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Abstract—Cold load pick-up (CLPU) has been a critical con-5
cern to utilities. Researchers and industry practitioners have un-6
derlined the impact of CLPU on distribution system design and7
service restoration. The recent large-scale deployment of smart8
meters has provided the industry with a huge amount of data that9
are highly granular, both temporally and spatially. In this paper, a10
data-driven framework is proposed for assessing CLPU demand of11
residential customers using smart meter data. The proposed frame-12
work consists of two interconnected layers: 1) At the feeder level, a13
nonlinear autoregression model is applied to estimate the diversi-14
fied demand during the system restoration and calculate the CLPU15
demand ratio. 2) At the customer level, Gaussian mixture models16
and probabilistic reasoning are used to quantify the CLPU demand17
increase. The proposed methodology has been verified using real18
smart meter data and outage cases.19

Index Terms—Cold load pick-up, distribution systems, ser-20
vice restoration, least squares support vector machine, Gaussian21
Mixture Model.22

I. INTRODUCTION23

COLD load pick-up (CLPU) is a challenging issue in electric24

power industry [1]–[3]. The CLPU demand is an increased25

load at service restoration phase due to the loss of load diversity.26

During normal system operation, the on-off switching cycles of27

thermostatically controlled loads (TCL) within a population of28

customers take place independently because of the heterogeneity29

of appliances and the diversity of customer behaviors. However,30

immediately after a long power outage in the restoration phase,31

the switching cycles of TCLs will coincide and become highly32

correlated for a period of time. This phenomenon is the main33

reason for the abnormal level of demand due to the temporary34

lack of diversity. In this paper, the term “CLPU demand” refers35

to this undiversified load during the restoration.36

For feeders with high penetration of TCLs, CLPU can have37

serious consequences, such as restoration failure [4]–[8], trans-38

formers aging [9], [10], transformer overloading [11], and unac-39

ceptable voltage drops [12]. CLPU demand can continue several40
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minutes to even several hours after extreme weather conditions 41

[2]. Hence, it is necessary to quantify the impact of CLPU on 42

distribution system design and restoration. To achieve this goal, 43

the primary task is to quantify the deviation of CLPU demand 44

from normal (diversified) load in historical outage cases. This 45

will help the utilities to extract useful information for future 46

service restorations. 47

Previous papers have mainly focused on model-driven meth- 48

ods for CLPU demand assessment. In [1], a physical model 49

was built for simulating steady and transient response of 50

thermostatically-controlled residential electric space heating de- 51

vices. Based on the developed model, the aggregate impacts 52

of space heaters on feeder-level CLPU demand were analyzed. 53

In [13], a simple and practical model was developed to repre- 54

sent temperature dynamics in a house with a thermostatically- 55

controlled heater/air-conditioner. The model can be used in load 56

management and aggregate CLPU impact evaluation. In [14], 57

similar groups of elementary component load models were built 58

and the load models in the same group were aggregated by us- 59

ing statistical techniques to simulate CLPU. In [15], a multi-state 60

physical load model was developed to capture the behavior of 61

end-use loads. Besides using air temperature as a control sig- 62

nal, other variables, such as price, can also be integrated into 63

the model. In [3], the developed model in [15] was used to ac- 64

count for the multi-state operation of residential heat pumps. 65

This model was then employed to estimate the magnitude and 66

duration of CLPU demand. In [16], CLPU demands of seven 67

houses with different types of electric heating equipment were 68

measured, and field studies were also performed for load restora- 69

tion process. Although [16] used field measurements to analyze 70

CLPU demand, the employed dataset was procured from the 71

measurements of only a limited number of residential customers, 72

and it fails to employ estimation methods to capture the varia- 73

tions in the expected diversified demand at the time of restora- 74

tion. Thus, previous works are largely dependent on detailed 75

dynamic modeling of residential/commercial appliances. 76

While model-driven methods for CLPU demand evalua- 77

tion offer benefits, such as physical interpretability and cost- 78

efficiency, their disadvantages cannot be ignored. Residential 79

loads depend on many factors, such as the types of appliances, 80

the states of appliances, customer behaviors, and house ther- 81

mal resistance and capacitance. Therefore, to accurately model 82

a house load, enough detailed information should be collected, 83

which is very challenging to accomplish for utilities in practice. 84

This lack of such detailed information can lead to considerable 85
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modeling bias. On the other hand, in the past decade, smart meter86

