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Data in Power Distribution Grids
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SCADA
/PMU

Smart 
Meters

microPMU

A Power distribution grid

• Where does the data come
from?
• SCADA (supervisory control 

and data acquisition); Smart 
Meters; Protection Devices; 
microPMUs (phasor 
measurement units)

• Measures 
voltage/current/frequency at 
different resolutions

• What are smart meters?
• Stay in your homes
• Measure energy and voltage
• 15/30/60-minute resolution



Smart Meter Data
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Y. Yuan and Z. Wang, "Mining Smart Meter Data to Enhance Distribution Grid Observability for Behind-the-Meter Load 
Control," IEEE Electrification Magazine, vol. 9, no. 3, PP. 92-103, September 2021.

• With the increasing integration of DERs 
in power distribution systems, utilities 
need to improve systematic situational 
awareness in order to execute behind-
the-meter (BTM) load control strategies.

• In recent decades, the deployment of 
advanced metering infrastructure (AMI) 
in distribution systems has extended 
monitoring capability to grid edges. 

• The core element of AMI is smart meter 
(SM) which is a device installed at 
customer house or facility. 

SM data is a good resource for enhancing distribution grid 
monitoring and control thanks to extensive customer-side 

installations!



Available Utility Data
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• General Description:

• Duration: 4 years (2014 - 2018)

• Measurement Type: Smart Meters and SCADA

• Detailed circuit models of all feeders in Milsoft/OpenDSS and exact 
smart meter locations

• Data Time Resolution: 5 Minutes – 1 Hour

• Customer Type:

Residential Commercial Industrial Other
84.67% 14.11% 0.67% 0.55%

Utilities Substations Feeders Transformers Total 
Customer

Customers 
with Meters

3 5 27 1726 9118 6631



Exemplary Real Data from Utilities
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Account time kWH or V time kWH or V time kWH or V time kWH or V
100000001 KWH 201704010100 0.392 201704010200 0.257 201704010300 0.215 201704010400 0.239
100000001 VOLTS 201704010100 239 201704010200 239 201704010300 238 201704010400 240
100000002 KWH 201704010100 0.245 201704010200 0.204 201704010300 0.252 201704010400 0.342
100000002 VOLTS 201704010100 241 201704010200 240 201704010300 240 201704010400 240
100000003 KWH 201704010100 1.479 201704010200 0.417 201704010300 0.816 201704010400 0.414
100000003 VOLTS 201704010100 240 201704010200 239 201704010300 239 201704010400 240
100000004 KWH 201704010100 1.009 201704010200 0.555 201704010300 0.39 201704010400 0.382
100000004 VOLTS 201704010100 241 201704010200 237 201704010300 237 201704010400 239
100000005 KWH 201704010100 0.798 201704010200 0.809 201704010300 0.87 201704010400 0.692
100000005 VOLTS 201704010100 239 201704010200 238 201704010300 238 201704010400 240
100000006 KWH 201704010100 0.109 201704010200 0.188 201704010300 0.205 201704010400 0.148
100000006 VOLTS 201704010100 241 201704010200 240 201704010300 240 201704010400 242
100000007 KWH 201704010100 1.199 201704010200 1.512 201704010300 1.759 201704010400 1.474
100000007 VOLTS 201704010100 241 201704010200 240 201704010300 239 201704010400 241
100000008 KWH 201704010100 0.422 201704010200 0.419 201704010300 0.43 201704010400 0.537
100000008 VOLTS 201704010100 239 201704010200 239 201704010300 238 201704010400 240
100000009 KWH 201704010100 2.288 201704010200 2.278 201704010300 2.335 201704010400 2.297
100000009 VOLTS 201704010100 243 201704010200 242 201704010300 242 201704010400 242
100000010 KWH 201704010100 0.223 201704010200 0.257 201704010300 0.292 201704010400 0.25
100000010 VOLTS 201704010100 242 201704010200 241 201704010300 241 201704010400 241

Hourly energy & instantaneous voltage Time



Smart Meter Data Pre-Processing
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• Smart Meter Data Problems:
 Outliers/Bad Data
 Communication Failure
 Missing Data

• Counter-Measures:
 Engineering intuition (data 

inconsistency)
 Conventional Statistical 

Tools (e.g. Z-score)
 Robust Computation (e.g. 

relevance vector machines)
 Anomaly Detection 

Algorithms



Data Sharing

8

Test system diagram

With permission from our utility partner, we share a real 
distribution grid model with one-year smart meter 
measurements. This dataset provides an opportunity for 
researchers and engineers to perform validation and 
demonstration using real utility grid models and field 
measurements.

