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Abstract—In an era characterized by extensive use of and
reliance on information and communications technology (ICT),
cyber–physical power systems (CPPSs) have emerged as a critical
integral of modern power infrastructures, providing vital energy
sources to consumers, communities, and industries worldwide. The
integration of ICT in these systems, while beneficial, introduces a
rapidly evolving range of cybersecurity challenges that significantly
threaten their confidentiality, integrity, and availability. To address
this, our article offers a comprehensive and timely survey of the
current landscape of cyber vulnerabilities in CPPS, reflecting the
latest developments in the field up to the present. This includes
an in-depth analysis of the diverse types of cyber threats to CPPS
and their potential consequences, underscoring the necessity for a
broad, multidisciplinary approach. Our review is distinguished by
its thoroughness and timeliness, covering recent research to offer
one of the most current overviews of cybersecurity in CPPSs. We
adopt a holistic perspective, integrating technical, societal, environ-
mental, and policy implications, thereby providing a more compre-
hensive understanding of cybersecurity in CPPSs. We delve into
the complexities of cyberattacks, exploring sophisticated, targeted
attacks alongside common threats, and emphasize the dynamic
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nature of cyber threats, providing insights into their evolution and
future trends. Additionally, our review highlights critical yet often
overlooked challenges, such as system visibility and standardiza-
tion in security protocols, arguing their significance in enhancing
CPPS resilience. Furthermore, our work gives special attention to
the aspects of restoration and recovery postcyberattack, an area
less emphasized in the existing literature. Through this compre-
hensive overview of the current state and evolving challenges of
CPPS security, our article serves as an indispensable resource for
research, practice, and policymaking dedicated to safeguarding the
safety, reliability, and resilience of ICT-empowered energy systems.

Index Terms—Cyberattack, cyber–physical systems, energy
systems, literature review.

I. INTRODUCTION

CYBER–PHYSICAL power systems, also referred to as
CPPSs, are intricate networks that combine cyber and

physical elements to orchestrate the generation, transmission,
distribution, and consumption of power [1], [2], [3]. These
systems leverage digital technology to optimize energy man-
agement, thus revolutionizing the traditional energy sector [4].
However, the integration of information and communication
technologies (ICTs) in the energy sector has precipitated the
emergence of novel security challenges [5], [6]. The prolifera-
tion of CPPS has resulted in a commensurate increase in the sus-
ceptibility of these systems to cyberattacks [7]. These intrusions
can result in debilitating disruptions to energy delivery, with the
potential to cause cascading failures across the infrastructure
[8].

Real-world instances of cyberattacks targeting critical in-
frastructure in the energy sector, such as CPPS, are becoming
increasingly prevalent and sophisticated. The Stuxnet attack on
Iran’s nuclear program in 2010 was a targeted intrusion that
disrupted the country’s critical energy infrastructure, destroying
nearly 20% of its nuclear centrifuges and causing over $10
billion in economic losses [9], [10]. This sophisticated attack
served as a wake-up call for organizations around the world
to prioritize the protection of their control and energy systems
against potential cyber threats, with the global cost estimated to
reach $11.5 billion by 2022. The increasing interconnectedness
of energy systems and the reliance on technology have made it
crucial for organizations to adopt proactive security measures
[11], [12], [13].

The Ukraine Blackout of December 2015 was the first doc-
umented case of a successful cyberattack leading to a power
outage, affecting over 225 000 citizens for several hours [14].
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The outage lasted for approximately 6 h before power was fully
restored [15]. The incident resulted in severe financial losses,
estimated at around 10 million dollars, highlighting the pressing
need for stronger security measures in energy systems [16].
This event prompted increased investments in technology and
security strategies by organizations and governments around
the world, as they strive to secure their energy infrastructure
and protect against potential future cyberattacks. The Triton
attack targeted an oil and gas facility in the Middle East with
sophisticated malware [17]. The malware could have caused
catastrophic consequences if the attackers had intended to harm
safety systems [18]. The incident highlights the threat to energy
systems and the need for robust cybersecurity measures.

Rostami et al. [19] offer a comprehensive and insightful
approach to assessing the reliability of CPPSs, integrating pre-
dicted cyber vulnerabilities. The uniqueness of this reference lies
in its integration of predictive analytics with real-world cyber
threat data, offering a realistic assessment of system vulnera-
bilities. Chen et al. [20] critically explore the vulnerabilities
in machine-learning-based inertia forecasting in smart grids,
specifically under cost-oriented data integrity attacks. Their
analysis of potential risks associated with data manipulation
and the subsequent destabilization of the grid is both in-depth
and insightful. The reference is commendable for delving into
the intersection of machine learning and cybersecurity, a cru-
cial area in smart grid research. Zhang and Li [21] offer an
in-depth cyber-vulnerability analysis for real-time power mar-
ket operations, addressing a critical aspect of power system
security. The combination of advanced cyber threat modeling
with real-time market dynamics provides a comprehensive view
of potential vulnerabilities. Zheng et al. [22] conduct a thor-
ough examination of the vulnerabilities in deep reinforcement
learning models for power system topology optimization. Their
analysis highlights the susceptibility of these models to tar-
geted cyberattacks, which could lead to compromised system
configurations.