data with high temporal-spatial granularity has become widely87

available to utilities [17], which provides an opportunity to ad-88

dress the shortcomings of previous model-based approaches.89

Specifically, the impact of all the aforementioned unknown fac-90

tors can be reflected in the smart meter data. For example, a larger91

thermal inertia value results in a decrease in the rate of change92

of indoor temperature that leads to less power consumption at93

the time of restoration, which is then measured by the smart me-94

ters. Hence, utilities can obtain CLPU information from smart95

meter data with high fidelity, instead of relying on model-driven96

techniques, which need detailed explicit knowledge of thermal97

parameters and appliances’ information. Considering this, in98

this paper, we will develop a data-driven framework to assess99

feeder-level CLPU demand ratio and customer-level CLPU de-100

mand increase. Compared with the model-driven methods, the101

framework can provide an approach for assessing CLPU demand102

without the need for developing specific load models.103

The main contribution of this work is to propose a framework104

for assessing CLPU demand at the time of restoration, which105

is used for developing statistical CLPU models. The proposed106

framework consists of two layers: 1) At the feeder level, the ratio107

of the undiversified CLPU demand to the estimated diversified108

demand is obtained. To achieve this, a least squares support109

vector machine (LS-SVM) auto-regression model is employed110

to estimate the diversified demand under the assumption that111

the outage has not happened. Then the CLPU demand ratio is112

calculated by dividing the actual undiversified CLPU demand113

at the time of restoration by the estimated diversified demand.114

Finally, a CLPU ratio regression model is developed based on115

the obtained historical CLPU ratios under different outage dura-116

tion and ambient temperatures. The developed regression model117

can be used for predicting how the load behaves under new and118

previously unseen outage cases. Therefore, one innovative as-119

pect of this paper is using a load estimation technique to as-120

sess feeder-level CLPU demand, which has not been applied121

in previous papers regarding CLPU demand evaluation. 2) At122

the customer level, a novel CLPU demand increase assessment123

approach is proposed. Gaussian mixture models (GMM) are ap-124

plied to devise a probabilistic technique towards constructing125

marginal probability density functions (PDF) of customer de-126

mand increase due to CLPU. Then the customer CLPU demand127

increase is analyzed statistically for a set of customers to evalu-128

ate the loss of load diversity. The performance of the developed129

framework is verified using real smart meter data from three130

Midwest U.S. utilities. We have also shown that using the pro-131

posed approach the PDF of demand increase due to CLPU can132

be estimated for any group of customers, which can provide an133

invaluable guideline for designing sequential restoration plans134

for distribution systems.135

The rest of the paper is organized as follows: Section II in-136

troduces the proposed framework of CLPU demand assessment137

and the real dataset. Section III presents the procedure of feeder138

CLPU demand ratio evaluation. In Section IV, the procedure139

of assessing customer CLPU demand increase is presented. In140

Section V, outage case studies are analyzed. Section VI141

concludes the paper.142

Fig. 1. CLPU demand assessment framework.

Fig. 2. Typical CLPU demand curve.

II. PROPOSED CLPU DEMAND ASSESSMENT FRAMEWORK 143

AND REAL DATASET DESCRIPTION 144

This section presents a high-level overview of the proposed 145

framework for feeder-level and customer-level CLPU demand 146

assessment. We will also describe the real smart meter dataset 147

available to us. Assuming customers’ smart meter data during 148

normal and restoration conditions is available to utilities, then 149

the feeder-level demand can be obtained by aggregating time- 150

aligned customer-level demand. The overall framework is shown 151

in Fig. 1. 152

A. Feeder Layer 153

The objective of feeder-level CLPU demand assessment is to 154

obtain the CLPU demand ratio, RCLPU , defined as follows: 155

RCLPU =
Pu

Pd
(1)

where, Pu is the undiversified feeder demand at the time of 156

restoration, tr, after outage occurrence at t0, and Pd is the di- 157

versified feeder demand at time tr. However, as shown in Fig. 2, 158



IEE
E P

ro
of

BU et al.: DATA-DRIVEN FRAMEWORK FOR ASSESSING COLD LOAD PICK-UP DEMAND IN SERVICE RESTORATION 3

the actual measured feeder demand at the time of restoration is159

undiversified due to CLPU. This implies that Pd at time tr can-160

not be directly obtained from smart meter data, and needs to be161

estimated based on the demand data history during normal sys-162

tem operation. Hence, the first task at this level is to estimate Pd163

at the time of restoration. For this, we design a machine learning164

technique which is based on a nonlinear auto-regression model165

with exogenous input (NARX) and is implemented using LS-166

SVM. The LS-SVM is trained using historicPd and temperature167

data to continuously predict the future diversified demand. Since168

the actual feeder load at the time of restoration is undiversified169

due to CLPU, the outcome of the machine learning model is the170

estimated diversified feeder demand if the outage did not hap-171

pen. Therefore, taking the estimation residuals into account, the172

estimated diversified feeder demand P̂d at time tr is modeled as173

follows:174

P̂d = Pd + εtr (2)

where, εtr denotes the machine learning estimation residual. As-175

suming that the residual follows a Gaussian distribution, namely176

εtr ∼ N (0, σ2), with σ defining the machine learning frame-177

work uncertainty, the estimated diversified demand also follows178

a Gaussian distribution [18]:179

P̂d ∼ N (Pd, σ
2) (3)

