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Abstract—Advanced metering infrastructure (AMI) enables5
utilities to obtain granular energy consumption data, which offers6
a unique opportunity to design customer segmentation strategies7
based on their impact on various operational metrics in distribution8
grids. However, performing utility-scale segmentation for unob-9
servable customers with only monthly billing information, remains10
a challenging problem. To address this challenge, we propose a new11
metric, the coincident monthly peak contribution (CMPC), that12
quantifies the contribution of individual customers to system peak13
demand. Furthermore, a novel multi-state machine learning-based14
segmentation method is developed that estimates CMPC for cus-15
tomers without smart meters (SMs): first, a clustering technique is16
used to build a databank containing typical daily load patterns in17
different seasons using the SM data of observable customers. Next,18
to associate unobservable customers with the discovered typical19
load profiles, a classification approach is leveraged to compute the20
likelihood of daily consumption patterns for different unobservable21
households. In the third stage, a weighted clusterwise regression22
(WCR) model is utilized to estimate the CMPC of unobservable23
customers using their monthly billing data and the outcomes of the24
classification module. The proposed segmentation methodology has25
been tested and verified using real utility data.

Q1

26

Index Terms—Customer segmentation, peak load contribution,27
observability, machine learning.28

I. INTRODUCTION29

ADVENT of Advanced metering infrastructure (AMI) has30

facilitated a deeper understanding of customer behav-31

iors in low-voltage networks for distribution system operators.32

Individual customers’ demand consumption can be recorded33

by smart meters (SMs) with high temporal resolution, which34

enables developing novel data-centric grid operation mech-35

anisms. One of these mechanisms is utility-scale customer36

segmentation [1], which is extremely useful in enhancing37

systemoperation andmanagement by intelligently targeting cus-38

tomers for peak shaving programs, AMI investment, and retail39
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price/incentive design. This will help utilities under strict finan- 40

cial constraints to optimize their investment portfolio. However, 41

for small-to-medium utilities, a key barrier against investigating 42

an efficient customer segmentation is the absence of real-time 43

measurements due to financial limitations [2]. Currently, more 44

than half of all U.S. electricity customer accounts do not have 45

SMs to record their detailed consumption behavior [3]. 46

Several papers have focused on developing customer seg- 47

mentation strategies using SM data. One of the most common 48

approaches is to leverage clustering techniques for identify- 49

ing typical load profiles [4]–[6]. In [4], principal component 50

analysis (PCA) is performed to extract the dominant features 51

within customer consumption data and then k-means algorithm 52

is employed to classify consumers. In [5], a finite mixture 53

model-based clustering is presented to obtain distinct behavioral 54

groups. In [6], a C-vine copulas-based clustering framework is 55

proposed to carry out consumer categorization. However, the 56

typical load profile extraction alone is insufficient to assess cus- 57

tomers‘ impacts on system peak demand, which limits utilities’ 58

ability to target suitable customers for reducing the operation 59

costs. 60

Apart from typical load profiles, several customer segmen- 61

tation methodologies have been developed based on the fea- 62

ture characterization and extraction [7]–[10]. In [7], residential 63

customers are ranked using their appliance energy efficiency 64

to reduce building energy consumption. In [8], the entropy of 65

household power demand is used to evaluate the variability 66

of consumption behavior, which is considered to be a key 67

component in peak shaving program targeting and customer 68

engagement. In [9], a customer’smarginal contribution to system 69

cost is obtained using daily demand profiles. In [10], a four- 70

stage data-driven probabilistic method is proposed to estimate 71

the coincident peak demand estimation of new customers for 72

designing new systems. Compared to the clustering approaches, 73

these methods directly quantify customer-level features from 74

SM data and use them to determine the segmentation strategies. 75

Nevertheless, the previously-proposed metrics fall short of con- 76

sidering customers’ impact on system peak demand, which is 77

a major problem considering that continuous growth in system 78

peak load raises the possibility of power failure and increases 79

the marginal cost of supply [11]. Furthermore, previous works 80

have only focused on observable customers. 81

In order to address these shortcomings, this paper proposes a 82

new metric for customer segmentation, which is denoted as co- 83

incident monthly peak contribution (CMPC). CMPC is defined 84
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as the ratio of individual customer’s demand during system daily85

