clusters and the total 282
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similarity within each cluster [24]:283

N(G) = min
A 1 ,...,Aη

η∑

i=1

c(Ai,Ai)
d(Ai)

(2)

where, η is the number of vertices, Ai is a subset belonging284

to V , c(Ai,Ai) is the sum of the weights between vertices285

in Ai and vertices in the rest of the subsets, d(Ai) is the286

sum of the weights of vertices in Ai . It was proved in287

[20] that the minimum of N(G) is obtained at the second288

smallest eigenvector of the Laplacian matrix. Graph Lapla-289

cian matrix is the main element of the SC algorithm and290

constructed using the adjacency matrix W and a diagonal291

matrix D whose (i, i)’th element is the sum of W ’s i’th292

row. The normalized graph Laplacian is given by [25]:293

L = D− 1
2 WD− 1

2 (3)

� Step IV: When the associated Laplacian matrix L ∈ Rn×n294

has been constructed using the similarity matrix W of ver-295

tex Vi , we compute the eigenvector [y1 , y2 , . . . , yn ] of the296

Laplacian matrix and pick the eigenvectors correspond-297

ing to the k smallest eigenvalues, where the range of k is298

n ≥ k ≥ 2. The first k eigenvectors are extracted to build a299

new matrix Y ∈ Rn×k . Due to the properties of the graph300

Laplacians, the vertex Vi is represented by the i’th row of301

the Y matrix. This change of representation enhances the302

cluster-properties in the data and a simple clustering algo-303

rithm is able to detect the clusters in the reconstructed data304

[22]. In this paper, we use the k-means algorithm to obtain305

the k corresponding clusters for the original vertex, Vi . It306

is feasible to utilized other techniques, such as the hyper-307

planes and advanced post-processing of the eigenvectors,308

to replace the k-means method to extract the final solution309

in this step [22].310
� Step V: To find the best partitioning, the Davies-Bouldin311

validation index (DBI) is applied to calibrate the SC algo-312

rithm by measuring the ratio of within-cluster and between-313

cluster similarities [12]. Step IV is repeated with different314

k values, and corresponding DBI values for each k are315

recorded. The value of k for which DBI is minimized is316

chosen as the optimal number of clusters [26]. This pro-317

cess is applied to the rest of the data subsets to determine318

the number of typical load profiles.319

IV. INFERENCE OF HOURLY ENERGY CONSUMPTION320

A MTSL method is assigned and trained for each typical load321

profile using the available data in the pattern bank defined in322

Section III, to map monthly consumption data to hourly load for323

customers belonging to each class. While hourly load variations324

cannot be directly observed at the monthly level, a multi-layer325

structure, where each layer corresponds to the total consumption326

at different timescales, is able to make this connection between327

monthly and hourly data with good accuracy. Hence, the MTSL328

is constructed in a way to keep a high correlation level be-329

tween inputs-outputs of different layers to maintain layer-wise330

estimation accuracy. In order to identify variables with high cor-331

relation coefficient levels to design the structure of the MTSL, a332

TABLE I
STATISTICAL MULTI-TIMESCALE CONSUMPTION ANALYSIS

basic statistical analysis was performed on the AMI dataset, as 333

shown in Table I. The consumption levels at different timescales 334

are defined as, monthly consumption EM , weekly consumption 335

EW , weekday consumption EDw
, weekend consumption EDn w

, 336

weekday hourly consumption EHw
, and weekend hourly con- 337

sumption EHn w
, and obtained using hourly SM data history. For 338

different types of customers, the correlation values are shown 339

in Table I and determined as follows: 340

ρ(X,Y ) =

∣
∣
∣
∣
∣

σ2
X,Y

σX σY

∣
∣
∣
∣
∣

(4)