 The system consists of 3 feeders and 240 nodes and 
is located in Midwest U.S.

 The system has 1120 customers and all of them are 
equipped with smart meters. These smart meters 
measure hourly energy consumption (kWh). We 
share the one-year real smart meter measurements 
for 2017.

 The system has standard electric components such as 
overhead lines, underground cables, substation 
transformers with LTC, line switches, capacitor 
banks, and secondary distribution transformers. The 
real system topology and component parameters are 
included.

You may download the dataset at: http://wzy.ece.iastate.edu/Testsystem.html , including system 
description (in .doc and .xlsx), smart meter data (in .xlsx), OpenDSS model, and Matlab code for 

quasi-static time-series simulation!

http://wzy.ece.iastate.edu/Testsystem.html


What can be learned from smart meter data 
to improve distribution system operation? 
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Recent Publications in Machine Learning and 
SM Data Analytics 
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• Y. Guo, Y. Yuan, and Z. Wang, "Distribution Grid Modeling Using Smart Meter Data," IEEE Transactions on Power Systems, 
accepted for publication.
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• F. Bu, K. Dehghanpour, Y. Yuan, Z. Wang, and Y. Guo, "Disaggregating Customer-level Behind-the-Meter PV Generation Using 
Smart Meter Data and Solar Exemplars," IEEE Transactions on Power Systems, vol. 36, no. 6, PP. 5417-5427, November 2021.

• Y. Yuan, K. Dehghanpour, and Z. Wang, "Mitigating Smart Meter Asynchrony Error Via Multi-Objective Low Rank Matrix 
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• Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "Outage Detection in Partially Observable Distribution Systems using Smart 
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2020.

• Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "A Data-Driven Customer Segmentation Strategy Based on Contribution to 
System Peak Demand," IEEE Transactions on Power Systems, vol. 35, no. 5, pp. 4026-4035, September 2020.

• F. Bu, K. Dehghanpour, Y. Yuan, Z. Wang, and Y. Zhang, "A Data-Driven Game-Theoretic Approach for Behind-the-Meter PV 
Generation Disaggregation," IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 3133-3144, July 2020.

• F. Bu, K. Dehghanpour, Z. Wang, and Y. Yuan, "A Data-Driven Framework for Assessing Cold Load Pick-up Demand in Service 
Restoration," IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4739-4750, November 2019.

• K. Dehghanpour, Y. Yuan, Z. Wang, and F. Bu, "A Game-Theoretic Data-Driven Approach for Pseudo-Measurement Generation 
in Distribution System State Estimation," IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 5942-5951, November 2019.

• Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "A Multi-Timescale Data-Driven Approach to Enhance Distribution System 
Observability," IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 3168-3177, July 2019.

• Q. Zhang, K. Dehghanpour, Z. Wang, F. Qiu, and D. Zhao, "Multi-Agent Safe Policy Learning for Power Management of 
Networked Microgrids," IEEE Transactions on Smart Grid, vol. 12, no. 2, pp. 1048-1062, March 2021.

• Q. Zhang, K. Dehghanpour, Z. Wang, and Q. Huang, "A Learning-based Power Management Method for Networked Microgrids 
Under Incomplete Information," IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1193-1204, March 2020.
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• Complete and accurate distribution grid models are essential to system 
monitoring and control.

• Many small and medium utilities only have simple one-line diagrams of 
their systems without any detailed information.

• System models are often incomplete or outdated due to the frequent 
system expansion and reconfiguration.