The detection of cyberattacks on CPPSs is a crucial aspect
of ensuring the security, reliability, and resilience of modern
energy systems [23]. Given the growing dependence on digital
technologies and interconnected systems in the energy sector, it
is increasingly important to have effective measures in place to
detect and respond to cyberattacks [13], [24]. The significance
of cyberattack detection in CPPS lies in the far-reaching and
potentially catastrophic effects that such intrusions can have.
Cyberattacks on CPPS can disrupt energy delivery, compromise
energy management systems, and lead to system failures and
widespread blackouts [25]. Additionally, cyberattacks on CPPS
can have a significant impact on public safety, national security,
and economic stability. To detect cyberattacks on CPPS, various
techniques and tools are employed. These techniques range from
network-based detection methods, such as static and dynamic
state estimation [26]. Additionally, advanced techniques, such
as machine-learning and artificial intelligence algorithms, are
being developed to detect anomalies and suspicious activities in
CPPS [27]. The implementation of these techniques is crucial to
detecting cyberattacks in real time and mitigating their impacts
on the CPPSs [28].

Fig. 1. Typical CPPS containing decision, communication, and physical lay-
ers.

Upon the detection of a cyberattack on a CPPS, it is imperative
to implement remedial measures and effectuate emergency re-
sponse protocols with alacrity to mitigate the damage inflicted
[29], [30]. Such protocols typically entail a synergistic blend
of techniques, such as the adjustment of energy generation
and distribution plan, backup resources, load shedding, and
demand-side management. Beyond these prompt response ef-
forts, organizations can fortify their overall security posture,
thereby reducing their susceptibility to future attacks [31]. This
may encompass the deployment of technical safeguards, such
as firewalls, access control systems, encryption, and other se-
curity measures, as well as the formulation of comprehensive
incident response plans and the frequent testing and rehearsal
of such plans to ensure preparedness [32]. By undertaking these
proactive measures, organizations can enhance their capability
to competently respond to cyber threats and minimize the ram-
ifications of attacks on their CPPS [33].

The present article offers a comprehensive review of the vari-
ous methods used for detecting, planning, and mitigating cyber-
attacks that target CPPSs while also addressing the challenges
associated with these methods. Given the increasing dependence
on CPPSs for managing critical infrastructures, it has become
crucial to develop effective strategies for safeguarding these
systems against malicious cyberattacks. The study presents an
overarching framework for conducting cyberattack research on
CPPSs. A typical CPPS is depicted in Fig. 1. We begin by
introducing the types and impacts of cyberattacks on CPPSs,
such as disruptions to operations, compromised system integrity,
and potential harm to human safety.

We then employ attack detection techniques to diagnose and
identify cyberattacks. Once detected, we propose a range of
planning and mitigation mechanisms to ensure the safe and
uninterrupted operation of CPPSs. Furthermore, we explore the
challenges associated with implementing these defense mech-
anisms, such as the high cost of deployment and the need for
regular updates and maintenance. In summary, the present study
offers a comprehensive overview of the detection, planning,
and mitigation methods for CPPSs while also highlighting the
challenges associated with these methods. By providing a deep
understanding of the characteristics of cyberattacks and the
vulnerabilities of CPPSs, our study aims to contribute to the
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TABLE I
COMPARATIVE ANALYSIS OF CYBER VULNERABILITIES IN POWER SYSTEMS WITH EXISTING LITERATURE

development of effective defense strategies for protecting these
critical systems against cyber threats.

The major contributors can be summarized as follows.
Comprehensive Overview of CPPS Cybersecurity: Our survey

presents an extensive and up-to-date exploration of cybersecu-
rity in CPPS. We offer a detailed analysis that not only encom-
passes the most current research but also anticipates future trends
and challenges in cyber threats. This ensures our review remains
relevant and useful for both current and future developments in
the field.

Integrated Analysis of Cybersecurity Challenges: We provide
a holistic view of the cybersecurity landscape in CPPS, blending
technical insights with considerations of societal, environmen-
tal, and policy implications. Our work delves into the complex-
ities of various types of cyberattacks, highlighting the nuanced
challenges faced in securing CPPS against both common and
sophisticated threats.

Emphasis on System Resilience and Recovery Strategies: Our
survey underscores the importance of resilience in CPPS cyber-
security, focusing on robust recovery strategies and the critical
need for standardized security protocols. We bring to light the
importance of system restoration and the broader aspects of
cybersecurity that extend beyond prevention and immediate mit-
igation. A detailed comparison in Table I is shown to juxtapose
our findings and methodologies with the existing papers [34],
[35], [36], [37] on similar topics, illustrating the comprehensive
nature and multidisciplinary approach of our research on cyber
vulnerabilities of power systems.

The sections of this article have been meticulously struc-
tured to offer a broad review of the latest research on cy-
berattacks, including detection and defensive strategies within
ICT-enriched CPPSs (see Table II). The rest of this article

TABLE II
STRUCTURE OF THIS ARTICLE

article's
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is organized as follows. Section II discusses advancements in
CPPSs, detailing their architecture, components, and function-
alities. Section III analyzes a range of cyber threats to CPPSs,
from common attacks, such as malware, to sophisticated threats,
such as advanced persistent threat (APTs). Section IV reviews
advanced techniques for detecting cyberattacks on CPPSs, in-
cluding various methodologies and principles. Section V fo-
cuses on emergency responses, covering incident management,
containment tactics, and recovery strategies. Section VI out-
lines research challenges and areas needing further study for
enhancing CPPSs’ resilience. Section VII presents solutions for
cybersecurity issues, emphasizing AI, security standardization,
and stakeholder collaboration. Finally, Section VIII concludes
this article.