where, X and Y are the consumption levels of observed cus- 341

tomers at specific timescales, such as monthly or weekly con- 342

sumption. σ2
X,Y is the covariance of X and Y , and σX defines 343

the standard deviations of the variable. Using the correlation 344

analysis, a three-layer structure is developed for each type of 345

customer and typical load behavior stored in the pattern bank, 346

as shown in Fig. 2. In this figure, Layer I converts total monthly 347

consumption, EM , to the set of weekly consumption values 348

EW = {EW 1 , . . . , EW 4} using ANNs connected in series. To 349

capture the temporal correlation between consumption at con- 350

secutive weeks, each week’s estimated consumption is also fed 351

to the next ANN corresponding to the following week’s con- 352

sumption. This idea is shown in (5) and generalized to all the 353

layers of MTSL, as demonstrated in Fig. 2: 354

EW i = ANN
(
EM ,EW (i−1)

)
(5)

The output of Layer I forms the weekly training set that 355

becomes the input of Layer II. This layer converts weekly con- 356

sumption, EW , to the set of daily consumption ED = {ED1 , 357

. . . , ED7} by various ANNs. Based on the distinct customer 358

behavior on weekdays and weekends, Layer III is trained to 359

map the total daily consumption to hourly consumption EH = 360

{EH 1 , . . . , EH 24}. In the proposed model, the Levenberg- 361

Marquardt (LM) backpropagation method is used to update the 362

network weight and bias variables [27]. The LM algorithm is 363

derived from Newton’s method to minimize sum-of-square error 364

functions [28]. Compared to backpropagation algorithms with a 365

constant learning rate, LM can automatically adjust the learning 366
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Fig. 2. Multi-timescale learning structure.

rate in the direction of gradient using the Hessian matrix, which367

significantly increases the training speed [29], [30]. The training368

objective function (F ) and the update equation of LM can be369

written as:370

min
b

F (b) =
Q∑

i=1

v2
i (b) = vT (b)v(b) (6)

Δbl = − [
JT (bl)J(bl) + μlI

]−1
JT (bl)v(bl) (7)