peak load time over the real-time total system peak demand in86

a course of a month. Compared with conventional coincident87

peak demand metrics, which quantify the peak consumption88

levels of multiple customers based on their empirical diversified89

maximum demand [10], the proposed CMPC focuses on the90

impact of individual customer and conveys information on how91

individual customer‘s peak time differs from the system’s peak92

demand time. Based on the definition of CMPC, we develop93

a multi-stage machine learning-based customer segmentation94

strategy that estimates CMPCs of unobservable customers using95

only their monthly billing information. The developed method96

consists of three modules: 1) Using a graph theoretic clustering,97

a seasonal typical load pattern bank is constructed to classify98

various customer consumption behaviors. 2) To connect un-99

observable customers to the seasonal databank, a multinomial100

classification model is presented which identifies typical load101

profiles of customers without SMs. 3) According to the outcome102

of the classification module, a weighted clusterwise regression103

(WCR) model is trained to map the unobservable customers’104

monthly energy consumption data to CMPC values. Utilizing105

our segmentation method, within a certain range of consump-106

tion, customers with heavy demand but small contribution to107

the system peak could be excluded from AMI investment/peak108

shaving investment portfolios, whereas those with a similar109

demand level but a larger peak contribution can be targeted in110

such programs as impactful customers. The main contributions111

of this paper can be summarized as follows:112
� A new metric, CMPC, is proposed as a measure for cus-113

tomer segmentation strategy, which accurately assesses the114

individual customer impact on system peak from a real115

dataset. We will show that the proposed metric contains116

different and unique information compared to the existing117

metrics.118
� A three-stage machine learning framework is developed to119

obtain CMPC for unobservable customers by accurately120

estimating their contribution to system peak demand.121
� The proposed framework is innovative and intuitive, and122

considers various specific properties of our real data:123

1) the linear nature of the relationship between the CMPC124

and demand level in the same cluster; 2) concentration125

of residential customers demand within a small range;126

3) strong seasonal changes in customer behaviors.127
� The proposed framework can handle the uncertainty of128

the classification process by integrating the probabilistic129

values for each typical pattern in the regression model.130

II. DATA DESCRIPTION AND CMPC DEFINITION131

A. Data Description132

The available data used in this paper is provided by several133

mid-west U.S. utilities. The data includes the energy consump-134

tion measurements of over 3000 residential customers from135

SMs, and the corresponding supervisory control and data ac-136

quisition (SCADA) data. The data ranges from January 2015 to137

May 2018 [12]. The SMdatawas initially processed to eliminate138

grossly erroneous and missing samples. Accordingly, the data139

points with a z-score magnitude of larger than 5 are marked140

Fig. 1. Monthly consumption distribution: consumption histogram (left), con-
sumption CDF (right).

Fig. 2. Percentage of customers whose peak demand coincide with the system
peak.

as “erroneous” and replaced using local interpolation [13]. 141

The empirical distribution and cumulative distribution function 142

(CDF) of customer monthly energy consumption are obtained 143

and presented in Fig. 1. As shown in the figure, the majority 144

of residential customer monthly consumption samples are con- 145

centrated around 1000 kWh, and almost 80% of customers have 146

monthly consumption levels below 1000 kWh. Compared to 147

the industrial and commercial customers, the demand level of 148

residential households is distributed within a smaller range. This 149

indicates that using only demand level for customer segmenta- 150

tion can be a difficult task. 151

B. CMPC Definition 152

The system peak demand is one of the most important op- 153

erational factors for utilities due to the high marginal cost of 154

energy procurement at the peak time. Hence, it is obligatory to 155

investigate a customer segmentationmethodology based on each 156

load’s contribution to system peak demand. However, individual 157

customer’s peak demand cannot be employed as a measure to 158

assess this contribution, since individual customer peak demand 159

does not necessarily coincide with the system peak. In order to 160

illustrate this, a statistical analysis is performed on the available 161

SM dataset. Fig. 2 shows the percentage of customers whose 162

peak demand coincides with the system peak load. On average 163

only 6% of customers have the same peak time as the system, 164

with a standard deviation of 12%. This means that a customer’s 165

peak demand cannot be relied upon to estimate its contribution 166

to the overall system peak load. Thus, in this paper, we pro- 167

pose a new metric, denoted as CMPC, to accurately quantify 168

the contribution of an individual customer to the system peak 169

demand: 170

Fj,m =
1

n

n∑
d=1

pdj,m(td)