Therefore, the CLPU demand ratio can be estimated as fol-180

lows:181

R̂CLPU =
Pu

E{P̂d}
(4)

where, E{·} is the empirical averaging operator.182

B. Customer Layer183

The objective of this level is to construct the marginal PDF of184

individual customer demand increase due to CLPU at the time185

of restoration, denoted as Ii for the ith customer and defined as186

follows:187

Ii = pu,i(tr)− pd,i(tr) (5)

where, pu,i(tr) is the actual customer demand corresponding to188

the undiversified feeder load, and pd,i(tr) is the customer de-189

mand at the time of restoration if the outage did not happen.190

Similar to the variable Pd in equation (1), since pd,i(tr) is un-191

known and cannot be measured by smart meters, it needs to192

be estimated. However, compared to feeder demand, customer193

demand can be much more volatile. Considering this volatility,194

instead of directly estimating pd,i(tr) for each customer, this195

paper adopts a probabilistic learning approach to construct the196

marginal PDF of the estimated customer demand at time tr us-197

ing the obtained P̂d for the feeder. Based on the demand data198

history from smart meters, a contribution factor is defined for199

the ith customer, denoted as Ci, which determines the customer200

contribution to feeder demand (Pd). Note that Ci is obtained201

in normal state (without outage) when pd,i(t) can be measured202

directly by smart meters, as follows: 203

Ci(t) =
pd,i(t)

∑M
j=1 pd,j(t)

=
pd,i(t)

Pd(t)
i = 1, . . . ,M. (6)

where, M is the total number of customers connected to the 204

feeder. Hence, during the normal operation, an individual cus- 205

tomer demand can be determined as pd,i(t) = Pd(t)Ci(t). Not- 206

ing the dependency of pd,i(t) on both Pd(t) and Ci(t), to obtain 207

the marginal PDF of p̂d,i(tr), the joint PDF of the estimated 208

diversified feeder demand (P̂d(t)) and the contribution factor at 209

the time of restoration is constructed. This joint PDF is deter- 210

mined using a GMM technique, which employs past customer 211

demand measurements and the corresponding estimated diver- 212

sified feeder demand. It will be shown that a nonlinear transfor- 213

mation of this joint PDF can be used to obtain the marginal PDF 214

for p̂d,i(tr). The CLPU demand increase for the ith customer at 215

the time of restoration, Îi, is estimated as: 216

Îi = pu,i(tr)− p̂d,i(tr) (7)

Note that given the obtained marginal PDF for p̂d,i, equation (7) 217

also leads to a marginal PDF for the individual customer demand 218

increase. 219

C. Real Dataset Description 220

The available smart meter data history contains three U.S. 221

Midwest utilities’ energy consumption data (kWh) of over 222

10,000 residential customers with a 15-minute time resolution, 223

and the time range is about four years. This data includes time 224

stamps which have been used for customer-level demands’ time- 225

alignment. When an outage occurs, the meter will keep a record 226

of outage start time, end time, and the associated energy con- 227

sumption readings. The ambient temperature data is obtained 228

from the National Oceanic and Atmospheric Administration 229

(NOAA) database [19] , and is time-aligned with smart meter 230

data. 231

III. FEEDER-LEVEL DIVERSIFIED DEMAND ESTIMATION 232

In this section, a LS-SVM regression model is developed to 233

estimate the diversified feeder demand, P̂d, at the time of restora- 234

tion, which is then used to determine the CLPU demand ratio, 235

RCLPU . 236

The LS-SVM is based on a support vector margin maximiza- 237

tion process to minimize the machine learning structural risk 238

function. This regression model has many advantages, includ- 239

ing good generalization capability and low susceptibility to lo- 240

cal minima [18], [20], and has been employed in distribution 241

systems [21], [22]. In demand estimation, the selection of ex- 242

planatory variables is critical. The feeder demand at a certain 243

time is primarily affected by the temperature at that time and is 244

highly correlated with previous demand samples within a cer- 245

tain time period [18]. Demand also changes with seasons and 246

days of week (working day vs non-working day). To capture sea- 247

sonal and daily demand diversity, the dataset is divided across 248

seasons and working/non-working days, respectively. The ex- 249

planatory variable x(t) ∈ Rn, which acts as the input to the 250
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demand estimation model, is built as follows:251

x(t) = [Pd(t− 1), . . . , Pd(t− nlag), T (t)]
T (8)

where, Pd(t− i) is the feeder demand at time t− i, nlag is the252

maximum time lag, and T (t) is the ambient temperature at time253

t. Therefore, using this explanatory variable, feeder demand at254

time t can be expressed as:255

Pd(t) = ωTϕ(x(t)) + b+ εt (9)

where, ω ∈ Rnh and b ∈ R represent regression model parame-256

ters, ϕ(·) : Rn → Rnh is a mapping function, transforming low257

dimensional input vector x(t) into a high dimensional vector258

ϕ(x(t)), and εt is a normally distributed random variable rep-259

resenting the estimation residual.260

Given the current feeder demand and temperature values,261

together with the past feeder demand samples with certain262

time lags, a training set of size Ntr can be developed, Dtr =263

{x(t),Pd(t)}Ntr
t=1. To obtain the optimal values of learning264

parameters, a structural risk function, J , is formulated and min-265

imized with respect to ω, b, and εt, over the training set. This266

optimization is formulated as follows:267

min
ω,b,εt

J =
1

2
ωTω + γ

Ntr∑

t=1

ε2t

s.t. Pd(t) = ωTϕ(x(t)) + b+ εt, t = 1, . . . , Ntr.