where, μl is the combination parameter at iteration l, b is the371

set of learning parameters, J is the training objective function’s372

Jacobian, I is the identify matrix, v is the error vector, T is373

the matrix transposition operation, and Δbl defines the learning374

parameter updates at each iteration. In each iteration, the value of375

μl is updated based on the change of approximated performance376

index F (b). If a smaller value is obtained, the μl is divided by377

some factor ϑ > 1. Otherwise, μl is multiplied by ϑ for the next378

iteration.379

For each ANN, the dataset is randomly divided into three380

separate subsets for training (70% of the total data), validation381

(15% of the total data), and testing (15% of the total data).382

To calibrate the hyper-parameters of each ANN, we utilize the383

grid search methods to find the optimal sets of four important384

parameters of LM: the number of hidden layer, the number of385

neurons, the value of increase factor ϑ and the value of de-386

crease factor 1
ϑ [31]. As a multi-layer structure with a high387

number of learning parameters, the overfitting problem poses388

a critical risk against reliability of the learned model. Over-389

fitting is a result of model over-flexibility which occurs when390

the model shows low bias but high variance [32]. In order to391

overcome this problem, we have adopted two approaches in392

this paper: 1) Early stopping mechanism, in which the training393

process is terminated as soon as the validation error starts to394

increase [33]. 2) Noise injection, which improves the robust-395

ness of ANNs by injecting small noise to the AMI training396

sets [34].397

V. PROPOSED METHOD FOR PATTERN IDENTIFICATION 398

In the proposed approach, various MSTL models are assigned 399

to typical consumption patterns. In practice, monthly billing 400

data alone is not enough to determine the typical load profiles 401

of unobserved customers. The pervasive real-time data source 402

in distribution systems is a limited number of feeder-level mea- 403

surements, such as SCADA voltage and current measurements. 404

In order to identify and allocate the corresponding daily pattern 405

and related MSTL to unobserved customers using only feeder- 406

level measurements, a BCSE-aided RBL method is proposed 407

[16]. This learning algorithm computes the probability of each 408

typical load pattern for an unobserved customer using the resid- 409

uals of a BCSE algorithm [15]. Based on the probability values, 410

the most probable class is chosen as the correct underlying pro- 411

file for unobserved customer. 412

A. BCSE 413

A BCSE algorithm is tailored for real-time monitoring of 414

distribution systems [15] [35]. Compared to traditional state es- 415

timation methods that use node voltages as system states, BCSE 416

is shown to improve the computational efficiency and memory 417

requirements by adopting branch currents as state variables. In 418

general, the Weighted Least Square (WLS) algorithm is widely- 419

used to solve the BCSE problem to obtain an estimation of 420

system nodes [36]. The objective function of WLS is defined as 421

follows: 422

min
x

J = (z − h(x))T Σ(z − h(x)) (8)

where, z is the measurement vector, x is the state vector, i.e., 423

x = [Ir , Ix ] with Ir and Ix representing the branch currents’ 424

real part and branch currents’ imaginary part, h is the nonlin- 425

ear measurement function associated with measurement z. The 426

residual vector of BCSE is defined as the difference between the 427

real measurements with estimated values, r = z − h(x), and Σ 428

denotes the weight matrix that represents the accuracy of mea- 429

surements. In general, the variance of the measurement error, 430

ϕ2 , is used to build Σ, as Σ = diag{ϕ−2
1 , . . . , ϕ−2

s }, where s 431



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON POWER SYSTEMS

represents the cardinality of z [37]. The Gauss-Newton method432

is adopted to solve this non-convex optimization problem [15].433

The basic idea of Gauss-Newton method is to find a solution for434

∇xJ = 0, where ∇xJ denotes the gradient of J with respect to435

state variables. The iterative processes of the algorithm are as436

follows:437

G(x) = HT (x)ΣH(x) (9)

[G(xm )]Δxm = HT (xm )Σ(z − h(xm )) (10)

xm+1 = xm + Δxm (11)

where, H is the Jacobian matirx of the measurement function438

h(x), G is the gain matrix, and m is the iteration number.439

B. Load Pattern Assignment by RBL440

To identify the underlying daily consumption pattern for un-441

observed customers, the following steps are performed:442
� Stage I: Select a class, denoted as i, from the daily con-443

sumption pattern bank, for unobserved customer j.444
� Stage II: Use the MSTL of the selected class to generate445

hourly pseudo load values from the customer’s monthly446

billing data.447
� Stage III: Run the BCSE using the generated pseudo load448

values. Observe the residuals. The residuals of each esti-449

mator can be obtained by comparing the real measurements450

with estimated values.451
� Stage IV: Define probability pi,j as: “the probability that452

class i is the correct average daily consumption profile453

for customer j.” The initial value of pi,j is defined as 1
N454

for iteration count 0, where N is the number of MSTL455

models for a specific customer type [16]. Applying the456

Bayes theorem and assuming a Gaussian distribution for457

measurement error, a recursive expression for updating this458

probability over time is obtained as follows [38]:459

po
i,j =

exp(− 1
2 roT

i,j · Φ · ro
i,j )p

o−1
i,j

∑N
t=1 exp(− 1

2 roT

t,j · Φ · ro
t,j )p

o−1
t,j

(12)

where, o is the iteration count, ro
i,j is the residual vec-460

tor of the i’th class with respect to j’th customer and is461

computed by the corresponding state and real measure-462

ment vectors ro
i,j = z − h(xo

i ), Φ is a diagonal matrix that463

represents the variances corresponding to the residual com-464

ponents Φ = diag {σ2
ri , j ,R , σ2

ri , j ,I } to increase the speed465

of convergence, where σ2
ri , j ,R is the variance of the branch466

current real part residual and σ2
ri , j ,I is the variance of the467

branch current imaginary part residual.468
� Stage V: Go back to Stage I.469
� Stage VI: Identify the underlying daily load profile for470

the unobserved customer, i∗, as the most probable class:471

i∗ = argmaxi pj
i .472

� Stage VII: Repeat the above process for all unobserved473

customers until the average daily load profiles of all cus-474

tomers are identified.475
� Stage VIII: Perform online BCSE for real-time sys-476

tem monitoring using MTSL-based pseudo hourly load477

Fig. 3. Consumption pattern bank for industrial, commercial, and residential
customers on weekday and weekend.

