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Power Distribution Grid Data

Where does the data come from?
 SCADA (supervisory control and data
acquisition); Smart Meters; Protection

microPMU /PMU

\ Devices; (micro)PMUs (phasor
measurement units)
HWV/MY
@substatinn * Measures voltage/current/frequency at

different resolutions
 What are smart meters?
— e Different from conventional energy

| LV feeders -
(overhead) ” f’\”’ meters

service drops

14  Stay in your homes (not every home has
LV feeders lt)
(cable) * Measure energy and voltage

* 15/30/60-minute resolution
e What are barriers to apply big data
techniques in power industry?
* Critical infrastructure
* Conservative

A Power distribution grid  Confidentiality
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Power Distribution Grid Data

* Where does the data come from?
 SCADA (supervisory control and data
acquisition); Smart Meters; Protection

microPMU /PMU

\ Devices; (micro)PMUs (phasor
measurement units)
HWV/MY
@substatinn * Measures voltage/current/frequency at

different resolutions
 What are smart meters?

—  Stay in your homes

| LV feed e
overhead) * Measure energy and voltage

service drops

B< * 15/30/60-minute resolution
X Tt * Features of smart meters
) * Very low resolution

Limited sensing capability
Severe data quality issues

Is it a bad data source??

But, they are widely deployed!

A Power distribution grid
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Real Data from Utilities

* We have NDAs with following utilities: MidAmerican Energy, Alliant Energy, Cedar Falls Utilities, Algona

Municipal Utilities, Maquoketa Valley Electric Coop, Bloomfield, WAPA....
* We have multi-year PMU/SCADA/Smart Meter data from utility partners.

e. Measurement Renewable Historical

AMI & SCADA

MVEC 140,000 customers

AMI & SCADA Alliant 10 substations

PMU/SCADA MidAmerican 3 Substations

AMI&SCADA Algona

SCADA GPC

3,000 customers

5 Substations

SCADA Ameren 4 Substations
SCADA BGE 4 Substations
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24 months with
continuous
updating

24 months with
continuous
updating

18 months with
continuous
updating

24 months with
continuous
updating

30 months

5 months
12 months
5 months

~45% relative
to peak

~35% relative
to peak

~10% relative
to peak

~40% relative
to peak

Unknown

N/A
Unknown
Unknown

Yes

Yes

Yes

Yes

N/A

Yes
Yes
Yes



Exemplary Real Data from Utilities

e More AMI data and circuit models:

Total Customers
Customer with Meters
3 5 27 1726 9118 6631

* Duration: 4 years (2014 - 2018)
* Measurement Type: Smart Meters and SCADA

* Detailed circuit models of all feeders in Milsoft/OpenDSS and exact
smart meter locations

Utilities Substations Feeders Transformers

e Data Time Resolution: 5 Minutes — 1 Hour
* Customer Type:

Residential Commercial Industrial

84.67% 14.11% 0.67% 0.55%
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Smart Meter Data Collection
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K. K. Kee, S. M. F. Shahab and C. J. Loh, “Design and development of an innovative smart metering system with GUI-based NTL detection platform”
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Real Data from Utilities

An exemplary distribution system and associated SM data from our utility partner:

System Information Smart Meter Data

* 2 substations * Time period: 4 years (2015-2018)
* 4 ]oad tap changing substation * 4321 residential customers

transformers (69/13.8 kV) * 696 small commercial customers
* 14 feeders (83 miles) * 146 large commercial customers
* 1489 overhead line sections * 17 industrial customers
* 2582 underground cable sections * 32 other customers
* 5 capacitor banks * Time resolution:
* 361 switching devices * Hourly — residential, small
* >1000 distribution transformers commercial
* 5212 customers " ]5-min — large commercial,

industrial
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Real Data from Utilities

Network Topology/Model
Information

Smart Meter Measurement
Data For Load Monitoring
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Data Sharing

~-0--0--0--0--0--@

With permission from our utility partner, we share a real distribution grid pLppt e
model with one-year smart meter measurements. This dataset provides - e e e e g e
an opportunity for researchers and engineers to perform validation and 3+ ISR S S
demonstration using real utility grid models and field measurements. . v U .
= The system consists of 3 feeders and 240 nodes and is located in ! e
' R e o
= The system has 1120 customers and all of them are equipped with ~ * {"* - sas N
smart meters. These smart meters measure hourly energy SIS e B LE
consumption (kWh). We share the one-year real smart meter gl SEEE ey e
measurements for 2017. e oo eseieees Eiiil

» The system has standard electric components such as overhead
lines, underground cables, substation transformers with LTC, line Test system diagram
switches, capacitor banks, and secondary distribution transformers.