• Conventional field inspection is laborious, costly, and time-consuming, 
especially for large-scale systems.

Distribution Grid Topology & 
Parameter Identification



Existing Work and Challenges

• Using Branch flow model and smart meter 
data (A. M. Prostejovsky 16, H. Xu 18, 
W. Wang 20)
 Limitation: require prior knowledge

(i.e., R/X ratios of all line sections and 
network connectivity).

 Reason for this requirement: 
searching space of the optimization 
(ill-conditioned).

 Another challenge: scalability and 
computational complexity. 
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How to perform real-time topology and parameter identification 
using very limited yet readily available SM data?

• Using Y-bus injection model and phasor information (J. Yu 19, O. Ardakanian 
19, Y. Yuan 20)
 Limitation: require full coverage of µPMUs (cost-prohibitive).
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 Topology Identification: Modeling the distribution network as a graph and 
identifying its weighted Laplacian matrix using SM data streams, where the 
matrix has a special structure that reveals the network connectivity.
 High computational efficiency.
 Robustness with respect to heterogeneous R/X ratios and model/measurement errors.

 Parameter Estimation: designing a bottom-up sweep algorithm to identify line 
impedances. 
 Based on the full nonlinear power flow, a least absolute deviations (LAD) with 

mixed-integer semidefinite programming (MISDP) model, and a least square (LS) 
model with mixed-integer second-order cone programming (MISOCP) model are 
developed. 

 Adding a library of R/X ratios (rather than exact R/X of all line sections) as a 
constraint to narrow down the search space. 

 Dividing the network into multiple layers. Parameter identification and power flow 
calculations are performed layer-by-layer in an alternate manner from bottom to top 
layers. 

Y. Guo, Y. Yuan, and Z. Wang, "Distribution Grid Modeling Using Smart Meter Data," IEEE Transactions on Power Systems, 
accepted for publication.

Our Solution



Distribution Grid Topology Identification
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• Our topology identification approach builds on the linear approximation 
of the branch flow model.

𝐯𝐯 ≅ 2𝐀𝐀−𝑇𝑇𝐑𝐑𝐀𝐀−1𝐩𝐩 + 2𝐀𝐀−𝑇𝑇𝐗𝐗𝐀𝐀−1𝐪𝐪 − 𝑣𝑣0𝐀𝐀−𝑇𝑇𝐚𝐚0

where 𝐯𝐯, 𝐩𝐩, 𝐪𝐪 denote the vectors collecting squared bus voltage magnitudes, 
real power, and reactive power injections; 𝑎𝑎0,𝐴𝐴𝑇𝑇 𝑇𝑇 ∈ 0, ±1 𝑛𝑛+1 ×𝑛𝑛 is the 
incidence matrix of the radial-topology graph; R and X are diagonal resistance 
and reactance matrices; Y is a weighted Laplacian matrix of the network with 
a sparse structure. 

1
2
𝐀𝐀𝐗𝐗−1𝐀𝐀𝑇𝑇 𝐯𝐯 − 𝑣𝑣01𝑛𝑛 = 𝐀𝐀𝐗𝐗−1𝐑𝐑𝐀𝐀−1𝐩𝐩 + 𝐪𝐪

𝐘𝐘 = 𝐀𝐀𝐗𝐗−1𝐀𝐀𝑇𝑇; 𝚽𝚽 = 𝐀𝐀𝐗𝐗−1𝐑𝐑𝐀𝐀−1

• For a radial distribution network, A is non-singular and 𝐀𝐀−𝑇𝑇𝐚𝐚0 = 1𝑛𝑛

(1)

(2)

(3)



Weighted Laplacian Matrix of the Network
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• 𝐘𝐘 holds a salient feature: for any connected nodes i and j, 𝑦𝑦𝑖𝑖𝑖𝑖 < 0 and 
for any non-connected nodes 𝑦𝑦𝑖𝑖𝑖𝑖 = 0. 

• If one can approximately identify Y, the topology can be extracted by 
observing the unique features of Y.

