Robust Real-Time Modeling of Distribution Systems with Data-Driven Grid-Wise Observability

Zhaoyu Wang Harpole-Pentair Endowed Assistant Professor Department of Electrical and Computer Engineering Iowa State University <u>http://wzy.ece.iastate.edu</u>

Robust Real-Time Modeling of Distribution Systems with Data-Driven Grid-Wise Observability

Technology Summary

- A hybrid machine learning and branch current state estimation (BCSE) technique to enhance observability.
- Robust online modeling algorithms to develop real-time load/DER (distributed energy resource) models using practical data.
- Integration with SIEMENS software PSS®SINCAL.

Technology Impact

- Offer extended observability to DERs in secondary distribution systems.
- A set of real-time load/DER models at appliance, consumer, feeder and microgrid (MG) levels to support various steady-state and dynamic-state analyses of DERs' impacts on distribution system operation, control, and planning.

Proposed Project Objectives/Milestones

- Data-driven grid-edge monitoring to enhance observability.
- Robust grid-wise SE to provide states of all loads/DERs.
- Robust online modeling to develop real-time demand response-enabled models, static models, harmonic models, dynamic models and MG models at different voltage levels.
- Model validation using practical AMI/SCADA/MicroPMU data, and integration with PSS®SINCAL.

DOE Funds: \$1.41M / Share 80%

Applicant's Cost Share: \$0.36M / Share 20%

Total Project Value: \$1.77M

Team Members: Iowa State University (Lead), Maquoketa Valley Electric Cooperative, Argonne National Laboratory, SIEMENS, Alliant Energy, Cedar Falls Utilities.

Leverage Voluminous Data to Enhance Observability and Develop Real-Time Load/DER Models

Project Objectives

• **Project Definition**: Improving the observability of distribution systems for real-time monitoring, using data-driven methods.

Problem: How to Use the Data to Enhance System Observability?

• Project Goals:

✓ Developing machine learning models for estimating unobserved variables

 \checkmark Robust state estimation in distribution networks

✓ Real-time load/DER modeling

Real Data from Utilities

• AMI data and circuit models:

Utilities	Substations	ns Feeders	Transformers	Total	Customers
				Customer	with Meters
3	5	27	1726	9118	6631

- **Duration**: 4 years (2014 2018) with continuous updates
- Measurement Type: Smart Meters and SCADA
- Detailed circuit models of all feeders in Milsoft/OpenDSS and accurate smart meter locations
- Data Time Resolution: 15 Minutes 1 Hour
- Customer Type:

Residential	Commercial	Industrial	Other
84.67%	14.11%	0.67%	0.55%

Smart Meter Data Pre-Processing

✓ Common Smart Meter Data Problems:

- Outliers/Bad Data
- Communication Failure
- Missing Data

✓ Counter-Measures:

- Engineering intuition (data inconsistency)
- Conventional Statistical Tools
- (e.g. Z-score)
- Robust Computation
- (e.g. relevance vector machines)
- Anomaly Detection Algorithms

Daily Consumption of Sample Customers

Evidence from Data: Loss of Correlation Problem

Very Small Correlation Between Different Customers' Smart Meter Time-Series: 90% below 0.27 (Loss of Correlation Across Customers)

Average Correlation between Consumption of All Customers Decreases from Monthly to Hourly (Loss of Correlation Across Different Time-Scales)

Section I: Multi-timescale Data-Driven Observability Enhancement

- **Problem Statement**: Inferring hourly consumption data from customer monthly billing information as pseudo-measurements
- Challenges:

✓ Loss of correlation between consumption time-series at different time-scales
✓ Unobserved customers' unknown typical behaviors

• **Solution Strategy**: Extending observability from observed customers to unobserved customers

• Proposed Solution:

- ✓ Multi-timescale load inference (stage by stage inference chain)
- ✓ Using data clustering for capturing customer typical behaviors
- ✓ Using state-estimation-based Bayesian learning for inferring unobserved customers' typical behaviors

Section I: Multi-timescale Data-Driven Observability Enhancement

Section I: Customer Behavior Visualization: Typical Daily Demand Profile Construction from Smart Meter Data

✓ Methodology: Data Clustering (Unsupervised Learning)

Section I: Customer Behavior Visualization: Typical Daily Demand Profile Construction in Different Seasons

✓ Typical discovered load profiles in different seasons from smart meter data

Section I: Multi-Timescale Load Inference Chain Models

- E_M Monthly Consumption E_W – Weakly Consumption E_D – Daily Consumption
- E_H Hourly Consumption

✓ Extends observability using data of customers with smart meters to obtain a stage-by-stage consumption transition process (Maintains High Correlation!)