The real system topology and component parameters are included. The dataset has been

= You may download the dataset at: viewed/downloaded more
http://wzy.ece.iastate.edu/Testsystem.html , including system : :
description (in .doc and .xlsx), smart meter data (in .xIsx), OpenDSS than 10,000 times since
model, and Matlab code for quasi-static time-series simulation. June 12, 2019
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Distribution Course Material Sharing

EE653: Power distribution system modeling, optimization and simulation
* Introduction to Distribution Systems
* Modeling Series Components — Distribution Lines

([ ]
* Modeling Series Impedance of Overhead and Underground Lines You may download the course

* Modeling Shunt Admittance of Overhead and Underground Lines material at:

* Modeling Shunt Components — Loads and Caps http://wzy.ece.iastate.edu

. D1str1b.ut10n Feeder Modeling and Analysis Part I « All slides are editable, feel free
* Modeling Voltage Regulators

* Modeling Three-Phase Transformers to use.

 Distribution Feeder Modeling and Analysis Part II e Comments are very welcome!

* Various Power Flow Calculation Methods in Distribution Systems e The slides have been
* Optimal Power Flow in Distribution Systems

 Voltage/VAR Optimization and Conservation Voltage Reduction downloaded more than 5,000
« Distribution System State Estimation and Smart Meter Data Analytics times since Dec. 25, 2019

* Microgrids — Introduction and Energy Management

* Microgrids — Dynamic Modeling and Control

*  OpenDSS Tutorial

* Real Distribution System Modeling and Analysis using OpenDSS

* Introduction to GridLAB-D

* Distribution System Resilience: Hardening, Preparation and Restoration

* Energy Storage
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Multi-timescale Load Inference

* Problem Statement: Inferring hourly consumption data from customer monthly
billing information as pseudo-measurements in partially observable systems

* Challenges:
v'Loss of correlation between consumption time-series at different time-scales
v'Unobserved customers’ unknown typical behaviors

* Solution Strategy: Extending observability from observed customers to
unobserved customers

* Proposed Solution:
v’ Multi-timescale load inference (stage by stage inference chain)
v'Using data clustering for capturing customer typical behaviors

v'Using state-estimation-based Bayesian learning for inferring unobserved customers’ typical
behaviors
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Evidence from Data: How to Maintain Correlation

100
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0

Very Small Correlation Between Different
Customers’ Smart Meter Time-Series: 90% below
0.27 (Loss of Correlation Across Customers)
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Customers Decreases from Monthly to Hourly (Loss
of Correlation Across Different Time-Scales)
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Solution Step I: Smart Meter Data Pre-Processing

0.1-
v'Smart Meter Data Problems:
. __0.08
= Qutliers/Bad Data 3
. . . % 0.06
= Communication Failure :
. . o 0.04 Communication Failure
= Missing Data (Missing Data)
0.02 -
0 LY 'l 3 ‘ ‘
v Counter-Measures: ey,
» Engineering intuition (data inconsistency) Anomalous Data Samples
. . . 120 {(More than 15 Times Load Capacity) ~~
= Conventional Statistical Tools L
100 L i
(e.g. Z-score) g
= Robust Computation . ]
(e.g. relevance vector machines) " a0
* Anomaly Detection Algorithms 20
00 At e o 2/ ‘-(;"'r:)r:-:;m_".‘.um.dh Milu:‘.:) ;g g ol il u6 01-(;:; il ), 80 A;]:].m e :aunou 01 (w). AT ‘:\;{;\B -0

