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Project Overview ’

The overall goal of the project is to leverage robust graphical
learning and PMU data to learn the dynamic interactions of
electrical grid components in order to improve the power system
resilience. Specifically, this project incorporates four objectives:

1) Massive PMU data preparation, refining, and real-time visualization and
access.

2) ldentifying and cataloguing anomalous patterns.
3) Learning interaction graphs using deep graph neural networks.

4) Graph-based modeling, monitoring, and mitigation of cascading outages.
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Project Overview

IBM Watson Studio Cloud Computing Platform

Project Partners RS e, | M,

Layer 1: IBMWatson Studie ——=== ) UNIVERSITY
- - - - - + Cloud Object Storage e + Deep Neural Relational Inference
» This project is a synergistic WalsonbataRefrery 1BM Watson Studio Servies
. . Layer 2: EPG's Software Tools ¥ + Fast Graph Convolutional Network Training
collaborative project between lowa + Phasor G Dyranic Aralzer e e ne +Distibuted Dep Learning  __ _ _
(PGDA) « Hyper-Parameter Optimization g :=: E_-:-_E
1 H + Neural Network Modeler ———H
State University, IBM, EPG, and N T T e e
- PMU Raw Data & | Cascading Outage Modeling, Monitoring,and ™,
G Oog I e B ral n . Graphical Identification & Analysis of Disturbances Mitigation
NetWalk Technique [OWA STATEH ISU’s Cascading Outage Analyzer

Graphical A v Detect + High-Risk Condition |dentification
e |c_a WAL DI _|on = Propagation Prediction [OWA STATE
+ Event Signature Cataloguing - Mitigation Strategy Design UT\'IVERS]TY/

Technical Approach o 2

: Benchmarking and Verification
i Our team mem bers Wi II Ieverage - Dat:—N)o(T, :;:a:c::PhasorData Simulator (ePDS), PGDA, Automated Event Miner (AEM)  seces ;‘m- m‘
the team’s extensive experience Fig. 1 Project objective overview.
and state-of-the-art algorithms in machine learning, big data analytics, and synchro
-phasor data commercial tools, and cascading failure modeling.

Project Impact

« The findings of this project, including anomalous event classification, dynamic
interaction graphs, and pattern signature catalogue, will be integrated on the IBM Al
OpenScale platform and will be publicly accessible to the wider users and system
operators for implementation in future online and offline applications.
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Project Overview
Task Title Progress Summary

11 Project Management Plan (PMP) PMP was submitted to DOE and approved by the project manager. 10/30/19 10/30/19
National Environmental Policy Act

Task
Number

(NEPA) Compliance The documentation was prepared and provided for NEPA. 10/30/19 10/30/19
1.3 Data Management Plan (DMP) The Data Management Plan (DMP) was prepared and submitted to the DOE. 10/30/19 10/30/19
Non-Disclosure Agreement for The Nc_)r_l-DiscIosure/Data_l Handling Agreements have been si'gned with IBM and 10/30/19  10/30/19

PNNL and IBM Pacific Northwest National Laboratory (PNNL) and submitted to the DOE.

A SATA hard drive docking station and ISU server have been used for data
PMU Data Importing and Storage  importing and storage. 4 external hard drives have been utilized to establish local 10/31/19  10/31/19
data backup.
A secure connection has been established between local computers and the server
through PUTTY software tools to access datasets. Microsoft Power Bl has been used  11/30/19  11/30/19
for data visualization and statistical analysis.
We have decomposed the available PMU dataset into training, validation, and testing
PMU Data Formatting, Validation,  sets to: 1) design robust learning-based PMU event identification method, 2) learn
and Conditioning the interaction graphs from PMU data. EPG’s software have been used to provide an
assessment of PMU Data Quality for the whole dataset
Building Deep Graphical Neural ~ We have designed an architecture of interaction graph learning model based on the
Networks guidance of IBM.
The random search and k-fold cross validation strategies have been used to tune the
hyperparameter of our graph learning algorithm.