estimations obtained from the assigned classes to unob- 478

served customers. 479

The main advantage of the RBL is exponential rejection of the 480

wrong load patterns and low computational complexity which 481

is advantageous in large distribution systems [16]. 482

VI. NUMERICAL RESULTS 483

The proposed observability enhancement framework is tested 484

for unobserved customers on a real distribution feeder, shown 485

in Fig. 4. This feeder contains three types of loads: industrial 486

(3%), commercial (20%), and residential (77%) loads. The pro- 487

posed method is compared with two existing load estimation 488

approaches adopted from [9] and [11], in terms of accuracy. 489

A. Calibration Performance 490

To calibrate the parameters of SC and ANN, the DBI index 491

and grid search are utilized to find the optimal parameters. For 492

the SC method, the optimal number of cluster, k, is obtained 493

based on the minimum DBI value, as shown in Fig. 7. For 494

the calibration of ANN, the the optimal hyper-parameter set is 495

decided by the grid search method [31]. Due to page limit, we 496

have presented a sample grid search calibration result for one 497

ANN in Fig. 7. 498

B. SC Algorithm Performance 499

Based on the AMI dataset, the SC algorithm is utilized to 500

classify different load shapes and to create the consumption 501

pattern banks. Fig. 3 shows typical load patterns for different 502

types of customers for weekdays and weekends. As shown in 503
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Fig. 4. A 18-node real utility feeder case.

Fig. 5. Comparison of hourly load inference with real load profile.

Fig. 3, the numbers of typical load profiles in weekdays are nor-504

mally smaller than that of weekends. Compared to the diverse505

activities in weekends, customers have relatively few normative506

load behaviors in weekdays. Also, as expected, the residential507

customers have more load patterns than industrial and commer-508

cial customers due to the higher variation of residential load509

behaviors.510

C. Pseudo Measurement Generation Performance511

After consumption pattern banks have been developed from512

AMI data of observed systems, the muti-layer MSTL models513

are trained and tested on the feeder shown in Fig. 4. In this case,514

the test feeder is considered to be a fully unobserved network in515

which no customer is equipped with SMs. To reduce the error of516

the learning model, the MTSL method has been tested over517

12-month load data. Fig. 5 shows the comparison between518

hourly load inference of one sample customer, obtained from519

monthly billing data, and real load profile during that month. As520

can be seen, the pseudo hourly load samples are able to accu-521

rately track the customer’s real consumption. Fig. 6 presents the522

accuracy comparison of load estimation for different types of523

customers. The monthly data of test customers are used as the524

input of all MSTL models. The goodness-of-fit measure, R2 , is525

used to assess the accuracy of the result, with R2 = 1 indicating526

a perfect fit. The R2 values are used to measure the accuracy527

of MTSLs corresponding to correct and incorrect daily pattern528

consumption classes for all customers. The R2 is computed by529

Fig. 6. Customer level load estimation result.

Fig. 7. Calibration result of SC (left) and ANN (right).

the total sum of squares of estimation error and deviation from 530

mean. The equation is given as the follows: 531

R2 = 1 −
∑J

i=1(τi − fi)2

∑J
i=1(τi − τ)2

(13)

where, fi is the estimated value, τ is the observed data and 532

τ is the mean of the observed data. As expected, the MTSL 533

load estimation model corresponding to the correct underly- 534

ing consumption class for the customers has a better accuracy, 535

compared to the incorrect one. This further supports the correct 536

functionality of RBL, as described in the next subsection. Also, 537

as shown in Fig. 6, for industrial and commercial customers, the 538

learning model yields more accurate estimations compared to 539

the residential customers due to lower consumption volatility. In 540

contrast, for residential customers, the diversity and complexity 541

of human activities lead to less accurate estimations. 542

Fig. 8 shows the feeder-level daily load estimation results (in 543

weekdays and weekends) averaged over a total of 15 months for 544

our proposed learning model and two existing methods in the lit- 545

erature [9] [11]. The Mean Absolute Percentage Error (MAPE) 546

criterion is utilized to evaluate the accuracy of estimation 547

methods: 548

M =
100%
ns

ns∑

t=1

∣
∣
∣
∣
A(t) − E{A(t)}

A(t)