(10)

where, γ is a regularization constant to prevent overfitting. To268

solve this optimization problem, the Lagrangian, L, is con-269

structed as a function of regression parameters:270

L(ω, b, εt;α) = J(ω, b, εt)−
Ntr∑

t=1

αt(ω
Tϕ(xt) + b+ εt − Pd(t)) (11)

where, αt’s are Lagrange multipliers. The optimality conditions271

are obtained by solving ∇(ω,b,εt)L = 0, as follows:272

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂L
∂ω = 0→ ω =

∑Ntr

t′=1
αt′ϕ(x(t

′))

∂L
∂b = 0→

∑Ntr

t=1
αt = 0

∂L
∂εt

= 0→ αt = γεt

∂L
∂αt

= 0→ Pd(t) = ωTϕ(x(t)) + b+ εt

(12)

Combining equations (9) and (12),ω can be eliminated from the273

regression model as shown below:274

Pd(t) =

Ntr∑

t′=1

αtϕ(x(t
′))Tϕ(x(t)) + b+

αt

γ
t = 1, . . . , Ntr.

(13)

The term ϕ(x(t′))Tϕ(x(t)) in equation (13) can be represented275

by a kernel function, K(., .), as follows:276

K(x(t′),x(t)) = ϕ(x(t′))Tϕ(x(t)) t′, t = 1, . . . , Ntr.
(14)

In this paper, a Gaussian kernel is employed to replace the dot 277

product in equation (14): 278

K(x(t′),x(t)) = exp(−||x(t
′)− x(t)||2
σ2

) t′, t = 1, . . . , Ntr.

(15)

Note that equations (12) and (13) yield a set of linear equa- 279

tions, from which the machine learning parameters, b and ααα are 280

obtained for the given training set Dtr: 281

[
b

α

]

=

[
0 1T

1 Ω+ 1
γ I

]−1 [
0

Pd

]

(16)

where, Pd = [Pd(1), . . . , Pd(Ntr)]
T, 1 = [1, . . . , 1]T, I is the 282

identity matrix, α = [α1, . . . , αNtr
]T, and the entries of the ker- 283

nel matrix, Ω, are determined as follows: 284

Ωt′t = K(x(t′),x(t)) t′, t = 1, . . . , Ntr. (17)

It should be noted that b and α can have different values as the 285

values of input parameters, nlag , σ, and γ, change. To tune the 286

regression model with respect to input parameters, k-fold cross- 287

validation is performed. Moreover, mean absolute percentage 288

error (MAPE) is adopted as the criteria for evaluating the per- 289

formance of the regression model. After completing the cross- 290

validation and training procedures, which optimize the input 291

variables and learning parameters, the estimation accuracy of 292

the regression model is evaluated on a test set, Dt, of size Nt. 293

The critical step in calculating feeder CLPU demand ratio 294

RCLPU is to estimate the diversified feeder demand at the time of 295

restoration, tr. Similar to equation (8), the explanatory variable 296

at time tr is obtained as follows: 297

x(tr) = [Pd(tr − 1), . . . , Pd(tr − n∗lag), T (tr)]
T (18)

where, n∗lag is the optimal time lag. Using this explanatory vari- 298

able, the estimated diversified feeder demand at time tr is deter- 299

mined based on the trained LS-SVM model, as follows: 300

P̂d(tr) =

Ntr∑

t=1

α∗tK(x(t),x(tr)) + b∗ (19)

where, α∗t and b∗ are the optimal machine learning parameters. 301

Hence, RCLPU is obtained by dividing the undiversified 302

feeder restoration demand by the empirically averaged estimated 303

diversified feeder demand at time tr, as shown in equation (4). 304

Note that the empirical averaging process is performed consid- 305

ering the estimation residual distribution obtained from a test 306

set during normal system operation. An algorithmic overview 307

of LS-SVM model for assessing RCLPU is summarized in 308

Algorithm 1. 309

IV. CUSTOMER DEMAND INCREASE ESTIMATION 310

Although the aggregate residential demand at feeder level 311

can be estimated with satisfactory accuracy, individual customer 312

consumption can be quite stochastic [23]. Fig. 3 shows the daily 313

demand curves of a single residential customer with and with- 314

out outage, with 15-minute resolution during a season. The gray 315
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Fig. 3. Customer daily demand curves.

Algorithm 1: LS-SVM.
1: Split demand and temperature data into two parts:

training/validation set, and test set
2: procedure TRAINING/VALIDATION
3: Select initial nlag, σ, γ

4: Dtr ← {x(t), Pd(t)}Ntr

t=1

5: Ω← K(x(t′),x(t)) t′, t = 1, . . . , Ntr.
6: Pd ← [Pd(1), . . . , Pd(Ntr)]

T

7: Solve equation (16) to obtain αt’s and b
8: P̂d(t

′)←∑Ntr

t=1 αtK(x(t),x(t′)) + b
9: Compute validation MAPE

10: Change nlag, σ, γ, do Step 3 to 9, optimize
parameters, n∗lag, σ

∗, γ∗, b∗,α∗

11: end procedure
12: procedure TESTING n∗lag, σ

∗, γ∗, b∗,α∗

13: Dt ← {x(t), Pd(t)}Nt

t=1

14: P̂d(t) =
∑Ntr

t′=1 α
∗
t′K(x(t′),x(t)) + b∗

15: Compute test MAPE
16: end procedure
17: procedure DEMAND ESTIMATION

(n∗lag, σ
∗, γ∗, b∗,α∗)