𝐘𝐘 ≔ 𝑦𝑦𝑖𝑖𝑖𝑖 𝑛𝑛×𝑛𝑛
Proposition 1: is a sparse symmetric matrix :

(4)

3 −1 0 0 −2 0
−1 5 −4 0 0 0
0 −4 4 0 0 0
0 0 0 6 −1 −5
−2 0 0 −1 3 0
0 0 0 −5 0 5
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• Assume the network has a homogeneous R/X ratio, 𝑟𝑟1
𝑥𝑥1

= ⋯ = 𝑟𝑟𝑛𝑛
𝑥𝑥𝑛𝑛

= 𝜆𝜆, 𝚽𝚽

reduces to 𝚽𝚽 = 𝐀𝐀diag 𝑟𝑟1
𝑥𝑥1

, … , 𝑟𝑟𝑛𝑛
𝑥𝑥𝑛𝑛

𝐀𝐀−1 = 𝜆𝜆1𝑛𝑛. 

• For heterogeneous networks, our method still works because we do not 
require accurate estimation of 𝐘𝐘 and only need to distinguish zero and 
negative non-diagonal entries to identify connectivity, which will be proved 
in case study.

• The error vector regarding k-th measurement can be defined based on (2).

𝑒𝑒𝑘𝑘 ≔ 𝐘𝐘 𝐯𝐯𝑘𝑘 − 𝑣𝑣0𝑘𝑘1𝑛𝑛 − 2𝜆𝜆𝐩𝐩𝑘𝑘 − 2𝐪𝐪𝑘𝑘

• Our Model: Based on (5) and a time window of length K, we develop a 
linear LS regression mode to estimate Y. 

min
𝑌𝑌,𝜆𝜆

[𝑒𝑒1, … , 𝑒𝑒𝐾𝐾] 2
2

Weighted Laplacian Matrix Identification

(5)

(6)

1
2
𝐀𝐀𝐗𝐗−1𝐀𝐀𝑇𝑇 𝐯𝐯 − 𝑣𝑣01𝑛𝑛 = 𝐀𝐀𝐗𝐗−1𝐑𝐑𝐀𝐀−1𝐩𝐩 + 𝐪𝐪 =>

1
2
𝒀𝒀 𝐯𝐯 − 𝑣𝑣01𝑛𝑛 = 𝜆𝜆𝐩𝐩 + 𝐪𝐪
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Estimated Weighted Laplacian Matrix for IEEE 
13-, 37-, 69-Bus Test Feeder

• The nodal load demand is calculated based on our real smart meter data with 1-h 
resolution. The length of window is selected as 200.

• Even though our method is derived on the assumption of a homogeneous R/X 
ratio, it shows the robustness to the systems with heterogeneous R/X ratios.

• The minimum and maximum R/X values of the three feeders are {0.5153, 2.0655}, 
{1.4536, 2.7482} and {0.4, 3.4}, respectively (three heterogeneous feeders).
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Estimated Weighted Laplacian Matrix for IEEE 
13-, 37-, 69-Bus Test Feeder

𝐘𝐘∗ from (6) 
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Estimated Topology for IEEE 13-, 37-, 69-
Bus Test Feeder

𝐘𝐘∗ from 
(6) 

𝐓𝐓𝐓𝐓𝐩𝐩𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓
𝐑𝐑𝐑𝐑𝐑𝐑𝐓𝐓𝐯𝐯𝐑𝐑𝐑𝐑𝐓𝐓

100% 100% 98%
𝟓𝟓𝟓𝟓𝟓𝟓

Simulations
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Bottom-Up Sweep Parameter Identification

• Decomposing a radial distribution 
network into multiple layers labeled 
1, … , 𝐿𝐿 (where L is the bottom 
layer).

• Our bottom-up sweep algorithm 
performs the line flow and line 
parameter estimation in an 
alternating way based on the layers 
of the network.

• Addressing the dimensionality issue 
and enabling parallel computation 
of all line sections within the same 
layer.



