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Robust Real-Time Modeling of Distribution Systems with
Data-Driven Grid-Wise Observability

Technology Summary

* A hybrid machine learning and branch current state
estimation (BCSE) technique to enhance observability.

* Robust online modeling algorithms to develop real-time
load/DER (distributed energy resource) models using
practical data.

* Integration with SIEMENS software PSS®SINCAL.

Technology Impact

* Offer extended observability to DERs in secondary
distribution systems.

* A set of real-time load/DER models at appliance, consumer,
feeder and microgrid (MG) levels to su Rort various steady-
state and dynamic-state analyses of DERs’ impacts on
distribution system operation, control, and planning.

New
measurements

Weather
data

Proposed Project Objectives/Milestones
* Data-driven grid-edge monitoring to enhance observability.
* Robust grid-wise SE to provide states of all loads/DERs.

* Robust online modeling to develop real-time demand
response-enabled models, static models, harmonic models,
dynamic models and MG models at different voltage levels.

* Model validation using practical AMI/SCADA/MicroPMU
data, and integration with PSS®SINCAL.

DOE Funds: $1.41M / Share 80%
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Applicant’s Cost Share: $0.36M / Share 20%

Total Project Value: $1.77M

Team Members: lowa State University (Lead), Maquoketa Valley
Electric Cooperative, Argonne National Laboratory, SIEMENS,
Alliant Energy, Cedar Falls Utilities.

Data-Driven Grid-Edge Monitoring

Historic AMI/SCADA/Micro PMU data & topologies

Machine learning & data mining based algorithms

i

Pseudo
measurement
datasets and Real-time
candidate AMI/SCADA/Micro PMU
topologies measurements

U !

Robust Grid-Wise State Estimation

Robust branch current based SE

Select the best pseudo measurement set &
topology for secondary networks

Robust Real-Time Modeling \

High-fidelity real-time load/DER models at all
levels of distribution systems

= Appliance level
= Customer level
» Feeder level

* Microgrid level

* Harmonic model
* DR-enabled model
= Time-varying static

Steady-state models

model

Dynamic-state models
= Dynamic model
= Microgrid dynamic equivalence

Probabilistic model
parameter datasets
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Tools

Integration with Planning and Operation

PSS®SINCAL

GridLAB-D & OpenDSS

Leverage Voluminous Data to Enhance Observability and Develop Real-Time Load/DER Models




Project Objectives

* Project Definition: Improving the observability of distribution systems for
real-time monitoring, using data-driven methods.

- IJ lIJ [IJ_ o Root bus/Primary

SR s », S l______f:\ ______ | l_____r'p _____ .feederbus(may have
| I | | SCADA/MicroPMU
SRR BEARY ool MM o e How to Use

| ustomer w/

| | 0 g - ®  insecondary the Data to Enhance
| é éé é: ' g; | : network -p -
: ! B 0|y Customer w AMY System Observability?
; ; I ! & Solar Panels
: m i :é é 5 ééé : : U - : Customer w/o
'F ully Observ: 1bILI Parti: lly Observable| |Un0bser\able: O AMI

* Project Goals:

v'Developing machine learning models for estimating unobserved variables
v'Robust state estimation in distribution networks

v'Real-time load/DER modeling
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Real Data from Utilities

« AMI data and circuit models:
Total Customers

Utilities Substations Feeders Transformers Customer  with Meters

3 S 27 1726 9118 6631

 Duration: 4 years (2014 - 2018) with continuous updates
* Measurement Type: Smart Meters and SCADA

* Detailed circuit models of all feeders in Milsoft/OpenDSS and accurate
smart meter locations

e Data Time Resolution: 15 Minutes - 1 Hour
» Customer Type:

Residential Commercial Industrial

84.67% 14.11% 0.67% 0.55%




Smart Meter Data Pre-Processing
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Daily Consumption of Sample Customers
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Evidence from Data: Loss of Correlation Problem
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Section |: Multi-timescale Data-Driven Observability Enhancement

* Problem Statement: Inferring hourly consumption data from customer
monthly billing information as pseudo-measurements

* Challenges:
v'Loss of correlation between consumption time-series at different time-scales
v'Unobserved customers’ unknown typical behaviors

* Solution Strategy: Extending observability from observed customers to
unobserved customers

* Proposed Solution:
v’ Multi-timescale load inference (stage by stage inference chain)
v"Using data clustering for capturing customer typical behaviors

v'Using state-estimation-based Bayesian learning for inferring unobserved customers’
typical behaviors
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Section | Multi-timescale Data-Driven Observability Enhancement
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Section I: Customer Behavior Visualization: Typical Daily Demand
Profile Construction from Smart Meter Data
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Section I: Customer Behavior Visualization: Typical Daily Demand
Profile Construction in Different Seasons
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v'Typical discovered load profiles in different
seasons from smart meter data
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Section I: Multi-Timescale Load Inference Chain Models

Monthly Billing Information

E\ — Monthly Consumption
E,, — Weakly Consumption
E, — Daily Consumption

E,, — Hourly Consumption
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v’ Extends observability using data of customers with smart
meters to obtain a stage-by-stage consumption transition
process (Maintains High Correlation!)




