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Abstract—Smart meters (SMs) are being widely deployed1

by distribution utilities across the U.S. Despite their benefits2

in real-time monitoring. SMs suffer from certain data quality3

issues; specifically, unlike phasor measurement units (PMUs) that4

use GPS for data synchronization, SMs are not perfectly syn-5

chronized. The asynchrony error can degrade the monitoring6

accuracy in distribution networks. To address this challenge,7

we propose a principal component pursuit (PCP)-based data8

recovery strategy. Since asynchrony results in a loss of tem-9

poral correlation among SMs, the key idea in our solution is10

to leverage a PCP-based low rank matrix recovery technique to11

maximize the temporal correlation between multiple data streams12

obtained from SMs. Further, our approach has a novel multi-13

objective structure, which allows utilities to precisely refine and14

recover all SM-measured variables, including voltage and power15

measurements, while incorporating their inherent dependencies16

through power flow equations. We have performed numerical17

experiments using real SM data to demonstrate the effective-18

ness of the proposed strategy in mitigating the impact of SM19

asynchrony on distribution grid monitoring.20

Index Terms—Smart meters, sensor asynchrony, low rank21

matrix recovery, multi-objective optimization.22

NOMENCLATURE23

BCSE Branch current state estimation24

DSSE Distribution system state estimation25

MPE Mean percentage error26

PCP Principle component pursuit27

PCA Principle component analysis28

SM Smart meter29

WLS Weighted least squares30

G Gain matrix31

H Jacobian matrix32

hi Measurement function that maps state values to33

the measurement variable i34

Ire, Iim Current real and imaginary values for all the35

branches36
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J Sum of squared residuals 37

L Weight parameter for penalizing deviations 38

from SM measurements 39

MU Voltage observation matrix 40

M∗U Refined post-mitigation voltage matrix 41

MP Nodal active power injection matrix 42

M∗P Refined post-mitigation active power matrix 43

MQ Nodal reactive power injection matrix 44

M∗Q Refined post-mitigation reactive power matrix 45

MMV Synchronized sensor measurements 46

Mz Measurement vector 47

MPS Pseudo measurements 48

Pi(tj) Measured active power at node i at time tj 49

Qi(tj) Measured reactive power at node i at time tj 50

R Branch resistance matrix of the system 51

U0 Squared voltage magnitude of substation 52

Ui(tj) Measured voltage magnitude squared at node i 53

at time tj 54

W Weight matrix 55

X Branch reactance matrix of the system 56

xs System state vector 57

YM, YS Interim matrices using the latest solution 58

updates 59

ZM, ZS Interim matrices using the full history of the 60

solution trajectory 61

α, β Auxiliary matrices 62

�SU Asynchrony voltage error matrix 63

�EU Voltage measurement error matrix 64

�SP Asynchrony active power error matrix 65

�EP Active power measurement error matrix 66

�SQ Asynchrony reactive power error matrix 67

�EQ Reactive power measurement error matrix 68

δU, δP, δQ Standard deviations of voltage, active power, 69

and reactive power measurement errors 70

�(·, ·) Differentiable function for low rank matrices 71

�T Total approximate sparsity norm for all the SM 72

datasets 73

|| · ||∗ Nuclear norm operation 74

|| · ||1 1-norm operation 75

|| · ||F Frobenius norm operation 76

< ·, · > Frobenius inner product 77

λU, λP, λQ Balanced parameters for voltage, active power, 78

and reactive power measurements 79

μU, νU Smoothness parameter 80

ω1, ω2, ω3 Non-negative weights 81


(·, ·) Differentiable function for sparse error matrices 82
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σ 2
i Error variance of sensor i83