∣
∣
∣
∣ (14)

where, A is the actual load value and E{·} is the mean operator. 549

As is demonstrated in these figures, the estimation MAPE values 550

for the proposed method are {7.40%, 10.02%} for weekdays and 551

weekends, respectively. On the other hand, the proposed meth- 552

ods in [9] and [11] show average MAPE of {19.47%, 20.32%} 553

and {13.79%, 21.16%} over the test set. Hence, based on this 554
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Fig. 8. Comparison of load inference results.

AMI dataset and the test feeder, the proposed method shows555

a better accuracy for hourly load inference compared to the556

previous works.557

D. Load Pattern Identification558

The performance of the BCSE-aided pattern identification559

scheme was tested on three cases of different types of customers,560

corresponding to industrial, commercial, and residential loads.561

A Phasor Measurement Unit (PMU) was placed at the main562

bus of the test feeder to provide the real measurement value563

for BCSE. Pseudo hourly load estimations were extracted from564

unobserved customers’ monthly billing data, for different can-565

didate daily consumption profiles in the databank. According566

to the residuals, the graphs in Fig. 9 show the probabilities as-567

signed by the RBL algorithm to the correct and incorrect load568

patterns available in the typical daily load profile bank. Over569

the iterations, one MSTL model has the asymptotic probability570

close to one while others have almost 0 probabilities. Based on571

the previous work [16], the model with the highest probability572

is identified as the target model. As is demonstrated in Fig. 9,573

the proposed algorithm is effective since it successfully identi-574

fies the MTSL model corresponding to the correct latent daily575

consumption pattern, by assigning the highest probability value576

to it for all types of customers.577

Fig. 9. Performance of BCSE-aided RBL daily profile identification method
for three types of customers.

E. State Estimation Performance 578

After hourly pseudo measurement samples are generated for 579

every unobserved customer using the proposed method, BCSE 580

can be performed in real-time over the test feeder given the 581

introduced data-driven redundancy. The error distribution of 582

real-time state estimation is shown in Fig. 10 for voltage mag- 583

nitude and phase components. As is demonstrated in the figure, 584

based on the proposed load estimation approach, BCSE can ob- 585

tain system state estimation with magnitude and phase angle 586

estimation mean errors of 0.70% and 0.24%, respectively. In the 587

previous work [35], the mean errors of voltage magnitude and 588

phase angle are around 0.73% and 0.36%, respectively in the 589

BCSE algorithm with 20% maximum error for pseudo measure- 590

ments. Hence, by comparison, our BCSE and machine learning 591

framework shows a comparably valid performance. 592
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Fig. 10. BCSE-based state estimation performance using the proposed load
inference model.

VII. CONCLUSION593

In this paper, we have presented a data-driven method for594

load estimation to improve the observability of distribution sys-595

tems without AMI. The proposed method is able to extract596

hourly load estimations from monthly billing data for all types597

of customers, including residential, commercial, and industrial.598

Moreover, this approach can identify the average daily load599

pattern of unobserved customers using a BCSE-aided proba-600

bilistic learning method. The proposed method is successfully601

validated on a real utility feeder with real SM data and has been602

able to improve the performances of existing methods in the603

literature.604

REFERENCES605

[1] Office of Electricity Delivery and Energy Reliability, “Advanced meter-606
ing infrastructure,” Feb. 2008. [Online]. Available: https://www.energy.607
gov/sites/prod/files/2016/12/f34/AMI ort_09-26-16.pdf608