18: x(tr)← [Pd(tr − 1), . . . , Pd(tr − n∗lag), T (tr)]
T

19: P̂d(tr)←
∑Ntr

t=1 α
∗
tK(x(t),x(tr)) + b∗

20: end procedure
21: R̂CLPU ← Pu/E{P̂d(tr)}

curves are the historical daily demand data during normal oper-316

ation and the red curve denotes the demand data in one day with317

an outage. The spikes represent the semi-periodic on/off cycling318

of customer appliances, which are captured by the smart meter.319

It can also be seen that customer demand at the interval [17.75 h,320

20 h] equals zero, indicating an outage during this period. The321

plot shows that daily load curves do not present obvious cyclic322

behavior in contrast with the feeder demand. Also, customer323

peak demand at the time of restoration, pu,i, is not necessarily324

larger than normal demand. Hence, considering the volatility of325

Fig. 4. Overall structure of the customer CLPU demand increase assessment.

customer demand, in this section a probabilistic method is pro- 326

posed to determine Îi. The overall structure of customer-level 327

CLPU demand assessment is shown in Fig. 4. 328

As discussed in Section II, the estimated demand for the ith 329

customer at the time of restoration is obtained as follows: 330

p̂d,i(tr) = P̂d(tr)Ci i = 1, . . . ,M. (20)

The difficulty in equation (20) is to compute the product of 331

the two random variables P̂d and Ci. It is shown in [24], that 332

using the joint PDF of two dependent random variables, the 333

marginal PDF of their product can be obtained using a nonlinear 334

transformation. Hence, denoting the joint PDF of P̂d and Ci by 335

fi(P̂d, Ci), the marginal PDF of estimated customer demand 336

p̂d,i at time tr is obtained as follows [24]: 337

hi(p̂d,i) =

∫ 1

0+

fi

(
p̂d,i
Ci

, Ci

)
1

Ci
dCi (21)

Therefore, the first step in calculating equation (21) is to ob- 338

tainfi(P̂d, Ci) for each customer. To do this, a probabilistic tech- 339

nique is employed using GMMs. GMM is a parametric model, 340

which approximates arbitrary PDFs as weighted summation of 341

Gaussian density components. GMM has been previously ap- 342

plied in distribution systems studies for modeling the stochas- 343

ticity of load and the uncertainty of distribution system state 344

estimators [25], [26]. In this paper, we propose using GMM to 345

model the joint PDF of customer contribution and the estimated 346

diversified feeder demand. Thus, based on the estimated diver- 347

sified feeder demand, P̂d, and contribution factor, Ci, for the ith 348

customer, the GMM approximation model, which is composed 349

of Si Gaussian components, can be expressed as follows: 350

l (z|λ) =
Si∑

j=1

wjg
(
z|μj ,Σj

)
(22)

where, z is a two-dimensional continuous-valued vector defined 351

as z = [P̂d, Ci], wj’s are the mixture weights corresponding to 352

multi-variate Gaussian components g(z|μj ,Σj), which satisfy 353
∑Si

j=1 wj = 1. Thus, each component is a bi-variate Gaussian 354
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function defined as:355

g(z|μj ,Σj) =
1

(2π)|Σj |1/2

exp

{

−1

2
(z− μj)

	Σ−1j (z− μj)

}

(23)

where,μj andΣj are the component mean vector and covariance356

matrix, respectively. Also, λ = {wj ,μj ,Σj}, is the collection357

of parameters of the GMM model that have to be learned.358

With respect to GMM approximation, the model training ob-359

jective is to obtain the optimal parameter collection λ∗ that best360

matches the distribution of the given training set. The train-361

ing set is composed of Ci data history and P̂d samples. The362

most well-established method for GMM training is the maxi-363

mum likelihood (ML) estimation [27]. Given the training vec-364

tors Z = {z1, . . . , zN} with N samples, the GMM likelihood365

can be written as:366

l(Z|λ) =
N∏

t=1

p(zt|λ) (24)

Generally, this non-linear function can be minimized iteratively367

with respect to λλλ using expectation-maximization (EM) algo-368

rithm [27]. Also, to tune the GMM models with respect to the369

component number, Si, k-fold cross-validation is performed.370

To evaluate model performance with different learned λ’s, the371

Bayesian information criterion (BIC) is employed.372

Based on the optimal λ∗ obtained from equation (24) and373

using equations (22) and (23), the joint PDF of estimated feeder374

demand P̂d at time tr and contribution factor Ci for the ith375

customer can be specifically written as,376

fi(P̂d, Ci) =

Si∑

j=1

ωjg(P̂d, Ci) (25)

where,377

g(P̂d, Ci) =
1

2πσ
(j)

P̂d
σ
(j)
Ci

√
1− ρ2j

exp

(

− 1

2(1− ρ2j )

⎡

⎣
(P̂d − μ

(j)

P̂d
)2

σ
(j)

P̂d

2 +
(Ci − μ

(j)
Ci

)2

σ
(j)
Ci

2

−
2ρj(P̂d − μ

(j)

P̂d
)(Ci − μ

(j)
Ci

)

σ
(j)

P̂d
σ
(j)
Ci

⎤

⎦

⎞

⎠ (26)

where, μ(j)