τ(·, ·) Aggregate gradient factor84

ζj(A) j’th singular value of an arbitrary matrix A.85

I. INTRODUCTION86

THE WIDE-SCALE deployment of smart meters (SMs)87

provides a unique opportunity for utilities to enhance88

their situational awareness capabilities in distribution grids.89

By 2018, more than 150 million customers across the U.S.90

were equipped with SMs [1]. On the other hand, SMs are91

commonly counted among low-quality sensors. Specifically,92

SMs are asynchronous due to mismatching in sampling time93

among sensors in the grid, which can limit their applicability94

in real-time system monitoring [2].95

Most previous works on distribution grid state estimation96

have assumed that SMs are perfectly time-aligned [3], [4].97

Only few works have studied the impact of time misalignment98

and asynchrony of various sensors on grid monitoring and sit-99

uational awareness: In [5], [6], the statistical characteristics of100

time misalignment in distribution grid sensors have been esti-101

mated using Markov-modulated models. In [2], exponential102

load variation trends are exploited for developing confidence103

intervals for SM data samples in distribution system state esti-104

mation (DSSE) to compensate for time delays and asynchrony.105

In [7], a dynamic DSSE formulation is proposed for multitude106

of asynchronous sensors, which has proven bounded estima-107

tion errors. In [8], [9], meter clock synchronization errors108

are captured through Gaussian probability distributions and109

represented in DSSE. This idea was also applied in [10] to110

model measurement errors in grid monitoring. Most solutions111

proposed for mitigating SM data quality issues rely on a pri-112

ori knowledge of error distribution structure and parameters,113

which can be difficult to acquire due to information scarcity.114

In this paper, we propose a SM data recovery technique115

that is capable of mitigating the impact of asynchrony error116

in grid monitoring. Our method has three novel features: (1)117

We have noted that a rise in SM asynchrony results in a118

loss of mutual temporal correlation in their time-series data119

streams. This loss of temporal correlation can be translated120

into an increase in the rank of observation matrices, which121

store the measurement data from multiple SMs. Thus, we pro-122

pose to cast the asynchrony error mitigation problem as a low123

rank matrix recovery process. For this purpose, we have lever-124

aged principle component pursuit (PCP) techniques [11], [12].125

PCP employs data-centric optimization for decomposing SM126

datasets to identify and separate asynchrony error term from127

raw data. The main idea is that by manipulating the SM data128

and reducing the rank of the observation matrices, we will129

enhance the temporal correlation among the SMs which rolls130

back the adverse impact of asynchrony. (2) In addition to asyn-131

chronous errors, SM data has measurement errors that result132

from the imprecision (i.e., noise) of the measuring devices.133

Typically, SMs have a relative measurement error of about134

1%. Further, unlike image datasets, synchronous SM measure-135

ments and asynchronous errors cannot be exactly low rank and136

exactly sparse. These data properties hinder the applications of137

state-of-the-art low rank data recovery methods to deal with138

SM asynchrony errors, such as robust principal component 139

analysis (PCA) [13]. To deal with these problems, we utilize 140

a relaxation to PCP that introduces an entry-wise noise term to 141

represent SM measurement errors in the objective function and 142

eliminate rank-1 constraints. (3) SMs are multi-modal, mean- 143

ing that they can measure several different variables, including 144

nodal voltage magnitude and nodal average active power (plus 145

nodal reactive power, in some cases.) To mitigate the impact 146

of sensor asynchrony, data recovery needs to be conducted 147

over all measurement datasets simultaneously. However, since 148

these multi-modal datasets are inherently interdependent due 149

to the grid physics, a coordination scheme is required to 150

revise all the datasets while capturing their dependencies. To 151

achieve this, we propose a new multi-objective data recov- 152

ery formulation that refines voltage magnitude, active/reactive 153

power measurements (and pseudo-measurements), concur- 154

rently. The dependencies among these datasets are captured 155

via approximate DistFlow-based constraints [14], [15]. We 156

have developed a Nesterov-based technique to solve the PCP- 157

based multi-objective optimization for recovering multiple SM 158

datasets [16]. 159

The main contributions of this paper are summarized as 160

follows. 161

• An important observation from real data is presented: 162

asynchrony results in loss of temporal correlation among 163

neighboring SMs. This observation can be quantified 164

using the rank of the nodal voltage observation matrix. 165

• A novel low rank-based data recovery method is 166

developed to fully mitigate asynchronization error in grid 167

monitoring based on our observation. 168

• The proposed method considers various specific proper- 169

ties of SM data for enhancing the quality of the recovered 170

data and ensure consistency with grid physics: 1) SMs 171

can measure several different asynchronous variables; 172

2) SM measurements are statistically interdependent; 173

3) small entry-wise measurement errors exist within SM 174

measurements. 175

• Our method handles SM asynchrony issue without 176

needing high-resolution reference sensors, such as 177

micro-PMUs, which are unavailable in most practical 178

distribution systems. 179

• The proposed solution has been tested using real SM data 180

and feeder models to verify its performance. 181

The rest of the paper is constructed as follows: Section II 182

presents the proposed multi-objective data recovery method 183

and our approximate first-order solution; Section III demon- 184

strates the application of data recovery in grid monitoring; 185

Section IV analyzes numerical results and verification of 186

the proposed models; finally, Section V presents the paper 187

conclusions. 188

II. MULTI-OBJECTIVE SM DATA RECOVERY STRATEGY 189

In this section, we lay out our data recovery solution for 190

mitigating the errors caused by the asynchronous nature of 191

SMs in distribution grids. This includes key ideas in develop- 192

ing a multi-objective optimization formulation, along with an 193

approximate first-order algorithm to solve the model. 194
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Fig. 1. Rank increase in MU due to SM asynchrony.