Time (Hour)

ITowa State Universit




Solution Step II: Using Observed Customers’ Data for
Training Multi-Timescale Load Inference Chain Models

11
Layer 11 — _L_a yer o -
—————— Weekd \
5 . ° ag t ANN |
g ANN raining 1e i |
El ... FE : |
s Weekly e NN @ |
i Training Set ANN ER, - EP: }I
E By Em] R —
= P Weekend \
E’ Ewr o Bwa Training Set ANN :
E ANN Ebs  Ebr - |
S P ANN (B |
i Epe Ep7 )
— — — — — — — — -’
w D ED N EH
E,;— Monthly Consumption o . .
E,,— Weakly Consumption v'Extends observability using data of customers with smart
Ej, — Daily Consumption meters to obtain a stage-by-stage consumption transition

£}y — Hourly Consumption process (Maintains High Correlation!)
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Solution Step III: Observed Customer Daily Load Pattern
Bank Formation and Training Multi-Timescale Models

Observed Customers’ Data History at
Different Time-scales

Consumption Pattern Bank
(Spectral Clustering)

\ / N\ /7 \ / \ /
~ —_ ~ —_ ~N —_— ~ —_

Multi-Timescale Consumption Inference
(Chain Models)

s, G T T c, 6w O

[

s A VI
______I._____I_ _______
v v v v

* Problem: Performance of Multi-timescale Chain
Models Highly Depend on Typical Daily
Consumption Patterns of Different Customers

* Solution: Assign a Multi-Timescale Model to Each
Typical Load Behavior Pattern Discovered From
Observed Loads (Method: Data Clustering)

* Train Load Inference Chain Models Using the Data
of Observed Customers Belonging to Each Cluster

(C)
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Customer Behavior Pattern Bank: Sensitivity to Time of
Day and Load Type

Typical discovered load profiles in different The percentage of customers
seasons from smart meter data belonging to each typical load profile
C1: Spring C2: Spring C3: Spring C4: Spring in different seasons
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v Methodology: Data Clustering (Unsupervised Learning — Spectral Clustering Algorithm)
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Solution Step IV: Unobserved Customers’ Pattern
Identification and Hourly Consumption Inference

Unobserved Customers’ Input Data

Monthly Billing
Data * Basic Idea: Pick the Cluster that has the Best State

Estimation Performance for Each Customer

Consumption Pattern Bank

Multi-Timescale
Consumption Inference

* Methodology: Assign and Update Probability Values to
Different Clusters Based on State Estimation Residuals
(Recursive Bayesian Learning)

1
Eq for Different Clusters

L/

Branch Current State

<—,
- Estimation :?
o .
43 S * Outcome: Pick the Most Probable Cluster for Each
5 g Unobserved Customer and Use its Corresponding
||  Cluster Probability Chain Model for Hourly Load Inference
\ /

N~ e e e e o ——_— —_— —_— — — — — -

Daily Consumption Pattern Identification
(Recursive Bayesian Learning)
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Overall Structure of the Proposed Solution

Customers With SM | Customers Without SM

m | Daily Consumption Pattern
I Identification

Consumption Pattern Bank (lie;cir s:re_Biy 2“1_11 Eefn_u-lg)
(Data Clustering) I / \|
{/ C, C, Cs Cu ) : Cluster Probability |
Assessment
{|m |\f ‘:\f\f\||l | I
N _// | T l I
; il |
I
Multi-Timescale Consumption Inference I —> Branch C'urr('ent State |
(Multi-Layer Learning) | Estimation |
e - | |
\
HE~(E)~(E) ()| l
I
N ~ / | |
| )
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Numerical Results: Unobserved Individual Customer
Hourly Load and Pattern Inference

40 1
----------- Sample Customer Load Inference
—Sample Customer Real Load Profile
= 0.8 -
=
=
c #
. o
2 . s 306
= t U ' ©
E ¥ LT TG
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g >
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8 = 0.4
>
E’10
510 | i
E I 0.2
JL«ML-&J Qﬁwdhﬁwﬂl\bbﬂum“m%
0 ' 0
0 100 200 300 400 500 600