Branch Flow Model
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Branch model
• The proposed line impedance estimation 

establishes on the voltage drop relationship 
over a branch that can be modeled as: 

Branch Flow: 𝑃𝑃𝑖𝑖′ = 𝑃𝑃𝑖𝑖 +
𝑟𝑟𝑗𝑗 𝑃𝑃𝑗𝑗

2+𝑄𝑄𝑗𝑗
2

𝑣𝑣𝑗𝑗
, 𝑄𝑄𝑖𝑖′ = 𝑄𝑄𝑖𝑖 +

𝑥𝑥𝑗𝑗 𝑃𝑃𝑗𝑗
2+𝑄𝑄𝑗𝑗

2

𝑣𝑣𝑗𝑗

Voltage: 𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 2 𝑟𝑟𝑖𝑖𝑃𝑃𝑖𝑖 + 𝑥𝑥𝑖𝑖𝑄𝑄𝑖𝑖 +
𝑟𝑟𝑗𝑗
2+𝑥𝑥𝑗𝑗

2 𝑃𝑃𝑗𝑗
2+𝑄𝑄𝑗𝑗

2

𝑣𝑣𝑗𝑗

• 𝑃𝑃𝑖𝑖′ and 𝑄𝑄𝑖𝑖′ denote power flows out of the upstream node 𝑖𝑖; 𝑃𝑃𝑖𝑖 and 𝑄𝑄𝑖𝑖 denote 
power flows into the downstream node 𝑗𝑗. 

• “Upstream” and “downstream” represent the relative positions of the nodes 
and power could flow in either direction.
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Network Parameter Estimation Model 
• The parameter estimation establishes on the voltage drop over a 

branch that is defined as follows:

𝑒𝑒𝑖𝑖𝑘𝑘 ≔ 𝑣𝑣𝑖𝑖𝑘𝑘 − 𝑣𝑣𝑖𝑖𝑘𝑘 − 2 𝑟𝑟𝑖𝑖𝑃𝑃𝑖𝑖𝑘𝑘 + 𝑥𝑥𝑖𝑖𝑄𝑄𝑖𝑖𝑘𝑘 − 𝑅𝑅𝑖𝑖 + 𝑋𝑋𝑖𝑖 �
𝑃𝑃𝑖𝑖𝑘𝑘

2 + 𝑄𝑄𝑖𝑖𝑘𝑘
2

𝑣𝑣𝑖𝑖𝑘𝑘

• Based on (7) and the R/X ratio library,  the line parameter 
estimation is cast as a mixed-integer nonlinear programming 
model. min

𝛼𝛼𝑧𝑧,𝑟𝑟𝑗𝑗,𝑥𝑥𝑗𝑗,𝑅𝑅𝑗𝑗,𝑋𝑋𝑗𝑗
𝑒𝑒𝑖𝑖 1

subject to 𝑅𝑅𝑖𝑖 = 𝑟𝑟𝑖𝑖2

𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖2

𝑟𝑟𝑖𝑖 = �
𝑧𝑧=1

𝑍𝑍

𝜆𝜆𝑧𝑧 𝛼𝛼𝑧𝑧𝑥𝑥𝑖𝑖

�
𝑧𝑧=1

𝑍𝑍

𝛼𝛼𝑧𝑧 = 1,𝛼𝛼𝑧𝑧 ∈ 0,1 ,∀𝑧𝑧.

(7)

(8)
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LAD Parameter Estimation Model 

• The Big-M technique is 
exploited to linearize the 
bilinear term 𝛼𝛼𝑧𝑧𝑥𝑥𝑖𝑖.