Section I: Observed Customer Daily Load Pattern Bank Formation and
Training Multi-Timescale Models

Observed Customers’ Data History at
Different Time-scales

* Problem: Performance of Multi-timescale Chain
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Section I: Learning Component Calibration
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v'Finding the optimal number of clusters
for the consumption pattern bank by
minimizing the Davies Bouldin Index
(DBI), which measures the quality of the

clustering algorithm.
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v'Finding the optimal structure of ANNSs
by maximizing the performance of load
Inference using 10-fold cross-validation.



Section I: Unobserved Customers’ Pattern Identification and
Hourly Consumption Inference

Unobserved Customers’ Input Data

Monthly Billing
@ - Basic ldea: Pick the Cluster that has the Best State

Estimation Performance for Each Customer

Consumption Pattern Bank

Multi-Timescale
Consumption Inference

» Methodology: Assign and Update Probability Values to
Different Clusters Based on State Estimation Residuals
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Daily Consumption Pattern Identification
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Section I: Overall Structure of the Proposed Solution

Customers With SM | Customers Without SM
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Section I: Unobserved Individual Customer Hourly Load and
Pattern Inference
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(industrial load patterns are close and stable)




Section I: Unobserved Individual Customer Pattern Identification
Process, State Estimation Performance
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Section I1: Assessing Cold Load Pick up Demands Using Smart
Meter Data

* Problem Statement: Estimating post-outage cold load pick up (CLPU?
demand at feeder-level and customer contribution to CLPU overshoo
using smart meter data.

* Challenges:
v'Customer behavior volatility

4 I_a%k of behind-the-meter information on customer thermostatically controlled
oads

» Solution Strategy: Develop a data-driven “model-free” framework to
estimate CLPU demand at both feeder-level and customer-level using
only smart meter data

* Proposed Solution Components:
v"Machine learning-based diversified load predictor at feeder-level
v'Probabilistic reasoning at customer-level to model behavioral uncertainty
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Section Il: Post-Outage Cold Load Pick-up (CLPU): Loss of Diversity
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Section Il: Power Outage Statistics Using Smart Meter Data
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Section I1: Impact of Outage on Customer Behavior
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Abnormal Post-Outage Demand Increase: Cold Load Pick-up




Section 1l: Feeder-Level Data-Driven CLPU Ratio Estimation

Trained to Predict Feeder Load Under Normal Machine Learning
Operation Model Parameters
T — Ambient
temperature
P4— Normal . U \
feeder \l\ {Pa,T} b,a :
demand | Smart Meter LS-SVM Demand |
|| Temperature Data Model Training Estimation :
I
I
| |
| |
| \ |
| / \ !
- _ e N 7
Estimates the CLPU Overshoot (R, p;) by Dividing Estimated Diversified Demand (what
the Observed Feeder Demand at Time of Restoration would happen if there was no outage)

(P,) by the Estimated Expected Hypothetical
Predicted Normal Demand, E{P }
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Section Il: Customer -LPU Estimation

0.03

—~

P, — Normal feeder demars
Py — Normal customer der .

p.; — Post-outage custome . —
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Given the time-variability and
uncertainty of customer
behavior Gaussian Mixture
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used to model the probability
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Calculate customer contribution to
normal feeder demand (C;) at different
times

/ ~ At restoration the learned GMM-based joint

D, i — Post-outage customer demand at the time distribution of C; and P (quantifying customer’s
o]li’ restoration normal behavior) is used to identify customer

. contribution to CLPU by estimating customer
l; — Customer contribution to CLPU demand deviation from its expected normal load
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Section Il: Overall Structure of Data-Driven CLPU Estimation

Method

v Characterizes CLPU at Feeder-level
Using Learning-Based Demand
Prediction

v Determine Customer Contribution to
CLPU Demand Increase Using
Probabilistic Reasoning (GMM)

v Obtain Useful Statistics at Feeder- and
Customer-Level to Fully Quantify
CLPU
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Section I1: Feeder-Level CLPU Characteristics
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Section Il: CLPU Characteristics
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Section I11: A Game-Theoretic Data-Driven Approach for Pseudo-Measurement
Generation in Distribution System State Estimation

* Problem Statement: A robust closed-loop state estimation method with
machine learning components that are trained using real utility data

 Challenges:
v"High computation burden of data-driven approach
v'Unobserved customers’ unknown typical behaviors

 Solution Strategy: Take advantage of a branch current state estimator and machine
learning technologz to further improve the performance of the designed machine
learning framework.

* Proposed Solution:
v Game-theoretic expansion of relevance vector machine

\/IUsiOrpg parallel training of multiple machine learning units to exploit the seasonal patterns in
oa

v"Using a closed-loop information system to improve the accuracy of pseudo measurements
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Section I11: Solution and Numerical Results
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