P d
m(td)

(1)
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Fig. 3. Proposed data-driven framework.

where CMPC of the j’th customer at the m’th month is de-171

noted by Fj,m. Here, pdj,m(td) is the customer’s demand at172

time td on the d’th day of the month, with n denoting the173

total number of days in the month. Note that P d
m and td are174

the value and the time of system peak demand on the d-th175

day of the m-th month. Hence, CMPC is basically the average176

customer contribution to the daily system peak demand during177

a month. A few related but different indices can be found in178

the literature, such as coincidence contribution factor, which179

is defined as the gap between the aggregate peak demand of a180

group of customers and their actual consumption at the system181

peak time [14]. However, the coincidence contribution factor182

cannot be used as a customer-level metric due to its inability183

to quantify individual customers’ contributions to the system184

peak load. CMPC can be directly calculated for observable185

customers using the real-time SM measurements. Considering186

that not all customers have SMs in practice, especially for187

residential households, we propose a multi-stage data-driven188

method for estimating CMPC. The flowchart of the proposed189

approach is presented in Fig. 3. (I) In the first stage, the demand190

profiles of observable customers are utilized to build a seasonal191

consumption pattern bank, [{Cspr}, {Csum}, {Caut}, {Cwin}],192

using a graph theoretic clustering technique. Here, each {C(·)}193

is the set of the typical daily load profiles for a specific season194

(detailed in Section III). Seasonal data clustering shows a better195

load behavior identification performance due to its ability to196

capture the critical seasonal behaviors of customers [15]. (II)197

Then, a classificationmodule is developed to infer the likelihood198

of identified seasonal daily consumption profiles for customers199

without SM data utilizing sociodemographic information. (III)200

For each typical pattern, a regression model is trained to provide201

an inference function to estimate the CMPC from customers’202

monthly billing data. To take into account the variances of203

CMPC in different typical patterns, a WCR approach is devel-204

oped based on the results of classification module. Basically,205

Fig. 4. Seasonal system peak time distribution.

the proposed customer segmentation approach is able to infer 206

CMPC of customers without SMs using their monthly billing 207

information and limited context information. 208

III. GRAPH THEORETICAL CLUSTERING ALGORITHM 209

In this paper, a graph theory-based clustering technique, 210

known as spectral clustering (SC), is adopted. Due to the strong 211

seasonal changes in the customers’ behavior, the SC uses sea- 212

sonal average customer loadprofiles to identify typical daily load 213

patterns corresponding to different seasons [16], [17].According 214

to the statistical analysis, both customer behaviors and system 215

peak timing are affected by seasonal changes, as shown in Fig. 4. 216

In Fig. 4(a), the peak time distribution in summer is concentrated 217

around evening interval (17:00–18:00 pm).Meanwhile, the peak 218

time probability rises during daytime and falls sharply at night. 219

One possible reason is the increase of air conditioning usage 220

during summer daytime. In contrast, the peak time distribution 221

of winter is presented in Fig. 4(b). Compared to the summer, the 222

distribution of peak demand time inwinter has two concentration 223

points: one in morning hours (8:00–12:00 am), and the other in 224

the evening (18:00–20:00 pm). Also, the peak time probabil- 225

ity shows relatively low values during the afternoon interval 226

(13:00–17:00 pm). Hence, in this work, instead of assigning a 227

single pattern to each customer, various patterns are obtained 228

for different seasons to capture the seasonality of customer 229

behaviors [15]. 230

In each season, theAMIdataset is represented as anundirected 231

similarity graph, G = (V,E). V is the set of vertices in the 232

graph, where the i’th vertex represents the average daily profile 233

of the i’th customer, Vi = [Ci
1, . . ., C

i
24], with C

i
j denoting the 234

average load value at the j’ hour of day for the i’th customer. 235
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E is the set of edges in the graph that connect different vertices,236