P̂d
, μ(j)

Ci
, σ(j)

P̂d
, σ(j)

Ci
, and ρj are the corresponding mean,378

variance, and correlation of P̂d and Ci for the jth component,379

respectively. Hence, substituting equation (25) into (21), the380

marginal PDF of the estimated customer demand, hi(p̂d,i), is381

obtained using numerical integration over the customer contri-382

bution factor variable.383

Finally, using equation (7), the marginal PDF of demand in-384

crease for the ith customer is constructed. Note that since pu,i is385

directly measured by the customer’s smart meter at the time of386

restoration, it is treated as a constant value. Hence, the marginal387

TABLE I
OUTAGE CASE INFORMATION

PDF of Îi, denoted as qi is obtained for each customer, as 388

follows: 389

qi(Îi) = hi(pu,i − Îi) (27)

V. CASE STUDY 390

Nineteen outage cases are observed for evaluating feeder-level 391

CLPU demand ratio and post-outage customer-level CLPU de- 392

mand increase. The case information is shown in Table I. 393

A. Feeder CLPU Demand Ratio Estimation 394

1) CLPU Ratio Estimation and Regression Analysis: Feeder 395

CLPU demand ratio is obtained by dividing the measured un- 396

diversified restoration demand by the estimated diversified de- 397

mand at the time of restoration. As shown in Fig. 5, a demand 398

overshoot occurs in the restoration phase, and the undiversified 399

demand is significantly greater than the estimated diversified 400

demand. Note that the undiversified CLPU demand (the spike 401

labeled as Pu in Fig. 5) is observed using smart meter data, and 402

is not estimated. Also, it is observed that once the restoration 403

phase is completed, the actual feeder demand drops back to the 404

estimated diversified levels. This corroborates the accuracy of 405

the LS-SVM framework. 406

Table II shows the values ofRCLPU and the LS-SVM estima- 407

tion MAPE. The performance of LS-SVM has been compared 408

with two other regression models: 1) the autoregressive model 409

with exogenous input variables (ARX), and 2) the polynomial 410

NARX (P-NARX) model [28]. As is observed in Table II, LS- 411

SVM shows better RCLPU estimation accuracy compared with 412

the other two models. From Table I and Table II, the impact 413
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Fig. 5. Estimated diversified feeder demand curve and the recorded demand
curve with an outage.

TABLE II
FEEDER CLPU DEMAND RATIO

of outage duration and ambient temperature on the ratio can be414

observed.415

Fig. 6 shows the regression analysis result of the estimated416

CLPU ratio in terms of outage duration (O) and ambient tem-417

perature (T ). As can be seen, a surface is fitted to the data with418

acceptable accuracy using polynomial regression based on the419

estimated CLPU ratios. This CLPU ratio regression model pro-420

vides an alternative way for estimating the CPLU ratio and de-421

mand in future system restoration cases. Also, as more outage422

cases are collected, the accuracy of the CLPU ratio regression423

model can be improved.424

Fig. 6. Regression analysis of estimated CLPU ratios.

2) Model Robustness Evaluation: The robustness of learning 425

parameters (σ and γ) has been tested in accordance with [29]. 426

To do this, the following steps have been performed: first, 1% 427

of demand samples in the training set are randomly selected. 428

Second, the selected samples are contaminated by multiplying 429

them with different contamination coefficients to generate out- 430

liers. The contamination coefficient is varied from 1 to 2 with 431

step of 0.1. The contaminated demand outliers can be written as 432

follows: 433

Pou = PorKm (28)

where, Por is the original uncontaminated demand sample and 434

Km denotes the contamination coefficient. Third, for each con- 435

tamination coefficient, the LS-SVM model is retrained to obtain 436

the new learning parameters. Also, the MAPE under these new 437

parameters is obtained over the test set. Finally, the ratios of 438

the retrained learning parameters (with outliers) to the original 439

learning parameters (without outliers) are calculated to quantify 440

the changes in the model due to noise injection. These ratios are 441

also obtained by dividing the estimation MAPEs of the model 442

with and without outliers. The ratios are written as follows: 443

Kσ =
σou

σor
× 100 % (29)

Kγ =
γou
γor
× 100 % (30)

KMAPE =
MAPEou

MAPEor
× 100 % (31)

where, σou, γou denote the retrained learning parameters after 444

contamination, MAPEou denotes the estimation MAPE corre- 445

sponding to σou and γou; similarly, σor, γor denote the trained 446

learning parameters obtained from the original uncontaminated 447

training set, and MAPEor corresponds to σor and γor. Fig. 7 448

shows the changes in learning parameters and test MAPE against 449

the contamination coefficient. It can be seen that the estimation 450

MAPE has been kept unchanged, since the LS-SVM has been 451

able to automatically adjust itself to higher levels of noise to 452

maintain satisfactory performance. In addition, parameter σ has 453

been nearly kept constant as the contamination coefficient in- 454

creases. However, parameter γ decreases as the contamination 455
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Fig. 7. Robustness evaluation of learning parameters.