Section I: Observed Customer Daily Load Pattern Bank Formation and Training Multi-Timescale Models

- Problem: Performance of Multi-timescale Chain Models Highly Depend on Typical Daily Consumption Patterns of Different Customers
- Solution: Assign a Multi-Timescale Model to Each Typical Load Behavior Pattern Discovered From Observed Loads (Method: Data Clustering)
- Train Load Inference Chain Models Using the Data of Observed Customers Belonging to Each Cluster (*C_i*)

Section I: Learning Component Calibration

 Finding the optimal number of clusters for the consumption pattern bank by minimizing the Davies Bouldin Index (DBI), which measures the quality of the clustering algorithm.

✓ Finding the optimal structure of ANNs by maximizing the performance of load inference using 10-fold cross-validation.

Section I: Unobserved Customers' Pattern Identification and Hourly Consumption Inference

Unobserved Customers' Input Data

- Basic Idea: Pick the Cluster that has the Best State Estimation Performance for Each Customer
- Methodology: Assign and Update Probability Values to Different Clusters Based on State Estimation Residuals (Recursive Bayesian Learning)
- Outcome: Pick the Most Probable Cluster for Each Unobserved Customer and Use its Corresponding Chain Model for Hourly Load Inference

Section I: Overall Structure of the Proposed Solution

Section I: Unobserved Individual Customer Hourly Load and Pattern Inference

Inferring the hourly demand of an unobserved residential load in one month (average estimation error $\approx 8.5\%$ of total energy)

Impact of accurate consumption pattern identification on the accuracy of the inference (industrial load patterns are close and stable)

Section I: Unobserved Individual Customer Pattern Identification Process, State Estimation Performance

Tracking the typical daily consumption pattern of unobserved customers using a Bayesian learning approach

Using inferred load for accurate system monitoring (branch current state estimation)

Section II: Assessing Cold Load Pick up Demands Using Smart Meter Data

- Problem Statement: Estimating post-outage cold load pick up (CLPU) demand at feeder-level and customer contribution to CLPU overshoot using smart meter data.
- Challenges:
 - ✓ Customer behavior volatility
 - ✓ Lack of behind-the-meter information on customer thermostatically controlled loads
- Solution Strategy: Develop a data-driven "model-free" framework to estimate CLPU demand at both feeder-level and customer-level using only smart meter data
- Proposed Solution Components:
 - ✓ Machine learning-based diversified load predictor at feeder-level
 - ✓ Probabilistic reasoning at customer-level to model behavioral uncertainty

Section II: Post-Outage Cold Load Pick-up (CLPU): Loss of Diversity

Section II: Power Outage Statistics Using Smart Meter Data

Outage Duration Distribution Follows a Gamma Density Function (Mean value = 41 minutes)

Total Service Lost Time Due to Outages in Different Seasons at a Mid-West Utility

Section II: Impact of Outage on Customer Behavior

Abnormal Post-Outage Demand Increase: Cold Load Pick-up

Section II: Feeder-Level Data-Driven CLPU Ratio Estimation

Section II: Overall Structure of Data-Driven CLPU Estimation Method

- ✓ Characterizes CLPU at Feeder-level Using Learning-Based Demand Prediction
- ✓ Determine Customer Contribution to CLPU Demand Increase Using Probabilistic Reasoning (GMM)
- ✓ Obtain Useful Statistics at Feeder- and Customer-Level to Fully Quantify CLPU

Section II: Feeder-Level CLPU Characteristics

- ✓ CLPU ratio increases and saturates with outage duration
- ✓ CLPU ratio is sensitive to ambient temperature

Section II: CLPU Characteristics: Feeder- and Customer-Level

5 3 2 120 105 90 75 60 Outage Duration (minute) 39 37 31 ^{33 35} Ambient Temparature (°C) 27

Feeder-Level CLPU ratio characterization through regression as a function of outage duration and ambient temperature in summer Expected customer contribution to CPLU demand as a function of outage duration and ambient temperature in summer

Section III: A Game-Theoretic Data-Driven Approach for Pseudo-Measurement Generation in Distribution System State Estimation

- **Problem Statement**: A robust closed-loop state estimation method with machine learning components that are trained using real utility data
- Challenges:
 - \checkmark High computation burden of data-driven approach
 - ✓ Unobserved customers' unknown typical behaviors
- **Solution Strategy**: Take advantage of a branch current state estimator and machine learning technology to further improve the performance of the designed machine learning framework.

• Proposed Solution:

- ✓ Game-theoretic expansion of relevance vector machine
- ✓ Using parallel training of multiple machine learning units to exploit the seasonal patterns in load
- \checkmark Using a closed-loop information system to improve the accuracy of pseudo measurements

Section III: Solution and Numerical Results

Estimating the Behavior of Unobserved Customers Using Available AMI Dataset

Thank You! Q & A

Zhaoyu Wang http://wzy.ece.iastate.edu