where a non-negative weight, Wi,j , is assigned to the edge237

connecting vertices i and j. The weight value represents the238

level of similarity between the two customers’ average daily239

load profiles, with Wi,j = 0 indicating that the vertices Vi and240

Vj are not connected. In this paper, the weightWi,j is obtained241

by adopting a Gaussian kernel function:242

Wi,j = exp

(−||Vi − Vj ||2
α2

)
(2)

where α is a scaling parameter that controls how rapidly the243

weightWi,j falls off with the distance between vertices Vi and244

Vj . To enhance computational efficiency and adaptability to the245

dataset, we have adopted a localized scaling parameter αi for246

each vertex that allows self-tuning of the point-to-point distances247

based on the local distance of the neighbor of Vi [18]:248

αi = ||Vi − Vϕ|| (3)

where,Vϕ is theϕ’th neighbor ofVi, which is selected according249

to [18]. Therefore, the weight between a pair of points can be250

re-written as:251

Wi,j = exp

(−||Vi − Vj ||2
αiαj

)
(4)

Given a set of vertices and weight matrixW = (Wi,j)i,j=1,...,n,252

the clustering process is converted to a graph partitioning prob-253

lem. In this paper, the objective function of graph partitioning is254

to maximize both the dissimilarity between the different clusters255

and the total similarity within each cluster [19]:256

N(G) = min
A1,...,An

n∑
i=1

c(Ai, V \Ai)

d(Ai)
(5)

where, n is the number of vertices, Ai is a cluster of vertices in257

V , V \Ai represents the nodes of set V that are not in set Ai,258

c(Ai, V \Ai) is the sum of the edge weights between vertices259

in Ai and V \Ai, d(Ai) is the sum of the weights of vertices260

in Ai. It has been shown in [16] that the minimum of N(G)261

is reached at the second smallest eigenvector of the graph’s262

Laplacian matrix, L, which can be determined using the weight263

matrixW , as demonstrated in:264

L = D− 1
2WD− 1

2 (6)

where,D is a diagonal matrix, which (i, i)’th element is the sum265

ofW ’s i’th row. The k smallest eigenvalues, [y1, y2, . . ., yk], of266

the Laplacian matrix are extracted in the clustering algorithm267

(see Alg. 1) to build a new matrix U ∈ Rn×k, where k ranges268

from 2 to n. Leveraging the properties of the graph Laplacians,269

the data point Vi is reconstructed using the i’th row of the U270

matrix, which enhances the cluster-properties of the data [18].271

After data reconstruction, a simple clustering algorithm is able272

to detect the clusters. In this work, we utilized the k-means273

algorithm to obtain the final solutions from matrix U .274

Compared to conventional clustering techniques, the SC algo-275

rithm has twomain advantages: (1) it mainly relies on theweight276

matrix of the dataset rather than using the high-dimensional277

demand profile data directly. Also, computing the eigenvalues278

of matrix W for data reconstruction is equivalent to achieving279

Fig. 5. Cluster validation index performance for summer season.