Time (Hour)

Inferring the hourly demand of an unobserved
residential load in one month (average estimation
error =~ 8.5% of total energy)

|
I Correct Pattern
M Incorrect Patterns

Industrial Commercial Residential

Impact of accurate consumption pattern
identification on the accuracy of the inference
(industrial load patterns are close and stable)
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Sensitivity Analysis of Observability

Multi-Timescale Hourly Load Inference Performance
| | \

0.6 I \ \ \
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Assessing Cold Load Pick up Demands Using Smart Meter Data

* Problem Statement: Estimating post-outage cold load pick up (CLPU)
demand at feeder-level and customer contribution to CLPU overshoot
using smart meter data. This overshoot 1s critical in designing
restoration plan since 1t may overload transformers and DERs.

* Challenges:
v'Customer behavior volatility

4 %acdk of behind-the-meter information on customer thermostatically controlled
oads

* Solution Strategy: Develop a data-driven “model-free” framework to
estimate CLPU demand at both feeder-level and customer-level using
only smart meter data

* Proposed Solution Components:
v'Machine learning-based diversified load predictor at feeder-level
v'Probabilistic reasoning at customer-level to model behavioral uncertainty
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Impact of Outage on Customer Behavior

Time (hour)

0 2 s 6 8 10 12
Time (howur)

Abnormal Post-Outage Demand Increase: Cold Load Pick-up
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Post-Outage Cold Load Pick-up (CLPU): Loss of Diversity

160 1
A Estimated Normal Demand
140 Recorded Demand
A To be
predicted 120
—_ Observed
= = 100
Y i
~ \ T 80
o
~ P,
R 60
Py 40
Y Y Y - 20
Normal , Outage ; Restoration 0 . . | | |
0 or 0 4 8 12 16 20 24
Tlme P Time (hour)
) u
CLPU Ratio = ﬁ_ Real CLPU at the Feeder-Level
d
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[iterature Review

* Previous works have mainly focused on model-driven methods to obtain CLPU
ratios [1-3]

» Use thermostatically controlled load models and thermal parameters to model houses

* Comments:.
» Need to collect detailed house-level thermal parameters

»Need to model individual thermostatically controlled load

[1] K. P. Schneider, E. Sortomme, S. S. Venkata, M. T. Miller, and L. Ponder, “Evaluating the magnitude and duration of cold
load pick-up on residential distribution using multi-state load models,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3765—

3774, Sep. 2016.

[2] D. Athow and J. Law, “Development and applications of a random variable model for cold load pickup,” IEEE Trans.
Power Del., vol. 9, no. 3, pp. 1647-1653, Jul. 1994.

[3] E. Agneholm and J. Daalder, “Cold load pick-up of residential load,” IEE Proceedings - Generation, Transmission and

Distribution, vol. 147, no. 1, pp. 44-50, Jan. 2000.
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Overall Structure of Data-Driven CLPU Estimation Method

4(Smart Meter and Temperature Dataji
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Feeder-Level Data-Driven CLPU Ratio Estimation

Trained to Predict Feeder Load Under Normal Machine Learning
Operation (Least-squares support-vector machines ) Model Parameters

T — Ambient
temperature
P, —Normal

/
feeder \l\ {Py, T} b,a
demand | Smart Meter LS-SVM ) ( Demand )

I

I

I

I

I

I

I

I

I

e — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Temperature Data Model Training Estimation

Estimates the CLPU Overshoot (R p) by Dividing Estimated Diversified Demand (what
the Observed Feeder Demand at Time of Restoration would happen if there was no outage)
(P,) by the Estimated “Expected” Hypothetical
Predicted Normal Demand, £{P ;}
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Customer-Leve]l - U Estimation

Given the time-variability and
uncertainty of customer
beheawor ussian Mixture
dref &w iaas been
T %n
use o mod f'the probability
Alofrﬂqnﬁnn n'Fﬂ and D 111

MLL\I— P s

P,—Normal feeder demars
p,; — Normal customer der o
p,.;— Post-outage custome
time of restoration

jmmmmmmm e e A + | normal operatlon
|
l {PdJ pd,i! pu,i} i !
| Customer Smartw Tl j /
| Meter Data J |
| |
| Py, C) i
|
i fl Pu,i — pd X C; i
/ At restoration the learned GMM-based joint

D .- Post-ou tage customer demand at the time distribution of C; and P, (quantifying customer’s
U1 normal behavior) is used to identify customer

of restoration . contribution to CLPU by estimating customer
[; — Customer contribution to CLPU demand deviation from its expected normal load
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Gaussian Mixture Model (GMM)

Why do we need GMM?