A. Rationale195

The available data from SMs can be organized into observa-196

tion matrices. These matrices capture the time-series measure-197

ments of several sensors within a given time window [t1, tm].198

For example, the voltage observation matrix is as follows:199

MU =
⎡
⎢⎣

U1(t1) · · · UN(t1)
...

. . .
...

U1(tm) · · · UN(tm)

⎤
⎥⎦ (1)200

where, Ui(tj) is the measured voltage magnitude squared at201

node i and at time tj. Note that each column of MU corre-202

sponds to an SM. The observation matrices can be constructed203

at feeder-, lateral-, or service transformer-levels.204

Our PCP-based data recovery model is based on a key obser-205

vation from real data: asynchrony among SMs leads to an206

increase in the rank of MU . The increase in rank is caused by207

loss of temporal correlation among SMs, which translates into208

a decrease in statistical correlations in columns of MU (i.e.,209

the columns lose linear dependency.) This observation can be210

backed-up by numerical experiments, as shown in Fig. 1. This211

figure shows the average rank of MU at various time windows212

(measured for a grid lateral) as a function of strength of SM213

asynchrony (measured in terms of variance of time misalign-214

ment distribution.) As is observed, the rank of the observation215

matrix increases as the SM asynchrony intensifies. Note that216

this observation can be found on the data from SMs with217

diverse resolutions, including 15 minutes, 30 minutes, and 60218

minutes.219

To fully capture and mitigate the impact of SM asynchrony,220

similar observation matrices can be defined for nodal active221

and reactive power injection measurements, denoted as MP222

and MQ, respectively:223

MP =
⎡
⎢⎣

P1(t1) · · · PN(t1)
...

. . .
...

P1(tm) · · · PN(tm)

⎤
⎥⎦ (2)224

MQ =
⎡
⎢⎣

Q1(t1) · · · QN(t1)
...

. . .
...

Q1(tm) · · · QN(tm)

⎤
⎥⎦ (3)225

where, Pi(tj) and Qi(tj) are active and reactive power measure-226

ments at node i and time tj, respectively. Note that in general227

SMs are capable of measuring both average active and reactive 228

powers. However, in many cases, this function is not activated 229

for residential sensors. Thus, in case the reactive power data 230

is unavailable, pseudo-measurements can be applied instead to 231

construct an approximate MQ. Note that our method is robust 232

to gross sparse errors, thus, it can handle the uncertainty of 233

pseudo-measurements and low quality data. 234

B. Data Recovery Model 235

The main component of asynchrony error mitigation is to 236

compensate for the loss of temporal correlation among SMs. 237

Since this loss can be detected via the changes in the ranks of 238

the observation matrices, asynchrony error mitigation can be 239

written as a low rank matrix recovery model. To consider both 240

asynchrony errors and small entry-wise measurement errors in 241

SM data, our data recovery approach models an observation 242

matrix (i.e., asynchrony voltage magnitude matrix) as the sum- 243

mation of three components: a low rank voltage magnitude 244

matrix, an asynchrony error matrix, and a measurement error 245

matrix. The goal is to identify unknown voltage magnitude 246

matrix and asynchrony error matrix within the datasets in the 247

presence of entry-wise noise. The model is shown below: 248

MU = M∗U +�SU +�EU (4) 249

where, M∗U represents the refined post-mitigation voltage mag- 250

nitude matrix which has a low rank, �SU is the asynchrony 251

error matrix, and �EU represents entry-wise measurement 252

errors. It should be noted that measurement error is different 253

from asynchrony error, as mentioned in previous work [9]. 254

The same representation applies to both active and reactive 255

measurements and pseudo-measurements, as follows: 256

MP = M∗P +�SP +�EP (5) 257

MQ = M∗Q +�SQ +�EQ (6) 258

where, the sub-components are defined similar to (4). The 259

objective of the data recovery process is to revise the SM 260

data in a way that the ranks of observation matrices are mini- 261

mized (i.e., temporal correlations among SMs are maximized), 262

while the extent of changes made in the original data is kept 263

at a minimum level. This goal can be represented using three 264

objective functions, corresponding to the available datasets, 265

MU , MP, and MQ, as follows: 266

⎧⎪⎨
⎪⎩

fU =
∥∥M∗U

∥∥∗ + λU‖�SU‖1
fP =

∥∥M∗P
∥∥∗ + λP‖�SP‖1

fQ =
∥∥∥M∗Q

∥∥∥∗ + λQ
∥∥�SQ

∥∥
1

(7) 267

where, || · ||∗ and || · ||1 are the nuclear norm and 1-norm 268

(i.e., sparsity norm) operations, respectively. These norms are 269

calculated as follows [17]: 270

||A||∗ =
∑

j

ζj(A) (8) 271

||A||1 = max
j

∑
j

|A(i, j)| (9) 272

where, ζj(A) denotes the j’th singular value of an arbitrary 273

matrix A. Further, λU , λP, and λQ are tunable parameters 274
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that are leveraged to balance out the two competing compo-275