N
[N

PMU Data Real-Time Access and
Visualization

12/31/19  12/31/19

w

03/31/20  03/31/20

w

w

2 FastGCN-Based DNRI Training 05/31/20 05/31/20

Graph Visualization and
Interpretation

w
w

¢ ; ( N N ) = =
= () >~ (V)

06/30/20
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Project Overview

Task Completion
Number Task Title Progress Summary Date

Interaction Graph Validation 06/30/20
High-Risk Operatl_onal Condition 09/30/20
Detection

Visualization and Prediction of

Cascading Outage Propagation e
4.3 Cascading Mitigation Strategy Design 11/30/20
4.4 Comparison of Methods 12/31/20

We have developed a robust learning-based two-stage event identification based on
Graphical Anomaly Detection our PMU dataset. The interaction graph will be integrated with this model to further  10/31/20
improve the classification accuracy.

Event Signature Extraction 11/30/20
Disturbance Analysis Validation 12/31/20
Validation with _Crgcr)rll;nerual Software 03/12/21
Offline Benchmarking Analysis 03/12/21
Online Validation and Testing 03/12/21
Module Integration 01/31/21

Building an Open-source Platform for
Project Findings
Publications, Presentations, Final
Briefings and Reports to DOE

03/12/21

I o1 Lol Bl b
N | O

03/12/21
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Experimental Results

Data Importing and Storage (Task 2)

« A ISU server, which has 256GB RAM
memory, 22TB hard drive, and 2 — 10 core  FSASSEas
Xeon CPU E5-2660 v3 @ 2.6GHz, has been g
utilized to import and store massive PMU |1
data.

« 4 external hard drives have been utilized to
establish local data backup to protect data
against server-level failures

Data Visualization (Task 2) O O 0 =
« Power BI has been used to perform data s

visualization by developing dashboards. |

* Our dashboards contains statistical e
information for all three systemsand = ——
selected event curves.

c IOWA STATE UNIVERSITY

Fig. 2 ISU server.




Experimental Results

PMU Data and Event Logs Summary (Task 2)

_ Interconnection A Interconnection B Interconnection C

Number of PMUs
Reporting Rate (samples/sec) 30 30, 60 30
Voltage Levels (kV) 69, 138, 345 230, 345, 500 115, 138, 1617’6230’ 345, 500,
S o SR e
No. of Data Files 2576 4365 10496
Data Size 3TB 5TB 12TB
No. of Events 29 4854 1884
No. of Unidentified Events 0 0 634

PMU Data Quality Assessment (Task 2)

« Good quality PMU data is essential in online and offline applications. We have
utilized EPG commercial software (i.e., DataNXT, PGDA\) to assess the data quality

of the PMU dataset based on PMU status flags.
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Experimental Results

PMU Data Quality Assessment - Overview (Task 2)
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Fig. 6 System C data quality pie chart.

Fig. 4 System A data quality pie chart. E=Toaavaid =]

Fig. 5 System B data quality pie chart for
PMUs with 30 samples/sec (above) and for

PMUs with 60 samples/sec (below).
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PMU Data Quality Assessment — System A (Task 2)

Experimental Results
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Fig. 7 Overall data quality for each PMU in system A.
5

[OWA STATE UNIVERSITY




11

Experimental Results

PMU Data Quality Assessment — System A (Task 2)
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Fig. 8 Overall data quality analysis for total 18 signals of each PMUs in system A.
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Experimental Results

PMU Data Quality Assessment— Statistical Analysis (Task 2)

1 T T T T 1
P(Number of consecutive missing data > 10) = 0.028
2 03162 = 2 LR X
: £ oot
Z =
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o o
£ 00316 =]
= 2
T 0.01 g 108
0.0032 ! ! : : : ! 10°8 L 1 | 1 1
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Fig. 9 Survival function S(k) using PMU dataset . Fig. 10 Survival function S(c) using PMU dataset .