II. TRANSITIONING FROM TRADITIONAL ENERGY SYSTEMS TO

ICT-ENRICHED CPPSS

The transition from traditional energy systems to modern
CPPS has been a gradual and ongoing process that has taken
place over several decades [38]. The integration of ICTs into the
energy sector has been a driving force behind this transformation
[39] and has helped to improve the efficiency, reliability, and
sustainability of energy systems [40], [41]. Smart grids use
advanced sensors, control systems, and communication net-
works to monitor and control the flow of electricity in real
time [42]. This has allowed for the integration of renewable
energy sources into the grid and has improved the efficiency of
energy transmission and distribution [43]. Over time, more so-
phisticated systems, such as distributed energy resources, energy
storage systems, and microgrids, have been added to the energy
mix.

The pros of modern CPPS include improved energy effi-
ciency and reliability, increased integration of renewable energy
sources [44], and the ability to provide energy to communities
during power outages [45]. However, there are also some cons
to consider. The vulnerability of modern ICT-enriched CPPS
to cyberattacks is a growing concern, as these systems rely
on complex networks and advanced control systems that can
be targeted by malicious actors [46]. Cyberattacks on energy
systems can cause significant disruptions to the energy supply,
including power outages and failures in energy transmission
and distribution [47]. The motivations behind this integration
have been numerous, including the need to improve efficiency,
reliability, and sustainability [48]. While the pros of modern
CPPS are significant, there are also some cons to consider, in-
cluding the cost of implementation and the growing vulnerability
to cyberattacks [49]. To mitigate these risks, it is important to
invest in robust cybersecurity measures to protect modern CPPS
from cyberattacks and to ensure the continued operation of these
critical systems.

III. TYPES OF CYBERATTACKS

This section provides an in-depth look into various types of
cyberattacks that pose threats to CPPSs, including false data
injection attacks (FDIAs), load redistribution attacks, denial of
service (DoS) attacks, phishing attacks, and man-in-the-middle

(MitM) attacks. Fig. 2 shows the integrated framework of cy-
berattack dynamics, detection, and mitigation in CPPS. FDIAs
can disrupt or destroy infrastructure by manipulating data sent to
control systems, potentially leading to significant infrastructure
damage and public safety risks. Load redistribution attacks ma-
nipulate sensor data regarding energy load distribution, leading
to potential overloading or imbalances in the power grid. DoS
attacks prevent legitimate system access, potentially causing
considerable disruption and damage, while phishing and MitM
attacks aim to steal sensitive information or intercept and alter
communication between system components, posing consider-
able risks to system security.

A. False Data Injection Attacks

FDIAs, as shown in Fig. 3, are a type of cyberattack on CPPSs
that involve the injection of inaccurate or malicious data into
the control systems of the grid [50]. Such attacks are motivated
by a range of factors, including espionage, financial gain, and
disruption or destruction of infrastructure [51]. FDIAs on CPPSs
can be launched by attackers gaining access to the control system
network, often through exploiting vulnerabilities in software
or hardware components. Once access is gained, attackers can
manipulate the data being sent to the control systems, such as
changing sensor readings or altering the setpoints of control
devices [52]. This can cause the system to operate in unintended
ways, potentially leading to cascading failures, blackouts, or
physical damage to equipment [53]. In some cases, attackers
may also use social engineering tactics to trick operators into
unknowingly facilitating the attack, such as by providing login
credentials or other sensitive information.

The consequences of successful attacks can be severe. In
some cases, attackers may seek to cause physical damage to
critical infrastructure by manipulating data to cause equipment
to operate outside of safe parameters or by interfering with
safety systems [54]. In other cases, attackers may seek to disrupt
the grid by manipulating data in a way that causes outages
or other disruptions. This can lead to power losses, economic
impacts, and potential risks to public safety [55]. In 2015, the
Ukrainian power grid suffered a widespread blackout caused
by a sophisticated cyberattack that utilized false data injection
techniques [56]. The attackers were able to remotely manipulate
control systems and cause a blackout that left over 225 000
people without power for several hours [57]. In 2020, the U.S.
Cybersecurity and Infrastructure Security Agency issued an
alert warning of a cyberattack campaign targeting U.S. electric
utilities that utilized false data injection techniques [58].

B. Load Redistribution Attacks

Load redistribution attacks are a type of FDIA that can be
targeted at CPPSs to manipulate the sensor data regarding the
energy load distribution across the network [59], [60]. This type
of attack can potentially result in overloading or imbalances in
the power grid, which can cause severe disruptions or power
outages [61]. Load redistribution attacks involve an attacker
injecting false data into the system’s sensors, which can force the
system to redistribute energy in an unsafe or suboptimal manner
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Fig. 2. Integrated framework of cyberattack dynamics, detection, and mitigation in CPPS.

Fig. 3. Schematic of the FDIA intrusion.

[62]. For example, an attacker could overload specific parts of
the power grid, causing a power outage in some areas, while
other areas experience an overvoltage condition. Alternatively,
an attacker could redirect power to specific areas, leading to
equipment failure or other safety risks [63]. To prevent such
attacks, robust security measures must be implemented in CPPSs
[64].