dimension reduction by employing a linear PCA in a high dimen- 280

sional kernel space; (2) as a basic idea of SC, graph partitioning 281

problem can be solved without making any assumptions on 282

the data distribution. This improves the robustness of SC, and 283

leads to better clustering performance for complex and unknown 284

data structures [18]. (3) According to equations 2–6, SC con- 285

verts the clustering process to a graph partitioning optimization 286

problem. Based on Rayleigh-Ritz theorem, the solution of this 287

optimization problem is obtained using the k eigenvectors of 288

the Laplacian matrix, which guarantees a good approximation 289

to the optimal cut. [20]–[22] The main challenge of SC is that 290

the k value still needs to be determined as a priori. To obtain 291

the optimal k, we employ the Davies-Bouldin validation index 292

(DBI), which aims to maximize the internal consistency of each 293

cluster and minimize the overlap of different clusters [23]. The 294

optimal value of k can be obtained when the DBI is minimized. 295

This is shown in Fig. 5 for summer data subset. 296

IV. CMPC ESTIMATION FOR UNOBSERVABLE CUSTOMERS 297

In order to assess the CMPC of unobservable customers, a 298

WCR approach is proposed using only their monthly consump- 299

tion information, as shown in Fig. 6. This framework includes 300

two stages: the first stage is unobservable customer classification 301

based on the seasonal typical consumption pattern bank, and 302

the second stage is cluster-based CMPC inference. It should be 303

noted the two stages cannot be directly combined into one step 304

since they address two different problems. 305

A. Unobservable Customer Classification 306

Since the detailed time-series SM data of unobservable cus- 307

tomers is not available, their daily consumption patterns cannot 308

be directly determined beforehand. To link the existing typical 309

load patterns, obtained from the SC technique, to unobservable 310

customers, a pattern classification model is developed. Thus, 311

the goal of this model is to design a classifier that is able to 312

distinguish different behavioral classes based on an input vector 313

that contains sociodemographic information of unobservable 314

customers. The proposed model in this paper maps the sociode- 315

mographic information of customers (i.e. working period and 316

dining time) to the typical daily pattern databank. The basic 317

idea is that the typical daily load profiles of customers can be 318

discovered using prior knowledge of their peak consumption 319

timing. 320
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Fig. 6. The structure of WCR model.

Based on the sociodemographic information of customers, the321

knowledge of customer behavior over a few distinctive intervals322

in the day can be obtained, namely the morning interval (from323

7:00 am to 9:00 am), the afternoon interval (from 12:00 pm324

to 14:00 pm), and the evening interval (from 18:00 pm to325

21:00 pm). This prior information is then used to obtain an326

approximate probability distribution function of customer peak327

timing defined as Xj = {Xj
1 , X

j
2 , . . ., X

j
h−1, X

j
h}, where Xj

i328

is the probability of j’th customer peak demand occurring at329

time instant i, with h denoting the maximum number of time330

points. In this work, using the SM measurements of observable331

customers, Xj
i is determined as follows:332

Xj
i =

∑n
d=1 Φ(t

j
d)

n
(7)

Φ(tjd) =

{
1 for tjd = i

0 for otherwise
(8)

where, tjd is the peak demand time of j’th customer at333

the d-th day. Thus, the peak timing likelihood distribution,334

{Xj
1 , X

j
2 , . . ., X

j
h−1, X

j
h}, is utilized as the input of the clas-335

sification model. This classification model for unobservable336

customers is developed using the multinomial logistic regres-337

sion (MLR) algorithm. Compared to other binary classification338

methods such as random forests, MLR is able to obtain the339

likelihood of different typical profiles for customers rather than340

picking a single consumption pattern from the databank [23].341

The probability that the j’th customer follows the z’th typical342

load profile can be written as [24]:343

P (Cj = z|Xj) =
exp(wT

z X
j)∑k

j=1 exp(w
T
j X

j)
(9)

where,Cj represents the class of the j’th unobservable customer,344

T is the transposition operator, and wz is the weight vector345

corresponding to pattern z. The learning parameters wz are346

obtained by solving∇wz
J = 0 over the training set, where J is347

the classification risk function, defined as follows [25]:348

J =

M∑
j=1

[
k∑

z=1

czj (wz)
TXj − log

k∑
z=1

exp((wz)
TXj)

]
(10)