nents of the objective functions: minimizing the rank of the276

recovered data versus the amount of changes made in the data277

during the recovery process. Mathematically, this means that278

by minimizing fU , fP, and fQ, the data recovery process effec-279

tively minimizes the ranks of M∗U , M∗P, and M∗Q. At the same280

time, the changes made in the data are kept small by penaliz-281

ing the sparsity norm of matrices �SU , �SP, and �SQ. The282

three objectives fU , fP, and fQ are evaluated over the datasets283

that are generated by the same system (e.g., same feeder, lat-284

eral, or service transformer). However, these three datasets285

are not independent from each other due to the power flow286

constraints. Thus, the re-calibration of these three datasets can-287

not be performed separately using conventional low rank data288

recovery methods, such as robust PCA and PCP. To address289

this problem, we propose a multi-objective PCP-based model290

that can jointly refine three the SM datasets. The objective291

function minimizes the ranks of recovered data to realize the292

best achievable SM re-alignment. Moreover, to incorporate293

the inherent interdependencies of the three objectives, power294

flow equations are added as the constraints of the model. The295

proposed multi-objective optimization is as follows:296

min
M∗U ,M∗P,M∗Q

{
fU, fP, fQ

}
(10)297

s.t.
∥∥MU −M∗U −�SU

∥∥
F ≤ δU (11)298 ∥∥MP −M∗P −�SP

∥∥
F ≤ δP (12)299 ∥∥∥MQ −M∗Q −�SQ

∥∥∥
F
≤ δQ (13)300

M∗U = M∗P · RT +M∗Q · XT + 1m×NU0 (14)301

where, || · ||F denotes the Frobenius norm of matrix, defined302

as follows:303

||A||F =
√∑

i

∑
j

A(i, j) (15)304

In addition, parameters δU , δP, and δQ are the standard305

deviations of the measurement/pseudo-measurement errors306

(obtained using knowledge of sensor tolerance or pseudo-307

measurement confidence intervals), matrices R and X represent308

the branch resistance and branch reactance of the network,309

respectively [18]. U0 is the primary voltage magnitude squared310

for the transformer to which the SMs are connected. The311

rationale behind constraints (11), (12), and (13) is that the312

refined components (i.e., M∗U , M∗P, M∗Q) are not exactly low313

rank and the asynchrony error components (i.e., �SU , �SP,314

�SQ) are not exactly sparse. Such soft constraints allow for315

slight deviations in the recovered data to compensate for SM316

measurement errors, which are consistent with our knowledge317

of measurement device confidence levels. Also, these allow318

utilities to minimize asynchrony error with noisy practical SM319

data, which particularly pertains to reactive power data that320

may be unavailable for residential customers. Constraint (14)321

is obtained from the linear DistFlow in matrix form [15],322

which can enforce network physics and capture the inher-323

ent dependencies among datasets. The goal of this constraint324

is to ensure that the recovered SM data is feasible in power325

engineering context.326

Our method follows the line of low rank data recovery tech- 327

niques that have been commonly used in many areas [11]. 328

Unlike the black box methods that lack interpretability, the 329

proposed model has a solid mathematical foundation to recover 330

a low rank SM data matrix in the presence of gross asynchrony 331

errors. Also, the dependencies among the datasets are basi- 332

cally encoded into the solution through a set of linear equality 333

constraints. Such power flow models can be applied for arbi- 334

trary distribution systems. Note that the model is extendable 335

to unbalanced systems in a straightforward way (i.e., full 336

three-phase DistFlow is leveraged). Further, the proposed data 337

recovery model makes no assumptions on system topology or 338

load distribution, which ensures the performance of this model 339

in other distribution systems. 340

C. Solution Strategy 341