C. DoS Attacks

DoS attacks are designed to prevent legitimate users from
accessing the targeted system [65], by flooding it with a large
amount of traffic or overwhelming it with requests [66]. In the
case of CPPSs, a DoS attack can cause significant disruptions
and damage to the power grid, leading to power outages and other
disruptions [67]. DoS attacks on CPPSs can take various forms,
one form is the flooding attack, which involves overwhelming
the system with a large number of requests or messages, thereby
causing it to become unresponsive or even crash [68]. Another
form is the distributed DoS attack, which involves using a
network of compromised devices (known as a botnet) to flood
the system with requests from multiple sources, making it even
more difficult to defend against [69]. DoS attacks on CPPSs can

have severe consequences. Disruption of service is a significant
risk, as DoS attacks can prevent legitimate users from accessing
the system, causing inconvenience or harm to end-users [70].
Economic losses may also occur, with lost revenue, reduced
productivity, and other financial consequences [71]. Several
real-life examples highlight the potential impact of DoS attacks
on CPPSs. In 2017, Dragonfly 2.0, a group of hackers, launched
a series of DoS attacks on energy companies in the United States
and Europe [72]. The attacks were aimed at gaining unauthorized
access to critical systems and sensitive information. Another
example is the Triton attack, which targeted a petrochemical
plant in Saudi Arabia in the same year [73]. This sophisticated
DoS attack aimed to disable the plant’s safety systems and cause
a major industrial accident.

D. Phishing Attacks

Phishing attacks are a type of social engineering attack that
aims to steal sensitive information, such as login credentials
or financial data, by tricking victims into clicking on a link
or opening an attachment that appears to be legitimate but is
actually a fake website or document [74]. Phishing attacks can
also be used to deliver malware or other forms of malicious
code that can compromise a system’s security. In the context of
CPPSs, phishing attacks can be particularly dangerous, as they
can give attackers access to critical infrastructure and control
systems, which could lead to physical harm or widespread power
outages [75]. For example, a phishing email sent to an operator
of a power plant could contain a link to a fake login page,
which could capture the operator’s login credentials and give
the attacker remote access to the plant’s control systems [76].
As such, it is essential for operators of CPPSs to be aware of the
risks posed by phishing attacks and to implement appropriate
security measures, such as employee training and multifactor
authentication, to mitigate these risks.
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Fig. 4. Typical framework of the state estimation.

E. MitM Attacks

An MitM attack is a type of cyberattack that poses a significant
threat to CPPSs [77]. The attacker can then manipulate the
data being exchanged to carry out various nefarious activities.
The primary goal of an MitM attack on a CPPS is to gain
unauthorized access to the system’s critical components. By
intercepting the communication between devices or systems,
an attacker can eavesdrop on sensitive information, modify the
data being exchanged, or even impersonate a legitimate user or
device [78]. To carry out an MitM attack, an attacker typically
uses various techniques, such as session hijacking. These tech-
niques allow the attacker to intercept, modify, or redirect the
communication between devices or systems. The attacker can
then manipulate the data to carry out various malicious activities
[79]. To protect against MitM attacks, CPPSs must implement
various security measures, such as encryption, authentication,
and access control mechanisms [80]. These measures can help to
prevent unauthorized access to the system’s critical components
and ensure that only legitimate devices and users can access the
system.

IV. CYBERATTACK DETECTION

To detect cyberattacks, researchers have developed various
cyberattack detection mechanisms that can be broadly classified
into two general approaches: model-based and learning-based
approaches [81].

Model-based approaches rely on the mathematical models
of CPPSs to detect anomalies and potential cyberattacks [82].
These models can simulate the behavior of the CPPS under
different scenarios and can detect deviations from expected be-
havior that may indicate a cyberattack [83]. Examples of model-
based approaches include state estimation, Kalman filtering, and
dynamic system modeling [84]. In Fig. 4, a state estimation
used in CPPS operation and control is given [85]. Model-based
approaches are particularly useful for detecting known cyberat-
tacks or attacks that exploit specific vulnerabilities in the CPPS.
Learning-based approaches use machine-learning algorithms to
analyze and learn patterns of normal behavior from historical
data collected from CPPSs [86], [87]. The algorithms can detect
deviations from normal behavior that may indicate the presence
of a cyberattack [88]. Examples of learning-based approaches
include neural networks, decision trees, and support vector
machines (SVMs) [89], [90]. Learning-based approaches are

particularly useful for detecting previously unknown cyberat-
tacks or novel attack strategies.

A. Model-Based Detection

One approach to identify malevolent cyberattacks in CPPSs
is through model-based detection methodologies, which hinge
on mathematical models of the system and measurements to
estimate the system’s internal states. The objective of model-
based detection is to identify any deviations in the system’s
behavior that may indicate the presence of a cyber assault. One
commonly employed model-based detection approach is state
estimation, which involves inferring the values of system states
(e.g., voltage and current) based on measurements obtained from
sensors dispersed throughout the system. State estimation can
be classified as either static or dynamic.

Static state estimation methodologies use a snapshot of mea-
surements at a specific time to estimate the system’s states. These
methods are typically more efficient and straightforward than
dynamic methods, but may not capture the full dynamism of the
system. Dynamic state estimation, on the other hand, takes into
consideration the time-varying nature of the system and employs
a set of equations that describe the system’s behavior over time.
This approach can provide more precise and intricate informa-
tion about the system’s states, which is particularly crucial for
detecting cyberattacks that may appear as subtle modifications
in the system over time. Attack detection methods can be based
on both static and dynamic state estimation. For instance, a
static detection method may compare the estimated states with
predetermined threshold values to detect anomalies that could
indicate a cyber assault. In contrast, a dynamic detection method
may employ machine-learning algorithms or other advanced
techniques to analyze the system’s behavior over time and iden-
tify deviations from expected patterns. Overall, model-based
cyberattack detection is a crucial component of cybersecurity
for CPPSs, and state estimation is a pivotal approach in this
field. By detecting cyberattacks in real time, CPPS operators
can take appropriate actions to mitigate the impact of the attack
and ensure the stability and reliability of the system.