To provide more details about PMU data quality, we have defined and plotted two survival functions,
S(k) and S(c):

number of missing data per PMU per da
S(k) = Pr{ g p p y

k} 1)
()

total number of data per PMU per day
S(c) = Pr{number of consecutive missing data > c}

» Based on the left figure, PMUs show data quality issues more than 30% of time.
« Based on the right figure, around 3% of data quality issues have more than 10 consecutive bad

data.
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Technical Progress
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Challenges of Developing PMU-Based Event Identifiers (Task 3 & 5)

Based on our data quality assessment, PMU data quality problems are
inevitable and not rare, which can disjoint the dimensional consistency of data
samples between the offline training and online testing. Poor robustness
against data quality makes the PMU-based event identifiers not sufficiently
convincing [1].

Machine learning-based methods typically suffer from event data scarcity,
resulting in a data imbalance problem [2].

Most of the signal processing-based methods require massive computations
due to the complicated mathematical transformation and optimization, which
might challenge the practical deployment of the methods [3].

I[OWA STATE UNIVERSITY
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Technical Progress

Robust Two-Stage Learning-Based Real-Time Event Identification

Stage II: SPP-Aided
CNN-Based Classifier

» The first stage is Markov-based
time-series feature reconstruction to <

Data Extraction & Cleaning

|

I
capture the time-varying statistical l | i
characteristics of PMU data. : Fully-Connected :
: Spatial Pyramid |
« The second stage is spatial pyramid | "4» By i 1 | Pooling |
pooling (SPP)-aided convolutional < Stnee 1 Markor-Based Time- | L4 |
neural network (CNN)-based mode Series Feature Reconstruction | | | _====—==Z

to identify event types. Fig. 11 Illustration of two-stage event identification.

* One unique advantage of the proposed method can allow the signals of
arbitrary dimensions during online testing, thus introducing robustness
against online data quality issues.

IOWA STATE UNIVERSITY
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Technical Progress

PMU Data Extraction & Cleaning

* To apply PMU-based event identifiers in real-time, a 2-second analysis-
window is selected to extract the event data based on the event logs.

* We use the voltage magnitude and frequency variation data from each PMU to
train our learning model.

* For each PMU, the event data is re-sorted based on time stamps.

* Following our data quality assessment, when the consecutive missing/bad data
occurs, the data is excluded from our study.

« The rest of the missing/bad data are filled and corrected by taking an average
of the two preceding samples.

I[OWA STATE UNIVERSITY
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Technical Progress

Stage I: Markov-Based Time-Series Feature Reconstruction

* A Markov matrix-based method known as Markov Transition Filed (MTF) is

adopted to encode the temporal dependency and transition statistics of PMU data
In a compact metric [4].

» The goal of the stage | is to improve the event classification accuracy by
performing feature reconstruction.

 MTF is applied to the event dataset including voltage magnitudes and frequency
variations to obtain the MTF-based graph set, which are used for training a
learning model in the stage II.

Markov Transition Matrix (FF) Markov Transition Field (M)

' ' A B eee I I Vi Vi eese Vil Va
---------------------- N’w- A | 00117 0083 e 0 0 Vi 0083 0  ess 0075 0245

: } W B 0083 0283 s 023 O Va 0 0075 es= 0083 0075

] U‘M o LHx ’ ‘ : : : l. . . l : : : . L - -
I A | S W \\il 'W

H] I 0 023 eee 0167 0075 Vai 0255 0083 ess 0083 O
J 0 0 e (00750245 Va 0 0075 *= 0 023

Fig. 12 Illustration of the proposed encoding map of MTF.
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Technical Progress

Stage I1: SPP-Aided CNN-Based Event Identifier

1st Feature Extraction

« Constructing an end-to-end mapping
relationship between MTF-based graphs and
the event types.