A major challenge in solving the proposed data recov- 342

ery model is the existence of power flow constraints (14) 343

that hinders the application of the existing closed-form dual 344

solvers [13]. Another complication is that (10) has three 345

non-smooth objective functions, which makes the problem 346

non-differentiable. To efficiently tackle these challenges, we 347

present a first-order Nesterov-like algorithm to solve the 348

proposed multi-objective data recovery framework [19]. The 349

basic idea of our solution is to approximate the non-smooth 350

objectives with differentiable surrogates. By applying this idea, 351

the following surrogate components can be written for fU [16]: 352

∥∥M∗U
∥∥∗ ≈ �

(
M∗U, μU

) = max||α||2≤1
< M∗U, α > −μU

2
||α||2F 353

(16) 354

‖�SU‖1 ≈ 
(�SU, νU) = max||β||∞≤1
< �SU, β > −νU

2
||β||2F 355

(17) 356

where, α and β are auxiliary matrices, μU and νU are 357

smoothness parameters, and <·, ·> is the Frobenius inner 358

product [17], calculated as follows: 359

<A, B> =
∑

i

∑
j

A(i, j) · B(i, j) (18) 360

Note that the non-differentiable norms are replaced with dif- 361

ferentiable functions �(·, ·) and 
(·, ·) in (16) and (17). The 362

Lipschitz constants for the gradients of �(·, ·) and 
(·, ·) equal 363

1
μU

and 1
νU

, respectively. Similar smooth surrogates are defined 364

and calculated for the objectives fP and fQ. By adopting this 365

approximate alternative, the objectives in optimization (10) 366

can be rewritten as a single-objective weighted averaging pro- 367

cess by using a scalarization method [20]. Since the relaxed 368

problem is convex, the single-objective formulation is guar- 369

anteed to track all the Pareto-optimal solutions, given valid 370

weight assignment to the objectives [21]. The single-objective 371

formulation can be rearranged as follows: 372

min
M∗U,M∗P,M∗Q

�T

(
M∗U, M∗P, M∗Q

)
+
T

(
�SU,�SP,�SQ

)
(19) 373

s.t. (11)− (14) (20) 374

here, the new objective function consists of two component: 375

(I) �T quantifies the total approximate nuclear norm for all 376
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the SM datasets:377

�
(

M∗U, M∗P, M∗Q
)
= ω1�

(
M∗U, μU

)+ ω2�
(
M∗P, μP

)
378

+ ω3�
(

M∗Q, μQ

)
(21)379

where, ω1, ω2, and ω3 are the non-negative user-defined380

weights assigned to fU , fP, and fQ, respectively. Assigning381

a larger weight to the objective function indicates that the382

function has a higher priority compared to a function with383

a smaller weight. Further, ω1 + ω2 + ω3 = 1 needs to hold384

to ensure Pareto-optimality. (II) �T is the total approximate385

sparsity norm for all the SM datasets, as follows:386



(
�SU,�SP,�SQ

) = ω1λU
(�SU, νU)+ ω2λP
(�SP, νP)387

+ ω3λQ

(
�SQ, νQ

)
(22)388

This new data recovery formulation (19) is both convex and389

differentiable. Given the new model, the Nesterov algorithm390

entails the following steps to solve SM data recovery problem:391

Step I - Initialization: k ← 0 (counter initialization);392

M∗U(0)← MU , M∗P(0)← MP, M∗Q(0)← MQ, �SU ← 0m×N ,393

�SP ← 0m×N , and �SQ ← 0m×N (solution initialization).394

Step II - Component-Wise Gradient Calculation: Obtain the395

gradients of components (16) and (17) for all the objective396

functions in the data recovery problem. As shown in [19],397

these gradients can be computed as follows:398

∇�
(
M∗U(k), μU

) = α∗(μU) (23)399

∇
(�SU(k), νU) = β∗(νU) (24)400

where, α∗ and β∗ are the optimal solutions of (16) and (17),401

respectively, obtained for the latest values of M∗U and �SU402

at iteration k. Similar gradient values can be obtained for403

surrogate components of active/reactive power data.404

Step III - Aggregate Gradient Computation: Insert the405

obtained gradients in Step II, to form the overall gradient406

values for the weighted averaging problem (19):407

∇�T

(
M∗U, M∗P, M∗Q

)
= ω1α

∗(μU)+ ω2α
∗(μP)+ ω3α

∗(μQ
)