To discern between cyberattacks and sudden changes in
power-grid state, a time-varying dynamic model is suggested in
[91]. The study develops a dynamic state estimation algorithm
to estimate and track nonstationary and time-varying power-grid
states. By examining the statistical properties of the dynamic
state estimations, the quickest detection algorithm is developed
to minimize the worst-case detection delays and accurately
differentiate between FDIA and sudden system changes. Al-
helou and Cuffe [92] introduce a control technique based on
the dynamic state estimation that can mitigate the impact of
cyberattacks in modern CPPSs. This technique involves two
distinct schemes: a dynamic observer that can dynamically
detect cyberattacks and another that isolates the location of the
attack. These schemes are based on observer designs that can
eliminate the effects of unknown inputs. Additionally, the study
proposes a fault-tolerant control technique that leverages the
observer-based detection and isolation schemes. Leng et al. [93]
focus on addressing the problem of instability resulting from
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stealth cyberattacks that can bypass established observability
tests. A detailed model of a stable dc microgrid is developed,
and the stability of the system is evaluated using a describing
function-based method in the presence of a nonlinear element
that represents the stealth cyberattack. Milano and Gómez-
Expósito [94] use Benford’s law to detect cyberattacks in CPPS
state estimators. One of the notable characteristics of this law is
its discerning sensitivity to data manipulations and is frequently
employed in the detection of fraudulent activity.

B. Learning-Based Detection

Learning-based cyberattack detection approach is fundamen-
tally distinct from the state estimation-based detection paradigm
[95], [96]. Unlike the former, the latter does not hinge on a
mathematical model of the physical system [97] but relies solely
on historical system data. Leveraging the multidisciplinary fields
of statistics, artificial intelligence, and computer science, ma-
chine learning is capable of extracting knowledge from data
[98]. In this context, machine-learning methods are harnessed
for both classification and regression, the former of which serves
as the bedrock for cyberattack detection [99]. Historical data are
employed to train a machine-learning-based classifier, which
can identify anomalous data patterns and, subsequently, detect
potential cyberattacks in CPPSs.

Learning-based attack detection methods can generally be
classified into three categories: supervised, unsupervised, and
semisupervised methods [100]. The classification methodology
consists of segregating predicted values into specific categories,
with cyberattack detection serving as a quintessential classifica-
tion task [101]. In essence, the principal objective of regression
analysis is numerical prediction, with widespread adoption in
CPPS load forecasting [102]. Ultimately, the learning-based
cyberattack detection methodology serves as an invaluable and
complementary approach to traditional model-based detection.
The utilization of machine-learning algorithms permits CPPS
operators to detect cyberattacks with greater precision and ef-
ficiency, empowering them to undertake proactive mitigation
measures that safeguard the stability and reliability of CPPSs
[103], [104].

A two-stage detection system for safeguarding against cyber
intrusions in CPPSs is proposed in [105]. In the first stage of
intrusion detection, an SVM is utilized as a detection algorithm
to uncover anomalous behavior within a smart meter. In the
second stage, the temporal failure propagation graph technique
is employed to generate attack pathways for pinpointing attack
events. Ultimately, a cutting-edge pattern recognition algorithm
is employed to compute the resemblance between a detected
anomalous event and pre-established cyberattacks. Khaw et al.
[86] detail a deep-learning-based system designed to detect
cyberattacks in transmission line protective relays. The proposed
system is trained using current and voltage measurements to cap-
ture a range of fault types that may occur on transmission lines.
The trained model is then utilized to identify any maliciously
injected current or voltage measurements that may be used by
attackers to manipulate the transmission line protective relays.

V. CYBERATTACK MITIGATION

Cyberattack mitigation within CPPS entails a multifaceted
strategy to reduce the likelihood of a successful attack while
simultaneously minimizing any impact resulting from an attack
[106]. This strategy encompasses the continuous monitoring
and analysis of system activity, ongoing risk assessments, and
the implementation of a variety of security controls capable of
safeguarding against known and emergent threats [107]. Threat
modeling represents a crucial aspect of cyberattack mitigation
within CPPS, as it serves to identify and assess the potential
risks associated with each threat [108]. If a cyberattack does
occur, CPPS must have a well-defined and rehearsed defense and
mitigation plan in place to mitigate the impact of the attack. This
plan may include isolating infected or compromised systems,
shutting down vulnerable services, and implementing patches
or updates to address the attack [37]. Furthermore, response
teams may be activated to investigate the attack, identify the
root cause, and develop strategies for restoring the system to
normal operation. Restoration and recovery represent the critical
components of cyberattack defense and mitigation within CPPS.
In the event of an attack, it is essential to have a well-defined
plan for restoring the system to full operation as quickly as
possible [109]. This plan may include repairing or replacing
compromised hardware, restoring backups, and implementing
additional security controls to prevent similar attacks from oc-
curring in the future.

A. Preventive Mitigation

Planning and investment strategies to safeguard critical
CPPSs against cyberattacks involve a combination of proactive
measures to reduce the risk of attacks and reactive measures
to minimize the impact of any attacks that occur [110]. One
key proactive measure is the regular conduct of comprehensive
risk assessments to identify system vulnerabilities and potential
threats. This process may involve penetration testing to assess
the security architecture of the system, as well as evaluations
of the third-party hardware and software components to ensure
that they meet established security standards. Investments in
security controls and technologies are also critical to mitigating
cyberattacks in CPPSs. This may include the implementation of
firewalls, intrusion detection systems, security information and
event management tools, and encryption technologies [111].