[2] Energy Information Administration, “Advanced metering count by tech-609
nology type,” 2017. [Online]. Available: https://www.eia.gov/electricity/610
annual/html/epa_10_10.html611

[3] O. Chilard, S. Grenard, O. Devaux, and L. de Alvaro Garcia, “Distribution612
state estimation based on voltage state variables : Assessment of results613
and limitations,” in Proc. 20th Int. Conf. Exhib. Electricity Distrib. Part 1,614
Jun. 2009, pp. 1–4.615

[4] A. Al-Wakeel, J. Wu, and N. Jenkins, “k-means based load estimation616
of domestic smart meter measurements,” Appl. Energy, vol. 194, no. 1,617
pp. 333–342, May 2017.618

[5] Y. Li and P. J. Wolfs, “A hybrid model for residential loads in a distribution619
system with high PV penetration,” IEEE Trans. Power Syst., vol. 28, no. 3,620
pp. 3372–3379, Aug. 2013.621

[6] B. Stephen, A. J. Mutanen, S. Galloway, G. Burt, and P. Jrven-622
tausta,“Enhanced load profiling for residential network customers,” IEEE623
Trans. Power Del., vol. 29, no. 1, pp. 88–96, Feb. 2014.624

[7] D. Gerbec, S. Gasperic, I. Smon, and F. Gubina, “Allocation of the load 625
profiles to consumers using probabilistic neural networks,” IEEE Trans. 626
Power Syst., vol. 20, no. 2, pp. 548–555, May 2005. 627

[8] E. Manitsas, R. Singh, B. C. Pal, and G. Strbac, “Distribution system state 628
estimation using an artificial neural network approach for pseudo measure- 629
ment modeling,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 1888–1896, 630
Nov. 2012. 631

[9] Y. R. Gahrooei, A. Khodabakhshian, and R. A. Hooshmand, “A new 632
pseudo load profile determination approach in low voltage distribution 633
networks,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 463–472, Jan. 634
2018. 635

[10] J. A. Jardini, C. M. V. Tahan, M. R. Gouvea, S. U. Ahn, and F. M. 636
Figueiredo, “Daily load profiles for residential, commercial and industrial 637
low voltage consumers,” IEEE Trans. Power Del., vol. 15, no. 1, pp. 375– 638
380, Jan. 2000. 639

[11] D. T. Nguyen, “Modeling load uncertainty in distribution network mon- 640
itoring,” IEEE Trans. Power Syst., vol. 30, no. 5, pp. 2321–2328, Sep. 641
2015. 642

[12] G. J. Tsekouras, P. B. Kotoulas, C. Tsirekis, E. N. Dialynas, and N. D. 643
Hatziargyriou, “A pattern recognition methodology for evaluation of load 644
profiles and typical days of large electricity customers,” Elect. Power Syst. 645
Res., vol. 78, pp. 1494–1510, Jun. 2008. 646

[13] G. J. Tsekouras, I. Hatzilau, and J. Prousalidis, “A new pattern recog- Q3647
nition methodology for classification of load profiles for ships electric 648
consumers,” J. Marine Eng. Technol., no. A14, pp. 45–58, 2009. 649

[14] L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” in Proc. 650
17th Int. Conf. Neural Inf. Process. Syst., 2004, pp. 1601–1608. 651

[15] M. E. Baran and A. W. Kelley, “A branch-current-based state estimation 652
method for distribution systems,” IEEE Trans. Power Syst., vol. 10, no. 1, 653
pp. 483–491, Feb. 1995. 654

[16] R. Singh, E. Manitsas, B. C. Pal, and G. Strbac, “A recursive Bayesian 655
approach for identification of network configuration changes in distribu- 656
tion system state estimation,” IEEE Trans. Power Syst., vol. 25, no. 3, 657
pp. 1329–1336, Aug. 2010. 658

[17] R. Li, C. Gu, F. Li, G. Shaddick, and M. Dale, “Development of low 659
voltage network templatespart I: Substation clustering and classification,” 660
IEEE Trans. Power Syst., vol. 30, no. 6, pp. 3036–3044, Nov. 2015. 661