where, czj is the j’th element of cz , which is a binary string 349

representing customer class membership. To maximize the log- 350

likelihood function, J , with respect to wz , we need to com- 351

pute the gradient and Hessian of equation (10). Based on the 352

block-structured property of learning parameters and Kronecker 353

product of matrices, the gradient and Hessian of the objective 354

function can be obtained and passed to any gradient-based 355

optimizer to find the maximum a posterior (MAP) estimation 356

of model parameters [26]. In this paper, an iterative reweighted 357

least squares (IRLS) trainingmechanismwas implemented [27]. 358

It should be noted that although there are other methods for per- 359

forming thismaximization, none clearly outperforms IRLS [25]. 360

B. Estimation of CMPC for Unobservable Customers 361

To infer the CMPC for unobservable customers, a WCR 362

model is developed by combining two variables: daily load 363

profile and demand level. The basic idea of WCR approach 364

is to utilize the linear nature of the relationship between the 365

CMPC and monthly energy consumption when the load profiles 366

of customers are similar. This is demonstrated in Fig. 7, where 367

the CMPC and monthly energy consumption of customers in 368

different clusters are shown.As depicted in Fig. 7, the correlation 369

between monthly energy consumption and the CMPC is largely 370

different for customers with two distinct behavioral patterns in 371

the same season. 372

Hence, for z‘th typical pattern, a linear regression model is 373

trained for mapping the customer’s monthly billing information 374

to the CMPC values. The monthly billing data of consumers 375

is obtained by aggregating their SM data. As shown in Fig. 1 376

the majority of monthly consumption values are concentrated 377

around 1000 kWh. Then, the actual CMPC value is calculated 378

using the SCADA and SM data at the system peak time. To 379

estimate the parameters Wz and bz of this regression model, 380

ordinary least square (OLS) is used in this paper [28]. The basic 381

idea is to minimize the sum of the squares of the differences be- 382

tween the estimated and actual CMPCs. The objective function 383

can be written as follows: 384

fz = minWz,bz

n∑
i=1

(F i
j,m − (Ei

j,mWz + bz))
2 (11)
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Fig. 7. Performance of clusterwise.

where,Ej,m andFj,m are themonthly consumption level and the385

actual CMPC for the j’th customer at them’th month. It should386

be noted that our dataset includes the real SM measurements of387

over 3000 residential customer and the corresponding SCADA388

records over 3 years. For each regression model, to reduce the389

overfitting risk, the dataset is randomly divided into two separate390

subsets for training (80%of the total data) and testing (20%of the391

total data). After training, all regression models are then merged392

into a WCR to estimate the CMPC for unobservable residential393

customers. Using the cluster probability values obtained from394

the classification model, P (Cj = z|Xj), the estimated CMPC395

for the j’th customer at them’th month, F̂j,m, is determined as396

follows:397

F̂j,m =

k∑
z=1

P (Cj = z|Xj)(WzEj,m + bz) (12)

Hence, the proposed WCR is able to estimate the CMPC of398

unobservable customers using only their measured monthly399

consumption within a probabilistic classification setting. OLS400

regression can produce unbiased estimates that have the small-401

est variance among all possible linear estimators if the model402

follows several basic assumptions to satisfy the conditions of403

Gauss-Markov theorem [29]. In our work, the linear nature404

of the relationship between the CMPC and monthly energy405

consumption in the same cluster and randomselection of training406

data help satisfy these assumptions, thus ensuring the theoretical407

performance of WCR. Also, it should be noted that in general408

the performance of the OLS is impacted by outliers and extreme409

observations [28]. However, in our problem outliers and ex-410

treme values are highly unlikely since the residential customers’411

monthly demand levels are concentrated within a small range;412

Fig. 8. Seasonal Typical load patterns databank.

almost 80% of customers have monthly consumption levels 413

below 1000 kWh. 414

V. NUMERICAL RESULTS 415

The real distribution system provided by our utility collabora- 416

tor is equipped with SMs, thus fully observable. This enables us 417

to calculate the exact CMPC of each customer. To test the pro- 418

posed customer segmentation method for partially observable 419

systems, we assume that 20% of customers are unobservable 420

and then compare the estimation results with the actual CMPCs. 421

Thus, the data of observable customers (the remaining 80% of 422

the total data) is divided into 4 subsets corresponding to different 423

seasons of the year for model training. 424

A. SC Algorithm Performance 425

For every subset, the optimal cluster number is determined 426

using DBI and typical load patterns are obtained employing 427

the SC algorithm (detailed in Section III). Fig. 8 and Fig. 9 428

present the 22 typical load shapes, namely C1, C2, ..., C22, 429

and the distribution of population of customers belonging to 430

each cluster during all the seasons. As shown in the figures, the 431

number of typical load profiles in different seasons is not the 432

same and the SC approach is able to capture the critical seasonal 433

consumption patterns. In spring, around 22% of customers show 434

typically higher consumption levels during the morning (around 435

7:00 am). In contrast, more than 38% of customers have higher 436

energy consumption during the evening (around 20:00 pm). 437

Meanwhile, more than half of customers present low energy 438

consumption value during the afternoon period. The typical load 439

profiles in summer are different from spring. Except for C5, 440

the typical load patterns of 85% of all customers show similar 441

behavioral tendencies. This could be due to air-conditioning 442
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Fig. 9. Proportion of typical load patterns for different seasons.