• We rewrite (8) without 
L1-norm operator by 
introducing the auxiliary 
variables. The SDP 
relaxation is used to 
tackle the non-convex 
quadratic equalities. 

min
𝛼𝛼𝑧𝑧,𝑟𝑟𝑗𝑗,𝑥𝑥𝑗𝑗,𝑅𝑅𝑗𝑗,𝑋𝑋𝑗𝑗,𝜃𝜃𝑗𝑗

𝑘𝑘
�
𝑘𝑘=1

𝐾𝐾

𝜃𝜃𝑖𝑖𝑘𝑘

subject to 𝜃𝜃𝑖𝑖𝑘𝑘 ≥ 𝑒𝑒𝑖𝑖𝑘𝑘,∀𝑘𝑘

𝐖𝐖𝑖𝑖
𝑟𝑟 =

1 𝑟𝑟𝑖𝑖
𝑟𝑟𝑖𝑖 𝑅𝑅𝑖𝑖

≽ 0, rank 𝐖𝐖𝑖𝑖
𝑟𝑟 = 1,∀𝑗𝑗

�
𝑧𝑧=1

𝑍𝑍

𝛼𝛼𝑧𝑧 = 1,𝛼𝛼𝑧𝑧 ∈ 0,1 ,∀𝑧𝑧.

−𝜃𝜃𝑖𝑖𝑘𝑘≤ 𝑒𝑒𝑖𝑖𝑘𝑘,∀𝑘𝑘

−𝑀𝑀𝑖𝑖 1 − 𝛼𝛼𝑧𝑧 ≤ 𝑟𝑟𝑖𝑖 − 𝜆𝜆𝑧𝑧𝑥𝑥𝑖𝑖 ≤ 𝑀𝑀𝑖𝑖 1 − 𝛼𝛼𝑧𝑧 ,∀𝑧𝑧

𝐖𝐖𝑖𝑖
𝑥𝑥 =

1 𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖 𝑋𝑋𝑖𝑖

≽ 0, rank 𝐖𝐖𝑖𝑖
𝑥𝑥 = 1,∀𝑗𝑗

(9)
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LS Parameter Estimation Model 

• The Big-M technique is 
exploited to linearize the 
bilinear term 𝛼𝛼𝑧𝑧𝑥𝑥𝑖𝑖.

• We rewrite (8) by 
introducing the auxiliary 
variable 𝜇𝜇𝑖𝑖, and 
additionally imposing the 
constraints. 

• Relaxing the quadratic 
equalities, we obtain a 
MISOCP model.

min
𝛼𝛼𝑧𝑧,𝑟𝑟𝑗𝑗,𝑥𝑥𝑗𝑗,𝑅𝑅𝑗𝑗,𝑋𝑋𝑗𝑗,𝜇𝜇𝑗𝑗

𝜇𝜇𝑖𝑖

subject to
𝜇𝜇𝑖𝑖 − 1

2
𝑒𝑒𝑖𝑖 2

≤
𝜇𝜇𝑖𝑖 + 1

2

�
𝑧𝑧=1

𝑍𝑍

𝛼𝛼𝑧𝑧 = 1,𝛼𝛼𝑧𝑧 ∈ 0,1 ,∀𝑧𝑧.

−𝑀𝑀𝑖𝑖 1 − 𝛼𝛼𝑧𝑧 ≤ 𝑟𝑟𝑖𝑖 − 𝜆𝜆𝑧𝑧𝑥𝑥𝑖𝑖 ≤ 𝑀𝑀𝑖𝑖 1 − 𝛼𝛼𝑧𝑧 ,∀𝑧𝑧

(10)

𝑅𝑅𝑖𝑖 − 1
2
𝑟𝑟𝑖𝑖 2

≤
𝑅𝑅𝑖𝑖 + 1

2

𝑋𝑋𝑖𝑖 − 1
2
𝑥𝑥𝑖𝑖 2

≤
𝑋𝑋𝑖𝑖 + 1

2
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Estimated Line Parameters for IEEE 13- and 
37-Bus Test Feeder
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Estimated Line Parameters for IEEE 69-Bus 
Test Feeder
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Estimated Line Parameters for IEEE 69-Bus 
Test Feeder - Summary

SDP-based LAD model:
• For the IEEE 13-bus feeder, the largest relative errors (among all branches) 

for 𝑟𝑟𝑖𝑖 and 𝑥𝑥𝑖𝑖 are 3.331 × 10−5% and 3.335 × 10−5%. 
• For the IEEE 37-bus feeder, the largest relative errors (among all branches) 

for 𝑟𝑟𝑖𝑖 and 𝑥𝑥𝑖𝑖 are 3.402 × 10−4% and 3.403 × 10−4%. 
• For the IEEE 69-bus feeder, the largest relative errors (among all branches) 

for 𝑟𝑟𝑖𝑖 and 𝑥𝑥𝑖𝑖 are 1.444 × 10−4% and 7.061 × 10−5%. 