[18] R. Li, C. Gu, F. Li, G. Shaddick, and M. Dale, “Development of low 662
voltage network templatespart II: Peak load estimation by clusterwise 663
regression,” IEEE Trans. Power Syst., vol. 30, no. 6, pp. 3045–3052, Nov. 664
2015. 665

[19] S. M. Bidoki, N. Mahmoudi-Kohan, M. H. Sadreddini, M. Z. Jahromi, 666
and M. P. Moghaddam, “Evaluating different clustering techniques for 667
electricity customer classification,” in Proc. IEEE PES Transmiss. Distrib. 668
Conf. Expo., 2010, pp. 1–5. 669

[20] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an 670
algorithm,” in Proc. Adv. Neural Inf. Process. Syst., 2002, pp. 849–856. 671

[21] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,” 672
Ann. Data Sci., vol. 2, no. 2, pp. 165–193, Jun. 2015. 673

[22] U. Luxburg, “A tutorial on spectral clustering,” Statist. Comput., vol. 17, 674
no. 4, pp. 395–416, Mar. 2007. 675

[23] D. Vercamer, B. Steurtewagen, D. V. den Poel, and F. Vermeulen, “Pre- 676
dicting consumer load profiles using commercial and open data,” IEEE 677
Trans. Power Syst., vol. 31, no. 5, pp. 3693–3701, Sep. 2016. 678

[24] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without eigen- 679
vectors a multilevel approach,” IEEE Trans. Pattern Anal. Mach. Intell., 680
vol. 29, no. 11, pp. 1944–1957, Nov. 2007. 681

[25] F. R. K. Chung, Spectral Graph Theory. Providence, RI, USA: American 682
Mathematical Society, 1997. 683

[26] F. McLoughlin, A. Duffy, and M. Conlon, “A clustering approach to 684
domestic electricity load profile characterisation using smart metering 685
data,” Appl. Energy, vol. 141, pp. 190–199, Mar. 2015. 686

[27] S. Sapna, A.Tamilarasi, and P. Kumar, “Backpropagation learning algo- 687
rithm based on Levenberg–Marquardt algorithm,” Comput. Sci. Inf. Tech- 688
nol., pp. 393–398, 2012. 689

[28] C. L. et al., “Levenberg–Marquardt backpropagation training of multilayer 690
neural networks for state estimation of a safety-critical cyber-physical 691
system,” IEEE Trans. Ind. Inform., vol. 14, no. 8, pp. 3436–3446, Aug. 692
2018. 693

[29] B. M. Wilamowski and H. Yu, “Improved computation for Levenberg– 694
Marquardt training,” IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 930– 695
937, Jun. 2010. 696

[30] N. Zhang and P. K. Behera, “Solar radiation prediction based on recurrent 697
neural networks trained by levenberg-marquardt backpropagation learning 698
algorithm,” in Proc. IEEE PES Innovative Smart Grid Technologies, 2012, 699
Jan. pp. 1–7. 700

https://www.energy.gov/sites/prod/files/2016/12/f34/AMI ort_09-26-16.pdf
https://www.energy.gov/sites/prod/files/2016/12/f34/AMI ort_09-26-16.pdf
https://www.eia.gov/electricity/annual/html/epa_10_10.html
https://www.eia.gov/electricity/annual/html/epa_10_10.html


IEE
E P

ro
of

10 IEEE TRANSACTIONS ON POWER SYSTEMS

[31] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-701
tion,” J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.702

[32] I. Bilbao and J. Bilbao, “Overfitting problem and the over-training in the703
era of data: Particularly for artificial neural networks,” in Proc. 8th Int.704
Conf. Intell. Comput. Inf. Syst., Dec. 2017, pp. 173–177.705

[33] C. Doan and S. Liong, “Generalization for multilayer neural networkQ4 706
Bayesian regularization or early stopping,” in Proc. 2nd Conf. Asia Pac.707
Assoc. Hydrol. Water Resour., Jan. 2004.708