load consumption during time intervalswith higher temperature.443

Based on the typical load patterns, the majority of peak demand444

occurs during the evening interval. For around 74%of customers445

in summer, the peak time ranges from 17:00 pm to 19:00 pm.446

In fall, the number of typical load patterns is relatively larger447

rather than other seasons due to variability of customer behavior.448

Compared to summer, when peak demand barely happens in the449

morning, more than 40% of customers have high consumption450

at around 7:00 am in fall, such as C11, C12, C13 and C14. Also,451

around23%of customers provide almost zero consumption from452

10:00 am to 15:00 pm, and nearly one-third of customers show453

twopeaks in themorning and eveningperiods. Thewinter typical454

daily patterns are similar to the results of spring since these two455

seasons have similar weather in mid-west U.S.456

B. WCR Performance457

When the seasonal consumption pattern bank is developed458

using the SM data of observable customers, the WCR models459

are utilized to infer the CMPC of unobservable customers.460

1) Classification Performance Analysis: For the classifica-461

tion part, the Area under the Curve (AUC) index is employed to462

assess the performance of MLRmodel [30]. AUC is determined463

as follows:464

γ =

∫ 1

0

TP

TP + FN
d

FP

FP + TN
=

∫ 1

0

TP

P
d
FP

N
(13)

where, TP is the True Positive, TN is the True Negative, FP is465

the False Positive, FN is the False Negative, and N is the number466

of total Negatives. Compared to the commonly-used metric,467

accuracy, the AUC does not depend on the cut-off value that is468

applied to the posterior probabilities to evaluate the performance469

of a classification model [31].470

The meaningful range of AUC is between 0.5 to 1. In order471

to avoid the overfitting problem, the k-fold cross-validation472

method is applied to the MLR to ensure the randomness of the473

training set [32]. Based on the prior information on customer474

Fig. 10. Comparison of WCR-based estimation value and real value.

TABLE I
PERFORMANCE OF SEASONAL WCR MODELS WITH R2 AND MAPE

peak timing distribution, theMLR achieves an AUC value of 0.7 475

when assigning daily load patterns to unobservable customers. 476

2) Regression Performance Analysis: Based on theWCRap- 477

proach, the CMPC of unobservable customers can be estimated 478

using themonthly billing data. Fig. 10 shows the performance of 479

WCRby comparing the actual CMPCwith the estimated CMPC 480

for each customer in the testing set for onemonth.As canbe seen, 481

the estimated values are able to accurately track the unobservable 482

customer’s real contribution to system peak demand. To assess 483

the performance of the model, the goodness-of-fit measure, R2, 484

and the mean absolute percentage error (MAPE) are utilized 485

in this paper. These two indices are presented in Table I for 486

all seasons. Based on these results, the regression model has 487

a good performance for estimation of CMPC of unobservable 488

customers in this case. 489

C. Metric and Method Comparison 490

In this section, we demonstrate that the proposed segmen- 491

tation strategy can target suitable customers, which cannot 492

be classified by existing method in the literature, including 493

customer peak demand-based and load profile entropy-based 494

segmentation strategies [6], [8]. Furthermore, to validate the 495

performance of ourmulti-stagemachine learning framework,we 496

have compared the peak contribution estimation MAPE of the 497

proposed learning-based framework with previous method [33]. 498

1) Comparing Customer Peak Demand-Based Strategy and 499

Proposed Method: Customer peak demand is a conventional 500

index to describe the potential impact of individual customers 501

on the overall peak demand,which is commonly-used by utilities 502

to perform customer segmentation [8]. In Fig. 11, the difference 503

between the proposed CMPC and customer peak demand values 504

are presented. It can be seen that the customer peak demand 505

values are generally much higher than CMPC values due to the 506
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Fig. 11. Comparison of CMPC and customer peak demand.