408

(25)409

∇
T
(
�SU,�SP,�SQ

) = ω1β
∗(νU)+ ω2β

∗(νP)+ ω3β
∗(νQ

)
.410

(26)411

Step IV - Interim Variable Updates: This step in the algo-412

rithm defines and updates several interim variables. These413

variables will be leveraged in the data refinement step. The414

idea is to apply gradient descent using the aggregate gradient415

components, obtained in Step III, while at the same time penal-416

ize deviations from the original measurements. Four interim417

matrices are defined: YM , YS, ZM , and ZS. While YM and YS are418

computed using the latest solution updates, on the other hand,419

ZM and ZS are obtained using the full history of the solution420

trajectory. Accordingly, the update process for [YM, YS] is a421

convex and tractable optimization process, as follows:422

[YM, YS] = arg min
M,S

{
<∇�T

(
M∗U(k), M∗P(k), M∗Q(k)

)
, M>423

+ <∇
T
(
�SU,�SP,�SQ

)
, S>424

+ L

2

(
‖�M‖2F + ‖�S‖2F

)}
(27)425

s.t. (11)−(14) (28)426

where, L is a weight parameter used for penalizing devia- 427

tions from SM measurements. Here, the deviation from the 428

original data are denoted as �M and �S (e.g., �M = M − 429

[(M∗U(0), M∗P(0), M∗Q(0)]). Similarly, a convex optimization 430

process is defined for updating [ZM, ZS], considering full 431

solver trajectory: 432

[ZM, ZS] = arg min
M,S

{
τ(M, S)+ L

2

(
‖�M‖2F + ‖�S‖2F

)}
433

(29) 434

s.t. (11)− (14) (30) 435

where, τ(M, S) is an average aggregate gradient factor with 436

respect to solver history, defined as follows: 437

τ(M, S) =
k∑

i=0

<∇�T

(
M∗U(k), M∗P(k), M∗Q(k)

)
, M> 438

+ <∇
T
(
�SU,�SP,�SQ

)
, S>. (31) 439

Step V - Data Refinement: Apply a weighted averaging pro- 440

cess using the updated interim variables, from Step IV, to refine 441

the SM data. Based on the suggestion in [16], this weighted 442

update process is written as follows: 443

⎡
⎣

M∗U(k + 1)

M∗P(k + 1)

M∗Q(k + 1)

⎤
⎦←

(
k + 1

k + 3

)
YM +

(
2

k + 3

)
ZM (32) 444

⎡
⎣

�SU(k + 1)

�SP(k + 1)

�SQ(k + 1)

⎤
⎦←

(
k + 1

k + 3

)
YS +

(
2

k + 3

)
ZS. (33) 445

Step V-Iterate and Terminate: k ← k + 1 and go to Step 446

II until the maximum number of iterations is reached. Output 447

the refined SM datasets, M∗U , M∗P, and M∗Q, after algorithm 448

convergence. 449

III. ENHANCING GRID MONITORING ROBUSTNESS 450

TO SM ASYNCHRONY ERROR 451

Fig. 2 shows how our proposed data recovery technique can 452

be integrated into grid monitoring systems as a pre-processor. 453

The refined data is continuously fed to a branch current state 454

estimation (BCSE) module to monitor the grid states in real- 455

time, including the real and imaginary parts of currents of 456

all branches [22]. The BCSE method leverages a weighted 457

least squares (WLS)-based solver to minimize the sum of 458

squared residuals (J). This problem can be formulated as 459

an optimization task over the distribution network given the 460

recovered data samples M∗U , M∗p , M∗Q from our multi-objective 461

PCP-based model, as follows: 462

min
xs

J =
∑

i

Wi,i(Mz(i)− hi(xs))
2

463

s.t. Mz =

⎡
⎢⎢⎢⎢⎣

MMV

M∗U(:)
M∗P(:)
M∗Q(:)
MPS

⎤
⎥⎥⎥⎥⎦

464
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Fig. 2. Overall structure of the solution for grid monitoring.