SOCP-based LS model:
• For the IEEE 13-bus feeder, the largest relative errors (among all branches) 

for 𝑟𝑟𝑖𝑖 and 𝑥𝑥𝑖𝑖 are 0.256% and 0.952%. 
• For the IEEE 37-bus feeder, the largest relative errors (among all branches) 

for 𝑟𝑟𝑖𝑖 and 𝑥𝑥𝑖𝑖 are 0.251% and 0.958%. 
• For the IEEE 69-bus feeder, the largest relative errors (among all branches) 

for 𝑟𝑟𝑖𝑖 and 𝑥𝑥𝑖𝑖 are 33.95% and 46.81%. But these large errors (≥ 5%) only 
occur in a few branches with high R/X ratios (17,34,39,45, and 68). 



Customer Load Profiling 

• Customer typical load profiles are valuable for utilities to understand customer consumption behaviors. 
• By using machine learning techniques, load profiling can be cast as an unsupervised clustering problem.

 Curse of Dimensionality  Algorithm-specific Limitations  Hyperparameter Calibration

Customer Load Profiling

28
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Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "A Data-Driven 
Customer Segmentation Strategy Based on Contribution to System Peak 
Demand," IEEE Transactions on Power Systems, vol. 35, no. 5, pp. 
4026-4035, September 2020.

Problem Statement: Inferring residential 
customer peak contribution using customer monthly 
energy billing in partially observable distribution systems.

Challenges:
 System is partially observable – no meter for 

unobservable customers.
 Customers with high monthly billing do not necessarily 

have high customer peak load. 
 Customers with high peak load do not necessarily have 

high customer peak contribution due to the 
noncoincidence between customers and system peak 
time.

Our Solution:
 Coincident monthly peak contribution (CMPC): ratios 

of individual customers’ demands during daily peak 
load times of the system to the daily system peak 
demand.

 For unobservable customers without SMs, a weighted 
cluster-wise regression method can be used to estimate 
CMPC using their monthly billing information.

 The basic idea is to exploits the strong correlation 
between CMPC and monthly energy consumption when 
the customers’ load profiles are similar.

Customer Peak Contribution Estimation
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Y. Yuan, K. Dehghanpour, Z. Wang, and F. Bu, "Multi-Source Data Fusion 
Outage Location in Distribution Systems via Probabilistic Graphical Models," 
IEEE Transactions on Smart Grid, accepted for publication.

Problem Statement: SMs have capacitors that 
can generate last-gasp signals to report outages down to 
laterals. However, some networks may not have full SM 
coverage, and SMs are subject to misreports and 
communication failures. A solution is to fuse SMs with 
trouble calls, social media reports, and weather/fragility 
information.

Challenges:
 Heterogeneity of diverse outage data sources, including 

availabilities, confidence levels, and contradiction.
 Lacking scalability: Huge joint PDFs for large system  

& Large computational burden in calculating the 
probabilities of post-event topology candidates.

Our Solution:
 Propose a probabilistic graphical learning approach to 

encode distribution grids and heterogeneous outage data 
sources into probabilistic graphs

 Leverage the conditional independencies inherent in the 
grid and data and fragility model to simplify the 
probabilistic graphical modeling to improve scalability

 Use a Gibbs sampling method to overcome the 
scalability issue in online probabilistic outage location 
inference. 30

Probabilistic Graphical Learning for  Outage 
Detection and Location
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Y. Yuan, K. Dehghanpour, Z. Wang, and F. Bu, "Multi-Source Data Fusion 
Outage Location in Distribution Systems via Probabilistic Graphical Models," 
IEEE Transactions on Smart Grid, accepted for publication.
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Probabilistic Graphical Learning for  Outage 
Detection and Location

Our idea:

• An inherent feature of radial grids is their tree-like 
structure, resulting in a unique, one-directional path 
between all nodes. If this path is disrupted at any 
branch, the states of all downstream branches can be 
inferred as de-energized without the need for further 
search. This feature can be represented using a 
Bayesian Network (BN).