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.709
Cambridge, MA, USA: MIT Press, 2016. [Online]. Available:710
http://www.deeplearningbook.org711

[35] H. Wang and N. N. Schulz, “A revised branch current-based distribution712
system state estimation algorithm and meter placement impact,” IEEE713
Trans. Power Syst., vol. 19, no. 1, pp. 207–213, Feb. 2004.714

[36] A. Abur and A. G. Exposito, Power System State Estimation: Theory and715
Implementation. New York, NY, USA: Marcel Dekker, 2004.716

[37] K. Dehghanpour, Z. Wang, J. Wang, Y. Yuan, and F. Bu, “A survey onQ5 717
state estimation techniques and challenges in smart distribution systems,”718
IEEE Trans. Smart Grid, to be published.719

[38] S. Wang and Y. Zhao, “Online Bayesian tree-structured transformation of720
HMMs with optimal model selection for speaker adaptation,” IEEE Trans.721
Speech Audio Process., vol. 9, no. 6, pp. 663–677, Sep. 2001.722

Yuxuan Yuan (S’18) received the B.S. degree in723
electrical and computer engineering from Iowa State724
University, Ames, IA, USA, in 2017, where he725
is currently working toward the Ph.D. degree. His726
research interests include distribution system state727
estimation, synthetic networks, data analytics, and728
machine learning.729

730

Kaveh Dehghanpour (S’14–M’17) received the731
B.Sc. and M.S. degrees in electrical and computer732
engineering from the University of Tehran, Tehran,733
Iran , in 2011 and 2013, respectively, and the Ph.D.734
degree in electrical engineering from Montana State735
University, Bozeman, MT, USA, in 2017. He is cur-736
rently a Postdoctoral Research Associate with Iowa737
State University, Ames, IA, USA. His research in-738
terests include application of machine learning and739
data-driven techniques in power system monitoring740
and control.741

742

Fankun Bu (S’18) received the B.S. and M.S. de- 743
grees from North China Electric Power University, 744
Baoding, China, in 2008 and 2013, respectively. He 745
is currently working toward the Ph.D. degree with the 746
Department of Electrical and Computer Engineering, 747
Iowa State University, Ames, IA, USA. From 2008 to 748
2010, he worked as a Commissioning Engineer with 749
NARI Technology Co., Ltd., Nanjing, China. From 750
2013 to 2017, he worked as an Electrical Engineer 751
with the State Grid Corporation of China at Jiangsu, 752
Nanjing, China. His research interests include load 753

modeling, load forecasting, distribution system estimation, machine learning, 754
and power system relaying. 755

756

Zhaoyu Wang (S’13–M’15) received the B.S. and 757
M.S. degrees in electrical engineering from Shang- 758
hai Jiaotong University, Shanghai, China, in 2009 and 759
2012, respectively, and the M.S. and Ph.D. degrees in 760
electrical and computer engineering from the Georgia 761
Institute of Technology, Atlanta, GA, USA, in 2012 762
and 2015, respectively. He is the Harpole-Pentair As- 763
sistant Professor with Iowa State University, Ames, 764
IA, USA. He was a Research Aid at Argonne Na- 765
tional Laboratory in 2013 and an Electrical Engineer 766
Intern with Corning Inc. in 2014. His research in- 767

terests include power distribution systems, microgrids, renewable integration, 768
power system resilience, and power system modeling. He is the Principal In- 769
vestigator for a multitude of projects focused on these topics and funded by the 770
National Science Foundation, the Department of Energy, National Laboratories, 771
PSERC, and Iowa Energy Center. He was the recipient of the IEEE PES General 772
Meeting Best Paper Award in 2017 and the IEEE Industrial Application Society 773
Prize Paper Award in 2016. He is the Secretary of the IEEE Power and Energy 774
Society Award Subcommittee. He is an editor for the IEEE TRANSACTIONS ON 775
SMART GRID and IEEE PES LETTERS. 776

777

http://www.deeplearningbook.org