* Including multiple convolutional, batch O R R
normalization, max-pooling. SPP, and the fully- _ﬂ ------ LL (el |
connected layers. : < - < _‘

 Introducing robustness to data quality problems
during online testing by eliminating the fixed- P SN
size input requirement of CNNs [5]. L)
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Technical Progress

Numerical Results Using the Data of System B
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Fig. 14 Training/testing results for the proposed model.

o | “requency | 0.0% 1.1% 06% | 9%1% | 00% | .-
= System Accuracy e
B
< 8 Oscillation | 0.0% 0.0% 0.0% 0.0% 100% Lo[?:jjﬁ“
§ 80 U
=
3 75
<
70 99.5% 90.4% 93.8% 96.1% 100% 94.6%
65 | 0.5% 9.6% 6.2% 3.9% 0.0% 5.4%
60 | 1 1 1
0 3.33 6.67 10 13.33 16.67
Missing Data During Testing (%) Normal Line XFMR Frequency Qscillation
Fig. 16 Sensitivity of event identification accuracy to the Fig. 15 Confusion matrix using the proposed model.

size of missing data.
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Technical Progress

Similar to traffic network and stocks, power systems are complex networks of
interdependent components with interactions. (Task 3 & 5)

Power Grid
/Q:&ﬂ\ i)
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Technical Progress

Missing Relations (Task 3 & 5)

Power Grid
LRI

\ Topology is missing &
i interdependency between
PMUs are unknown

United States
transmission grid
Source: FEMA

Traffic Network Stocks
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Technical Progress

Learning Interaction Graphs using GNNs (Task 3 & 5)

Power Grid is an Goal:
Interdependent network. * Explicitly learn the pairwise interactions in
" = the form of a graph based on PMU data and
use it to further improve event classification
accuracy.

« Simultaneously optimize the graph learning
and event classification tasks.

| i S\l |1 14 . WWWM WWIM'WWM
A gt
M
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Technical Progress

22

Proposed Spatial GNN-Based Event Identifier (Task 3 & 5)

model

ReLU \

Hidden Layer

TN et

Classificatio : ﬁi;::;}{’l”;f

N

ayer

2
-4

Encoder

Fig. 17 Spatial GNN-based event identifier.
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Future Effort
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Remaining Tasks and Schedule

Graphical Cascading Failure Modeling, Monitoring, and Mitigation (Task
4): The possible cascading failure data will be extracted to develop a PMU-
based influence graph for monitoring and mitigating cascading outages.

Interaction Graph-based Event Identifier (Task 5): The proposed spatial
GNN-based event identifier will be validated using our PMU dataset.

Unidentified Event Extraction (Task 5): We will utilized a unsupervised
graphical data clustering method to extract and catalogue unidentified events.

I[OWA STATE UNIVERSITY
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Future Effort *

Remaining Tasks and Schedule

Event Identification using Poor Event Logs (Task 5): We will developed a
novel event identification model to mitigate the challenge of event data
scarcity using recent semi-supervised machine learning technique.

Offline Benchmarking Analysis (Task 6): EPG’s commercial software such
as PGDA or AEM will be used to compare with the proposed learning-based
method in identifying anomalous events.

Integration with Open Source Platform (Task 7): The resulted deep learning
models will be deployed as a service on big data platform such as IBM Al
OpenScale

I[OWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY




26

Reference

[1]J. Zhao, J. Tan, L. Wu, L. Zhan, W. Yao, and Y. Liu, “Impact of the measurement errors on
synchrophasor-based wams applications,” IEEE Access, vol. 7, pp. 143 960-143 972, 2019.

[2] H. Li, Y. Weng, E. Farantatos, and M. Patel, “An unsupervised learning framework for
event detection, type identification and localization using pmus without any historical labels,”
2019 IEEE Power Energy Society General Meeting (PESGM), pp. 1-5, 2019.

[3] S. Liu, Y. Zhao, Z. Lin, Y. Liu, Y. Ding, L. Yang, and S. Yi, “Data-driven event detection
of power systems based on unequal-interval reduction of pmu data and local outlier factor,”
IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1630-1643, 2020.

[4] Z. Wang and T. Oates, “Encoding time series as images for visual inspection and
classification using tiled convolutional neural networks,” Association for the Advancement of
Acrtificial Intelligence, pp. 40-46, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” IEEE Trans. on Pattern Analysis and Machine Intell., vol. 37,
no. 9, pp. 1904-1916, 2015.

I[OWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY




Q&A

THANKS

“ IOWA STATE UNIVERSITY