coefficient increases, which can be justified using equation (10).456

As can be seen, in equation (10), γ is basically the regulariza-457

tion trade-off factor which determines the weight of the training458

set’s inherent noise level during the training process. Hence,459

when we artificially increase this noise level in the training set460

through contamination, the LS-SVM training algorithm auto-461

matically decreases the weight assigned to the inherent noise462

parameter to keep the risk function at its minimum value.463

3) CLPU Ratio Validation: Since the real diversified demand464

at the time of restoration is unknown, due to the undiversified465

nature of load, therefore, we cannot validate the estimated ra-466

tios using real outage cases alone. Considering this, we have467

conducted additional Monte Carlo simulations to validate the468

CLPU ratios. Specifically, 49 new outage cases with different469

outage durations and different ambient temperatures are created,470

and then, our proposed approach is applied to the data generated471

from these outage cases [30]. The basic steps of validation are as472

follows: first, the demand consumed by TCLs are generated us-473

ing Monte Carlo simulations for a heterogeneous population of474

customers, obtained from appliance-level state-space modeling,475

both in normal operation and outage conditions; second, addi-476

tional appliances’ consumed demands are added to the TCLs’477

consumed demands to obtain customers’ net demands; third,478

feeder-level demand is obtained by aggregating customer-level479

loads; then, the proposed CLPU assessment framework is ap-480

plied to the data obtained from 49 outage cases to obtain cor-481

responding CLPU ratios; finally, ratio validation is conducted482

by comparing the outcomes of the proposed data-driven model483

and the simulation results. Fig. 8(a) and Fig. 8(b) show the ac-484

tual and estimated CLPU ratios, respectively. Note that the ac-485

tual CLPU ratios are obtained from Monte Carlo simulations,486

and the estimated CLPU ratios are obtained by applying our487

proposed framework to the demand data generated from these488

Monte Carlo simulations. In Fig. 8(a) and Fig. 8(b), T denotes489

the ambient temperature and O denotes outage duration. As can490

be seen, the estimated CLPU ratios can accurately match the491

actual CLPU ratios. The validation of CLPU ratio can also be492

demonstrated in Fig. 9, in which the CLPU ratio estimation per-493

centage errors (PE) are smaller than 9% for all cases, and 90%494

of the percentage error values are less than 6%, which validates495

the performance of the framework. This can also demonstrate496

the advantage of our proposed data-driven approach over the497

model-driven Monte Carlo simulator, showing that the CLPU498

ratio can be accurately estimated only based on the available499

demand data and without the knowledge of thermal parameters500

of individual customer houses.501

Fig. 8. Actual and estimated CLPU ratios.

Fig. 9. CLPU ratio estimation percentage errors.

In practice, it is probable that a proportion of customers are 502

unmonitored. Hence, it is of interest to analyze the performance 503

of the proposed framework in scenarios where different propor- 504

tions of customers do not have smart meters. This has also been 505

demonstrated using Monte Carol simulations, where the CLPU 506

ratio estimation percentage errors are shown as a function of per- 507

centage of monitored customers in Fig. 10. It can be seen that 508

as the number of monitored customers increases the accuracy of 509

the proposed framework improves. Also, the framework still has 510
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Fig. 10. Relationship between the CLPU ratio estimation percentage error
with the percentage of monitored customers.

Fig. 11. Relationship between average MPE with the number of outages.

acceptable accuracy even when a high percentage of customers511

are unmonitored.512

It is also of great importance to conduct robustness analy-513

sis with respect to the number of available outage cases due to514

the outage data scarcity. To do this, a training process has been515

performed using random drop-out for cross validation. The per-516

formance of the framework has been evaluated in terms of the517

CLPU ratio prediction mean percentage error (MPE), and is plot-518

ted against the number of historical outages, as shown in Fig. 11.519

As can be seen, to reach an average MPE of smaller than 10%,520

a minimum number of eight outages is required in this case.521

Hence, as more outage data become available, the accuracy of522

the regression model is improved. This robustness analysis has523

also been conducted on our utility data, and a similar decreasing524

trend of average MPE against the number of outages is observed.525

B. Customer CLPU Demand Increase Estimation526

Fig. 12(a) and Fig. 12(b) show the empirical histogram and527

the GMM-based estimation of fi(P̂d, Ci) for one customer, re-528

spectively. As can be seen by comparing these figures, GMM529

is able to accurately model the behavior of the customer using530

smooth parametric Gaussian density functions.531

Fig. 12. Joint PDF estimation of diversified feeder demand and contribution
factor for one customer. (a) Empirical histogram. (b) GMM-based estimation.

Fig. 13. Distribution of estimated demand and CLPU demand increase of one
customer. (a) Distribution of p̂d,i. (b) Distribution of Îi.