W =

⎡
⎢⎢⎢⎢⎣

WMV 0 0 0 0
0 WU 0 0 0
0 0 WP 0 0
0 0 0 WQ 0
0 0 0 0 WPS

⎤
⎥⎥⎥⎥⎦

465

xs =
[

Ire
Iim

]
(34)466

where, xs is the grid state vector that contains current467

real/imaginary values for all the branches of the distribu-468

tion system (Ire/Iim), and Mz is the measurement vector. The469

measurement data includes the MV network synchronized sen-470

sor measurements (MMV ), including SCADA and μPMUs,471

if available, the refined SM data, M∗U , M∗P, M∗Q, and the472

pseudo measurements MPS that can generated by our previous473

work [23]. hi is the measurement function that maps state val-474

ues to the i’th measurement variable, which is obtained based475

on the power flow equation. Furthermore, W is a weight matrix476

that represents the solver’s confidence level in each element477

of Mz. The matrix W includes the measurement confidence478

weights, consisting of sub-matrces WMV , WU , WP, WQ, and479

WPS corresponding to MMV , M∗U , M∗P, M∗Q, and MPS, respec-480

tively. These weight values are determined by the nominal481

accuracy levels of the senors as Wi,i = 1
σ 2

i
, where σ 2

i is the482

i’th sensor error variance [24]. The purpose of the weights is483

to devalue the importance of unreliable data sources in grid484

monitoring.485

The WLS-based solution employs a gradient-based algo-486

rithm to find the optimal solutions for (34) (i.e., ∇xsJ=0) [25].487

The algorithm involves the following steps to estimate the488

states of the grid:489

Step I - Receive Input Data: Receive the recovered SM data,490

M∗U , M∗P, and M∗Q (see Section II), and the latest measurement491

data from the primary network, MMV . Concatenate the input492

data to form the measurement vector, Mz.493

Step II - State Initialization: k ← 0; initialize the values 494

of the states through randomization, xs(k) (to speed up the 495

BCSE solver the values of states can be initialized using the 496

solutions from the last time step.) 497

Step III - Jacobian Computation: Update the Jacobian 498

matrix, H, using the gradients of the measurement function. 499

The Jacobian captures the sensitivity of the measurements to 500

the state variables: 501

Hi,j = ∂hi(xs(k))

∂xsj
(35) 502

The Jacobian matrix can be conveniently calculated for the 503

BCSE method for feeders with known topology (e.g., see [22] 504

for details on how Jacobian can be obtained for various types 505

of measurement functions.) 506

Step IV - Gain Matrix Computation: Leverage the Jacobian 507

matrix from Step III to obtain the gain matrix, G, as follows: 508

G(xs(k)) = H
(xs(k))WH(xs(k)). (36) 509

Step V - State Update: Update the values of the states using 510

the gain matrix within the first order Newton-Gauss method, 511

as follows: 512

xs(k + 1)← xs(k)+ G−1H
W(Mz − h(xs(k))). (37) 513

Step VI - Iterate and Terminate: k ← k + 1; go back to 514

Step III until convergence, i.e., k ≥ kmax, with kmax being 515

a user-defined maximum number of iteration for the BCSE 516

algorithm. 517

Step VII - Roll the Time Window: At the new time point, 518

the data recovery is performed using the latest measurement 519

data, according to II. Go back to Step I. 520

IV. NUMERICAL RESULTS 521

The proposed data recovery and grid monitoring frame- 522

work has been tested and validated using a fully observable 523
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Fig. 3. 164-node feeder topology.

Fig. 4. PV generation data.

feeder model shown in Fig. 3. This feeder represents an unbal-524

anced utility network in U.S. MidWest and consists of 164525

nodes, which is publicly available online [26]. The details of526

the system model include network topology, line parameters,527

and standard electric components. The system has an aver-528

age of 30% solar-power-to-peak-load penetration level. The529

solar data is adopted from [27]. The nodal time-series load530

demand is aggregated using a real-world 1-second-resolution531

household dataset and utilized as the input of the power flow532

analysis [27]. The computed voltages are treated as the volt-533

age measurements. The resolution of the SM measurements534

is 15-minute. To simulate realistic asynchronous SM mea-535

surements, we randomly sample the 1-second resolution data536

at 15-min rate at each node to represent SM measurements.537

Thus, in this work, the SM asynchrony strength of each cus-538

tomer can be anywhere between 0 to 900 s. Fig. 4 and 5539

show the original solar and load time-series data in a day at540

different nodes of the system. User-defined parameters within541

the proposed data recovery model, including coefficients of542

the optimization solver, have been tuned through try-outs over543

historical/simulation datasets. Basically, the values of these544

parameters are chosen when the residual of branch current545

state estimation is minimized. It should be noted that the546

Fig. 5. Consumption data.

high computational budget of this strategy does not impact 547

the real-time performance of the proposed method since this 548

parameter calibration is an offline process. 549

The case study is conducted on a standard PC with an 550

Intel Xeon CPU running at 3.70 GHz and with 32.0 GB 551

of RAM. Based on 500 Monte Carlo simulations, the aver- 552

age computational time is around 23 s, which is feasible 553

in real-time applications. Fig. 6, 7, and 8 show the average 554

error histograms of the proposed data recovery method for 555

voltage, active power, and reactive power, respectively. The 556

error is calculated by comparing the actual values of vari- 557

ous variables with the solutions of the recovery model. As 558

can be observed, the recovery error values are maintained 559

within low levels, which confirms the acceptable performance 560

of the data recovery framework. Specifically, the mean aver- 561

age errors are 0.11%, 2.03%, and 1.27% for voltage, active 562

power, and reactive power, respectively. This also demon- 563

strates that the proposed data refinement framework has the 564

best performance over the SM voltage dataset, among the 565

three datasets. This outcome is consistent with the correlation- 566

driven nature of the data recovery model (i.e., nodal voltage 567

measurements are highly correlated, which facilitates better 568

refinement.) 569
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Fig. 6. Voltage recovery error.