• The nodes in the graph represent states of 
branches/customers and outage data sources. The 
edges represent probabilistic influence of one node on 
another.

• Each parent variable in the BN is the immediate causal 
source of influence for its child node; i.e., knowing the 
parent variable is sufficient to determine the 
probability distribution of the child. 

• The underlying principle is that any node in the graph 
is conditionally independent of its upstream nodes if 
the values of its parents are known or inferred.

• These conditional independencies enable a compact 
and scalable graphical representation of different data 
and significantly accelerate outage detection. 



Conclusion and Future Work
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• Smart meter data, although may be of low resolution and limited 
measurement variables, can still be used to greatly help distribution 
system monitoring and operation. There are many applications such 
as network modeling, outage detection and behind-the-meter solar 
disaggregation.  

• We demonstrated how to use smart meter data together with 
optimization and machine learning to estimate topology and line 
parameters in radial distribution systems. 

• In the future, we will focus on using smart meter data to 
identify/calibrate network models in unbalanced mesh distribution 
systems. 



Distribution Course Material Sharing
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EE653: Power distribution system modeling, optimization and 
simulation
• Introduction to Distribution Systems 
• Modeling Series Components – Distribution Lines 
• Modeling Series Impedance of Overhead and Underground Lines 
• Modeling Shunt Admittance of Overhead and Underground Lines 
• Modeling Shunt Components – Loads and Caps 
• Distribution Feeder Modeling and Analysis Part I 
• Modeling Voltage Regulators 
• Modeling Three-Phase Transformers 
• Distribution Feeder Modeling and Analysis Part II 
• Various Power Flow Calculation Methods in Distribution Systems 
• Optimal Power Flow in Distribution Systems 
• Voltage/VAR Optimization and Conservation Voltage Reduction 
• Distribution System State Estimation and Smart Meter Data Analytics 
• Microgrids – Introduction and Energy Management 
• Microgrids – Dynamic Modeling and Control 
• OpenDSS Tutorial 
• Real Distribution System Modeling and Analysis using OpenDSS
• Introduction to GridLAB-D 
• Distribution System Resilience: Hardening, Preparation and 

Restoration 
• Energy Storage 

• You may download the course 
material at: 
http://wzy.ece.iastate.edu

• All slides are editable, feel 
free to use.

• Comments are very welcome! 

http://wzy.ece.iastate.edu/
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Recovering Topology From Estimated 𝐘𝐘∗

• DBSCAN can marking as anomaly 
points that lie alone in low-density 
regions

• Advantage: DBSCAN can 
discover clusters with arbitrary 
shapes.

• DBSCAN does not require a prior 
specification on the number of 
clusters.

• Recovering the topology from 𝐘𝐘∗ is cast as an anomaly detection problem.  

• Our Solution: We have utilized a density based spatial clustering of 
applications with noise (DBSCAN) method to extract the topology from 𝐘𝐘∗.
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Exactness of SDP and SOCP Relaxation of 
IEEE 37-Bus Test Feeders

• To quantify the exactness of SDP and SOCP relaxation in (9) and (10), 
we compute the ration between the largest two eigenvalues of 𝐖𝐖𝑖𝑖

𝑟𝑟 and 
𝐖𝐖𝑖𝑖

𝑥𝑥 and the resultant errors 𝜀𝜀𝑖𝑖𝑟𝑟 and 𝜀𝜀𝑖𝑖𝑥𝑥, respectively. 
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Exactness of SDP and SOCP Relaxation of 
IEEE 13- and 69-Bus Test Feeders

 The SDP relaxation is exact on all branches in three cases.
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