Cyber insurance can prove to be an indispensable tool in
safeguarding critical CPPSs against the debilitating financial
consequences of cyber incidents [112]. By procuring cyber in-
surance, CPPSs can benefit from a comprehensive risk manage-
ment strategy that provides financial protection in the aftermath
of a cyberattack [113]. The insurance can defray the exorbitant
costs of data recovery, legal fees, and other expenses, which
could prove particularly consequential to the financial viability
of CPPSs. This can be particularly crucial as CPPSs, given
their complex and interdependent architecture, are particularly
vulnerable to catastrophic financial losses due to a cyberattack
[114]. Moreover, the availability of cyber insurance can help
mitigate the potential risks of cyberattacks by encouraging or-
ganizations to invest in proactive cybersecurity measures and
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best practices. By offering insurance coverage, cyber insurance
serves as an impetus for organizations to improve their overall se-
curity posture, fortify their defensive infrastructure, and enhance
their cyber resilience. This, in turn, can reduce the likelihood of
a successful cyberattack and improve the overall cybersecurity
landscape of CPPSs. The multifaceted approach toward cyberse-
curity, coupled with the implementation of insurance coverage,
can also lower the overall risk profile of CPPSs, thus enabling
them to counter and effectively manage the challenges of the
ever-evolving cyber threat landscape [115].

Ahmed et al. [116] introduce a pioneering approach in em-
ploying spatiotemporal deep graph networks for event detection
in cyber–physical electric distribution systems. Their innovative
use of deep learning to navigate the complexities of electric
distribution networks marks a significant leap in predictive ana-
lytics. The reference is particularly commendable for its ability
to classify a wide array of event types and effectively localize
these events within the network. This work sets a new benchmark
in the field by combining theoretical robustness with practical
applicability, potentially transforming how electric distribution
systems are monitored and secured.

Presekal et al. [117] present a novel hybrid deep-learning
approach to developing an attack graph model for CPPSs. This
reference stands out for its dynamic mapping of potential cyber-
attack pathways using graph theory and machine learning. The
application of hybrid learning to capture both structured and un-
structured data within power systems is a highlight of this work.
The authors’ simulated attack scenarios demonstrate the model’s
effectiveness in real-time threat detection and mitigation.

B. Adaptive Mitigation

Mitigating the impact of natural or malicious disasters on
CPPS requires a multifaceted approach that prioritizes the safety
and reliability of the system, minimizes damage, and restores
functionality. One such strategy is resource allocation, which
involves the prioritization of critical resources, such as power,
communications, and emergency services [28], as well as the
deployment of backup systems to ensure continued operation.
Real-time data and predictive analytics can be leveraged to
optimize resource allocation and anticipate potential impacts.
Another important strategy involves the implementation of re-
dundant systems and backup solutions to minimize the risk
of data loss or system downtime. Redundancy can include the
use of redundant power sources, communications systems, and
other critical components, as well as backup storage and data
replication. These measures ensure that critical systems and data
are duplicated across multiple locations [118]. In summary, a
comprehensive approach to mitigating the impacts of natural
or malicious disasters on CPPS includes the prioritization of
critical resources through resource allocation, the implementa-
tion of redundancy measures, comprehensive disaster response
planning, and the use of advanced technologies, such as sen-
sors, drones, and machine-learning algorithms. These strategies
can help ensure continued operation, minimize the impact of
disasters, and protect critical infrastructure [119]. Khazaei and
Asrari [120] advance the state-of-the-art by shifting the focus

from dc state estimation in transmission systems to ac state
estimation in distribution grids, specifically targeting cyberat-
tacks that cause overvoltages. The proposed nonlinear model is
transformed into a convex optimization model via second-order
cone programming relaxation, ensuring the existence of a global
optimum. Zhang et al. [121] present a defense strategy that
coordinates the cyber and physical layers to minimize cyber
risk and overcome disruption. At the cyber layer, a multilevel
Markovian Stackelberg game models the sequential actions of
the attacker and defender, with the defender deploying resources
in real time to protect lines based on the attacker’s actions. If
cyberattacks result in physical outages, the defense shifts to
the physical layer. A security-constrained optimal power flow
is employed to reserve a security margin of critical components,
minimizing the blackout scale and potential future risk.

C. Restoration

In the aftermath of a cyberattack on CPPSs, system restoration
is a critical process that involves the recovery and repair of
affected systems and infrastructure [122]. The nature and scope
of the damage caused by a cyberattack can be extensive and may
require significant time, effort, and resources to fully restore
the system to its preattack state. The system restoration process
typically involves a number of interdependent steps, including
damage assessment, system diagnosis, repair, and testing [123].
Damage assessment is a crucial first step in understanding the
full extent of the damage caused by the cyberattack. This can
involve evaluating the operational status of the CPPSs and
identifying the specific systems and infrastructure that have
been affected. System diagnosis, the next step in the restoration
process, involves identifying the root causes of the damage and
developing a comprehensive plan for repairing and restoring the
affected systems. This may involve the replacement of hard-
ware and software components, the reconfiguration of network
settings, and the implementation of security updates to prevent
similar attacks in the future. Once the necessary repairs have
been completed, the restored systems and infrastructure must
undergo rigorous testing to ensure that they are fully operational
and that any vulnerabilities have been addressed. This testing
can include functional testing, performance testing, and security
testing to ensure that the CPPSs are fully restored and able to
operate effectively and securely.

D. Contextual Application Summary

Expanding on the multifaceted strategy of cyberattack mit-
igation within CPPSs, it is evident that this approach encom-
passes several layers, aiming not only to reduce the likelihood
of successful attacks but also to minimize their impact. The
continuous monitoring and analysis of system activity, coupled
with ongoing risk assessments, form the cornerstone of this
strategy. This proactive stance is further strengthened by the
implementation of various security controls, tailored to guard
against both known and emergent threats.