Fig. 12. The histogram of customer peak demand over CMPC ratio.

diversity of load behaviors. According to Fig. 12, the customer‘s507

peak demand can reach five times the customer’s actual contri-508

bution to the system peak. This considerable difference shows509

that compared to the proposed method, customer peak demand-510

based strategy is a very conservative method of quantifying the511

actual impact of customers, which could lead to unnecessary512

over-investments in AMI expansion.513

2) Comparing Load Profile Entropy-Based Strategy and514

Proposed Method: Entropy is a measure of the variability515

and uncertainty of customer demand, which has been used516

to develop customer segmentation approach for peak shaving517

program targeting [6]. Customers with lower entropy levels518

have stable consumption behaviors, which makes them higher519

priority candidates for peak reduction. InFig. 13, the relationship520

between CMPC and entropy is presented. It is observable that521

customers with high CMPC do not necessarily have low entropy522

values. This indicates that these two concepts are almost uncor-523

related and do not containmutual information. Hence, unlike the524

proposed method, the entropy-based strategy does not provide525

information about customers’ impact on system peak demand,526

and thus, cannot be used as a generic strategy for guiding peak527

shaving/AMI planning.528

3) Comparing the Performance of the Proposed Multi-Stage529

Machine Learning-Based Framework With an Existing Method:530

The performance of the proposed multi-stage machine learning531

framework is compared with an existing baseline method [33] in532

terms of estimation accuracy. The baselinemethod uses ordinary533

Fig. 13. The relationship between CMPC and entropy.

Fig. 14. Comparison of proposed method and existing method [33].

least square regression to determine the peak demand based 534

on the periodic energy consumption. As shown in Fig. 14, the 535

estimation MAPE values for our proposed method are gener- 536

ally lower than the results obtained from the previous method 537

in [33]. Our framework has been able to improve the estimation 538

MAPE by 5% on average. Furthermore, a maximum point-wise 539

improvement level of 18% has been achieved over the previous 540

baselinemethod.Hence, basedon thisAMIdataset, the proposed 541

method shows a better estimation accuracy compared to the 542

previous work. 543

D. Application of the Proposed Metric and Strategy 544

To evaluate the performance of the proposed metric and 545

the strategy in system operation, we have applied our works 546

to a basic direct load control-based demand response model, 547

which gives utilities the option to remotely shut down appli- 548

ances during daily peak demand periods [34]. A 300-house 549

radial distribution network has been considered to evaluate the 550

performance of different segmentation strategies. 35% of unob- 551

servable customers are selected for meter installation and partic- 552

ipation in peak shaving using three different segmentation met- 553

rics: 1) select residential candidates randomly (base strategy); 554

2) select residential candidates by ranking monthly demand 555

level; 3) select residential candidates based on the proposed 556

CMPC. According to the existing works [35], [36], we have 557

assumed average load elasticity of customers to be 0.21 p.u. We 558

have the compared daily peak reductions in one month (28 days) 559

under the three different customer segmentation strategies. As 560
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Fig. 15. Comparison of peak reduction using three different segmentation
strategies.

shown in Fig. 15, using the proposed CMPC strategy, over561

1400 kWh peak demand has been saved in this month, which is562

higher than the other two segmentation strategies. Specifically,563

in this case, when basic and demand level-based strategies are564

replaced by CMPC-based strategy, the average peak reduction565

increases by 50.4% and 19.7%, respectively. Thus, by com-566

parison, the proposed customer segmentation strategy and the567

CMPC metric have the potential to provide enhanced customer568

targeting guidelines for improving operational frameworks. As569

a future research direction, we will utilize the proposed metric570

in more advanced and detailed operation models.571

VI. CONCLUSION572

In this paper, we have presented a new metric for customer573

segmentation, CMPC, which can quantify the contributions of574

individual customers to system peak demand. Moreover, to575

accurately estimate the CMPC of unobservable residential cus-576

tomers, an innovative three-stagemachine learning framework is577

developed using only their monthly billing data. Employing our578

real SM data, it is demonstrated and validated that the proposed579

metric provides utilities with additional actionable information580

for customer segmentation compared to the existing metrics.581

This segmentation strategy helps utilities effectively identify582

impactful customers from thousands of unobservable customers583

for investment decisions, such as AMI expansion. Also, these584

customers can be targeted as candidates for residential-level585

demand-side management (DSM) programs to reduce the crit-586

ical system peak demand, thus, decreasing the high marginal587

cost and the risk of system failure. Our work offers other588

potential benefits for utilities. For example, recently, utilities589

have been showing increasing interest in residential-level retail590

price design due to the significant contribution of residential591

customers to the system peak. The proposed CMPC, together592

with the developed machine learning framework, can provide a593

reasonable strategy to obtain guidelines for retail price design594

by accurately quantifying the impact of residential customers on595

the system.596
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