Fig. 13 shows the probability distribution of estimated de- 532

mand and CLPU demand increase of one customer at time tr. 533

Note that the probable CLPU demand increase of the customer 534
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Fig. 14. Distributions of aggregate demand increase.

can be negative. This partly reflects the stochasticity of cus-535

tomer demand. Regarding system restoration issue, optimal ap-536

proaches have been proposed for restoring different groups of537

customers after extreme events in the literature [6]–[8]. Our pro-538

posed method can provide the marginal PDF of demand increase539

for a group of customers by convolving the marginal PDFs of de-540

mand increase of individual customers [31], which is useful for541

the utilities to perform restoration risk evaluation. For instance,542

Fig. 14 shows the PDFs of aggregate demand increase (Pagg)543

for Ncus customers connected to the same transformer. Hence,544

the impact of CLPU demand increase on the transformer can545

be accurately quantified. As can be seen, as the number of cus-546

tomers increases the expected aggregate demand increase also547

shifts towards larger values.548

To evaluate the loss of load diversity for a population of cus-549

tomers, the following index is defined for each customer:550

PI0,i = Pr(Îi ≥ I0) (32)

where, PI0,i denotes the probability of estimated demand in-551

crease being larger than a threshold, I0, for the ith customer,552

with Pr(a) defining probability of event a. Using this index,553

the factor Rlb(I0) indicates the percentage of customers with554

PI0,i > 0, as shown in equation (33):555

Rlb(I0) =

∑M
i=1 H(PI0,i)

M
× 100% (33)

where, H(x) is the Heaviside step function defined as follows:556

H(x) =

{
1 x ≥ 0

0 x < 0
(34)

Fig. 15(a) shows the relationship betweenRlb and I0. It can be557

seen that: 1) for I0 = 0we haveRlb = 100%, which implies that558

all customers have non-negative CLPU demand increase with559

non-zero probability, and 2)Rlb decreases as I0 increases, which560

indicates that the number of customers with Îi > I0 decreases561

as I0 increases. This is determined by the maximum capability562

of customers’ contribution to feeder CLPU demand. Fig. 15(b)563

shows PI0,i distribution boxplot as a function of threshold level564

Fig. 15. Evaluation of loss of load diversity. (a) The relationship between Rlb

and I0. (b) Distribution of PI0,i.

I0. This figure describes the loss of load diversity during ser- 565

vice restoration. For example, the first box tells us that almost 566

all of the customers have PI0 = 0, i > 0.5 for this outage case. 567

This means that nearly all customer’ loads simultaneously start 568

drawing more energy than normal from the feeder in the restora- 569

tion phase. It can also be seen that the first quartile, the median, 570

and the third quartile values of PI0,i present a descending trend 571

as the threshold I0 increases. This is consistent with the decreas- 572

ing trend of Rlb, observed in Fig. 15(a). This implies that only 573

a few customers have abnormaly high demand increase during 574

service restoration. 575

It is also of interest to discover the relationship between the 576

uncertainty of customer demand increase and the uncertainty 577

of customer behavior during normal system operation. To 578

evaluate the uncertainty of customer demand increase at the 579

time of restoration, the entropy of Îi is obtained using qi(Îi), as 580

follows [32]: 581

E(Îi) = −
∫

Îi

qi(Îi) log2(qi(Îi))dÎi (35)

On the other hand, to evaluate the uncertainty of customer 582

behavior during normal system operation, customer demand is 583

sampled on different days at the same time corresponding to 584

the restoration instant. Based on these data samples the entropy 585

of customer behavior is defined similar to (35) and denoted 586

as E(pd,i). Fig. 16 shows the relationship between E(Îi) 587

and E(pd,i) for all customers. It can be seen that a positive 588

linear relationship exists between the uncertainty of customer 589

CLPU demand increase and the uncertainty of normal customer 590

demand at the time corresponding to the restoration instant. The 591

correlation between these two entropy variables is around 0.72, 592

which implies that customers with uncertain normal demand 593

also show more uncertainty at the time of restoration. 594

To assess customer demand increase due to CLPU, the re- 595

lationship between energy consumption within a 4-hour time 596
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Fig. 16. Relationship between entropy of customer CLPU demand increase
and entropy of normal demand at the time corresponding to restoration instant.

Fig. 17. Relationship between customer energy consumption after the time
of restoration and average normal energy consumption at corresponding time
period.

interval after time of restoration, Di, and average energy con-597

sumption during the same time period in normal operation, Di,598

is analyzed. Fig. 17 shows the relationship between Di and Di599

for all customers. The slope of the fitted line is smaller than 1,600

which indicates that customer energy consumption after the time601

of restoration is greater than average energy consumption in nor-602

mal operation during the corresponding time period. Also, a pos-603

itive correlation between Di and Di is observed, which implies604

that higher energy consumption during normal system operation605

corresponds to higher restoration energy consumption.606

VI. CONCLUSION607

This paper has presented a data-driven framework for using608

smart meter data to determine feeder-level CLPU demand ra-609

tio and to assess customer-level demand increase due to CLPU,610

based on historical outage cases. Machine learning and proba-611

bilistic methodologies are used for CLPU demand assessment.612

Outage cases are employed for model training and verification.613

The results of case studies show that the proposed framework614

can accurately determine feeder-level CLPU demand ratio and615

assess customer-level demand increase due to loss of load di-616

versity during service restoration. It is shown that only a few617

customers have extreme CLPU demand increase, and customers 618

with higher energy consumption during normal operation typi- 619

cally have higher demand during the restoration phase. The per- 620

formance of the proposed data-driven framework is validated 621

using extensive Monte Carlo simulations. It has been demon- 622

strated that our method is able to accurately assess CLPU de- 623

mand at both feeder- and customer-levels without having any 624

explicit knowledge of individual houses’ thermal information. 625
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