Fig. 7. Active power recovery error.

Fig. 8. Reactive power recovery error.

Fig. 9 compares the average value of recovered voltage data570

from the data refinement framework with the actual nodal volt-571

age average (assuming synchronized sensors) within a sample572

time-window. As is observed in this figure, the developed algo-573

rithm closely follows the underlying signal. Fig. 10 shows574

a similar concept for active and reactive power datasets. As575

observed in this figure, the data recovery framework is basi-576

cally an approximate identity mapping between the recovered577

data and the underlying (ideal) data. This corroborates the578

satisfactory performance of the model over real data in time579

domain.580

Fig. 11 shows the histogram of power flow error with and581

without leveraging the DisFlow equations within the proposed582

Fig. 9. Recovered average voltage data versus real (synchronized) time-series
data.

Fig. 10. Recovered nodal active/reactive power data versus real (synchro-
nized) data.

data recovery framework. As can be observed, having the 583

DistFlow equations as constraints within the multi-objective 584

data refinement model has resulted in a significant reduction in 585

power flow errors. This demonstrates that the proposed method 586

is able to output data that is consistent with network physics, 587

while capturing the dependencies among all SM datasets. 588

Finally, Fig. 12 depicts the histogram of system monitoring 589

error after applying the data recovery framework. The mean 590

percentage error (MPE) criterion is utilized to evaluate the 591

performance of BCSE with our data recovery method, which 592

is calculated by comparing the real state values (xs), obtained 593

from power flow simulations on the feeder model, with the 594

estimated state values (x̂s), coming from the BCSE, as follows: 595

E = 100×
∑

i

xs(i)− x̂s(i)

xs(i)
(38) 596

As is observed in Fig. 12, the DSSE error value is main- 597

tained at low levels, which demonstrates the successful integra- 598

tion of the data recovery solution into grid monitoring, which 599

allows us to track the behavior of the feeder accurately. The 600

mean estimation error value is 0.87%. 601
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Fig. 11. Power flow error with and without DistFlow constraints.

Fig. 12. BCSE error distribution.

To further demonstrate the performance of the proposed SM602

data recovery method, We have conducted numerical compar-603

isons with two previous methods, including a previous smart604

meter asynchrony mitigation method [9] and a state-of-the-605

art low rank data recovery method [11]. The three methods606

are simulated with the same real-world datasets to calculate607

the accuracy of the methods. The comparison result is shown608

in Fig.13. As demonstrated in the figure, in terms of voltage,609

the average recovery errors are 0.11%, 0.877%, and 1.34% for610

the proposed solution, [9] and [11], respectively. In terms of611

active power, the average recovery errors are 2.03%, 5.84%,612

and 6.48%, respectively. Hence, based on this dataset, the613

Fig. 13. Comparison results between [9], [11], and the proposed method.

proposed method can achieve a better performance compared 614

to the previous works. 615

V. CONCLUSION 616

In this paper, we have presented a multi-objective data 617

recovery method to mitigate the impacts of SM asyn- 618

chrony issues in distribution system real-time monitoring. 619

The proposed method is able to refine voltage, active power, 620

and reactive power datasets simultaneously within the same 621

framework via a multi-objective formulation. The inherent 622

dependencies among these measurements are captured by 623

using DistFlow equations. Our solution considers both asyn- 624

chrony errors and measurement errors, thus making the model 625

more widely applicable to practical distribution systems. 626

A first-order algorithm is presented to solve the proposed 627

multi-objective data recovery model. This algorithm is based 628

on Nesterov method for approximating non-differentiable 629

optimization problems with smooth surrogates. To evaluate 630

the proposed method, a real 164-node utility feeder with real 631

data is utilized. The results show that SM asynchrony error 632

mitigation is possible using the proposed method with good 633

accuracy. In this work, the mean average data recovery error 634

are about 0.11%, 2.03%, and 1.27% for voltage magnitude, 635

active power, and reactive power, respectively. Also, it can be 636

observed that the DistFlow constraints can significantly reduce 637

the inconsistency of recovered data with power flow equations. 638

Based on the proposed data recovery method, the system state 639

estimation error is less than 1%. 640
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