Threat modeling, as a key component of this strategy, plays
a critical role in identifying and assessing potential risks. In
the event of an attack, having a well-defined and rehearsed
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defense plan is crucial. This plan might include isolation of com-
promised systems, shutdown of vulnerable services, and rapid
deployment of patches or updates. The activation of response
teams to investigate and rectify the attack is equally important,
ensuring that the system returns to normal operation as swiftly as
possible. The restoration and recovery aspect of this strategy is
critical. It involves a detailed plan for bringing the system back
to full functionality postattack, including repair or replacement
of compromised components, restoring backups, and bolstering
security controls to thwart future attacks. Preventive mitigation
measures, including comprehensive risk assessments and pen-
etration testing, play a vital role in this strategy. They help
identify system vulnerabilities and prepare the infrastructure
to withstand potential cyber threats. Investments in security
technologies, such as firewalls, intrusion detection systems, and
encryption, are integral to fortifying CPPSs against attacks.
Cyber insurance emerges as a key element in this landscape.
It not only offers financial protection in the aftermath of an
attack but also incentivizes organizations to invest in robust
cybersecurity measures. By alleviating the financial strain of
cyber incidents, insurance enables CPPS operators to focus on
enhancing their security posture and resilience.

VI. CHALLENGES

As energy systems shift to CPPSs empowered by ICTs, cy-
bersecurity has drawn growing research attention. As described
previously, this article provides a comprehensive review of three
streams of research on cybersecurity for CPPSs (i.e., attack
type, attack detection, and attack mitigation). Despite the efforts,
several key challenges remain, which we succinctly outline in
the following.

A. Interdependencies Among Distinct System Components

An important challenge for securing CPPSs is the close inter-
dependency among distinct system components. Typically, an
ICT-empowered CPPS includes a physical component (e.g., a
power generator) that is tightly linked to its cyber components
(e.g., monitoring sensors and control systems). Disruptions to
the control system, as a result of cyberattacks, lead to incorrect
operations or even power generator shutdown, which then can
create a cascading effect in the entire system, thereby disrupting
power supply to critical infrastructures. In addition, a multi-
energy CPPS has additional complexity. For example, a hybrid
system incorporates solar, wind, and hydro energy sources. A
fault in or cyberattack on the wind turbine’s control system can
cause power imbalance in the entire system, affect the overall
energy output, or even create systemic failures. Deployments of
multiple energy storage and conversion technologies not only
amplify the intricacy of a CPPS but also elevate the linkages
of different system components. To illustrate, in a system that
includes battery storage and grid-tied inverters, a failure or
malicious tampering of the inverter can influence the power fed
into the grid and damage charge/discharge cycles in the battery
storage, which, in turn, affects its useful lifespan and reliability.

B. Lack of Standards

Another key challenge is the lack of standards for security
protocols and frameworks. Different standards and frameworks
have been developed, with some adopted to a certain extent. Take
ISO/IEC 27019 as an example, it is based on ISO/IEC 27002
and provides guidelines for information security management
in the energy utility industry. Another example is the cyber-
security framework by the National Institute of Standards and
Technology, which defines a set of industry standards and best
practices for managing cybersecurity risks. Yet these standards
are limited to addressing the unique complexities of CPPSs.
For instance, most standards are not comprehensive for the
high interdependencies and vulnerabilities inherent to CPPSs,
especially those pertaining to multienergy systems. As a con-
sequence, they cannot provide interoperable security solutions
that can be seamlessly applied across different CPPSs.

C. Evolution of Cyberattacks

As CPPSs become increasingly intelligent, new security vul-
nerabilities are identified, which offer novel opportunities for
attackers. The constant evolution of cyberattacks’ means results
in the emergence of new cyberattacks against CPPSs. Attackers
can use system detection mechanisms’ vulnerabilities to build
covert attacks that can bypass common detection mechanisms,
such as widely used fault detection, isolation, and recovery. The
coupling between CPPSs’ cyber layer and the physical layer is
high, and any small fault caused by the attacks may propagate
rapidly due to the strong coupling of dual networks, result-
ing in more frequent large-scale blackouts. These blackouts
could severely endanger the security, stability, and economic
operation of CPPSs [47], [124]. Thus, understanding the attack
mechanisms and the cascading failure is essential in CPPSs’
research to prevent and mitigate the effects of these attacks.
The analysis of new attack mechanisms is necessary to identify
and understand the emerging threats to CPPSs. The analysis
will help researchers develop and design more robust and ef-
fective security mechanisms that can address these emerging
threats. Moreover, the analysis of cascading failure can provide
insights into the propagation of faults caused by cyberattacks
and assist in developing techniques to contain the faults before
they spread and cause more extensive damage. This research
trend requires further investigation to develop new approaches
that can effectively secure CPPSs against new and emerging
threats.

D. Privacy Concerns

Privacy concerns constitute an important challenge in the
fast-expanding realm of CPPSs. The dense interconnectivity
and multidirectional flows of information among distinct com-
ponents of a CPPS create substantial data privacy risks. As
CPPSs become more intertwined with people’s everyday lives,
voluminous data are generated, exchanged, shared, and stored
by different entities. Such data, ranging from usage behav-
iors to personal information, are valuable and often sought
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by malicious entities. In this regard, confidentiality of indi-
vidual information is a crucial facet of the privacy challenge.
As systems become more interconnected and smarter, they
can collect granular user data for efficiency and adaptability
improvements. These data contain users’ personal informa-
tion, reveal their behavior details, and reflect their (sensitive)
preferences, which can lead to severe privacy infringements if
misused.

VII. SOLUTIONS TO THE IDENTIFIED CHALLENGES

In this section, we suggest some potential solutions to the
identified challenges to the cybersecurity of CPPSs. We also
offer strategic insights and actionable tactics to address these
challenges that pertain to interdependencies, standards, holistic
system visibility, and evolving cyberattacks. In particular, we
underscore the importance of proactive, comprehensive, and
collaborative approaches to improve the security and resilience
of CPPSs, which are crucial to the continued advancement
of these complex systems as well as their deployments and
utilization.

A. Comprehensive Interdependency Solution

The interdependency challenge in CPPSs necessitates a sys-
tematic, multilayered approach that duly considers the nuanced
interrelations of different system components. The inherent
complexity of a CPPS, due to its cyber–physical nature and
the interconnectedness of multiple energy storage and conver-
sion technologies, requires comprehensive solutions capable
of estimating, mitigating, and managing potential disruptions.
Toward that end, advanced modeling and simulation techniques
are vital and can unravel the intricate interactions in a CPPS.
They must replicate the operational intricacies of the system
and mimic the complex interplays of distinct components and
the probable cascading effects caused by local failures. Digital
twins are utilitarian and enable researchers, system architects,
and operators to scrutinize the dynamics and interdependency
in a CPPS, identify vulnerable nodes, and enlighten strategies
and solutions for system resilience.

B. Establishment of Standardization

The lack of unified security standards and protocols consti-
tutes a critical barrier to secured CPPSs. This requires concerted
efforts to establish a comprehensive, universally agreed set of
security standards that are specific to the unique challenges
of CPPSs. Regulatory authorities, in close collaboration with
industry stakeholders and security experts, play an important
role in this endeavor. They must drive the creation and adoption
of standard security protocols to facilitate and foster seamless
interoperability across different CPPSs. Such efforts have to con-
sider all important facets of security from physical component
safety to cyberattack resilience and should evolve with and be
guided by the related technological advancements.

C. Addressing the Evolution of Cyberattacks

The dynamic nature of CPPSs and the continuous evolution
of cyber threats demand a re-evaluation of and adjustment to
security strategies over time. As CPPSs become increasingly
complex and interconnected, new vulnerabilities are discov-
ered and can be exploited by cyberattacks. To develop robust
preventive and mitigative measures, it is imperative to analyze
the underlying attack mechanisms and the probable disastrous
cascading failures they can create. A proactive, multifaceted
strategy helps estimate and respond to cyberattacks launched
in different shapes and forms. Toward that end, frequent threat
modeling and risk assessments are needed to discover the po-
tential system vulnerabilities, attack vectors, and the probable
consequences of attacks.

D. Addressing Privacy Concerns

Multifaceted approaches are crucial to address the privacy
concerns in the context of CPPS. This involves advanced
privacy-preserving technologies, such as differential privacy,
homomorphic encryption, and secure multiparty computation,
which can provide robust protections for sensitive data while
ensuring the necessary system functionalities. Data governance
also should be implemented in each organization that is in-
volved in the operations of a CPPS. Policies, structures, and
processes specified in a strict regime establish explicit rules and
mechanisms for data collection, access, usage, and sharing to
ensure the confidentiality of sensitive data and prevent costly pri-
vacy breaches. Deployments of reliable authentication systems
and stringent data access controls are integral to an effective
governance framework. In addition, frequent privacy impact
assessments represent an important means to help organizations
stay abstract of privacy risks and threats. By understanding the
privacy implications to CPPSs on a continual and timely ba-
sis, organizations can pre-emptively address vulnerabilities and
mitigate privacy risks before actual data breaches. Finally, user
awareness and training are a cornerstone of privacy protection
and preservation strategy. A culture of respecting, valuing, and
protecting data privacy must be established in the organization,
which should involve users and different key stakeholders to
address their privacy concerns.

VIII. CONCLUSION

The advances of CPPSs have brought forth exciting oppor-
tunities to enhance the effectiveness, efficiency, and flexibility
in the energy sector; but they also are accompanied by worri-
some cybersecurity threats and challenges. Our comprehensive
review of extant literature reveals the increasing importance
of CPPSs and the stressed need for strategies and methods to
address cyber threats in general and cyberattacks in particular.
We examine CPPSs and delve into the intricacies of different
cyberattack types, strategies for attack detection, and methods
for mitigation and restoration. We analyze the evolving nature
of cyberattacks and highlight the increasing complexity and
intricacy of CPPSs from the lens of multienergy systems. The
interdependencies amongst distinct, related system components
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make CPPS more susceptible to cascading failures caused by
cyberattacks. In addition, the distributed nature of these systems
and the multiplicity of stakeholders often restrict the entire
system’s visibility, which further complicates timely detections
and responses to attacks. Our review underscores the criticality
of adaptive strategies for attack mitigation by incorporating
advanced technologies, such as predictive analytics, sensors,
and drones. These strategies entail effective resource alloca-
tion, redundancy, disaster response planning, and timely backup
systems. The existing literature recognizes the importance of
system restoration after successful cyberattacks. Toward that
end, damage assessment, system diagnosis, repair, and rigorous
testing are crucial because they can ensure complete system
recovery and vulnerability removals. More efforts are needed
to develop innovative recovery frameworks for the enhanced
resilience of CPPSs against cyberattacks.
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