The estimated feeder-level normal demand, PY", follows a distribution due
to regression residuals.

The historical customer contribution factor, C;, also follows a distribution
due to the uncertainty of customer demand. Note that historical C; 1s
calculated by C;=pg;/ Py

The bivariate pair, {PL", C;}, forms a 2-dimensional empirical histogram.

This 2-dimensional histogram does not
strictly fit a single distribution model.
Therefore, a mixture model should be
used to represent the empirical histogram.

In our problem, we used Gaussian
mixture models (GMM).
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Gaussian Mixture Model (GMM)

» For our problem, we approximate the joint 2-dimensional PDF of P{" and C;, using multiple
Gaussian functions

Si
HGARDEDWNTH AN
j=1

where, g;(-) denotes a bi-variate Gaussian function, w; is the weight corresponding to each g;(-), S; is
the total number of Gaussian functions. Note that w; and the parameters in g;(-) are determined by the
maximum likelihood (ML) estimation, using the empirical histogram.
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e
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Empirical histogram GMM-based estimation

At .
P, -- Estimated feeder-level normal demand at ¢, C; -- Historical customer contribution factor
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Feeder-Level CLPU Characteristics
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CLPU Characteristics: Feeder- and Customer-Level
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Conclusions

We have archived a large amount of real data from utility partners, including smart meters,

SCADA, PMUs and circuit models.

We have shared one real distribution grid model with one-year smart meter data.

A Data-Driven Load Inference method is developed for Monitoring Distribution Systems:
v’ Identifying Temporal Correlations for Load Estimation

v Exploiting Latent Trends in Customer Behavior at Different Time-Scales for Enhancing

Inference Accuracy

We have used smart meter data to model the cold load pick up, which would be useful to

utilities in designing restoration plan.
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Recent Publications in Data Analytics

* Q. Zhang, K. Dehghanpour, Z. Wang, and Q. Huang, "A Learning-based Power Management Method for Networked
Microgrids Under Incomplete Information," IEEE Transactions on Smart Grid, accepted for publication.

K. Dehghanpour, Y. Yuan, Z. Wang, and F. Bu, "A Game-Theoretic Data-Driven Approach for Pseudo-Measurement
Generation in Distribution System State Estimation," IEEE Transactions on Smart Grid, accepted for publication.

* Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "A Multi-Timescale Data-Driven Approach to Enhance Distribution
System Observability," IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 3168-3177, July 2019.

 H. Sun, Z. Wang, J.Wang, Z.Huang, N. Carrington, and J. Liao, "Data-Driven Power Outage Detection by Social
Sensors," IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2516-2524, September 2016.

« L. Fang, K. Ma, R. Li, and Z. Wang, "A Statistical Approach to Estimate Imbalance-Induced Energy Losses for Data-
Scarce Low Voltage Networks," IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 2825-2835, July 2019.

 F. Bu, K. Dehghanpour, Z. Wang, and Y. Yuan, “A Data-Driven Framework for Assessing Cold Load Pick-up Demand in
Service Restoration,” IEEE Transactions on Power Systems, accepted for publication.

« C. Wang, Z. Wang, J. Wang, and D. Zhao, "Robust Time-Varying Parameter Identification for Composite Load
Modeling," IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 967-979, January 2019.

« C.Wang, Z. Wang, J. Wang, and D. Zhao, "SVM-Based Parameter Identification for Composite ZIP and Electronic Load
Modeling," IEEE Transactions on Power Systems, vol. 34, no. 1, pp. 182-193, January 2019.

« T. Lu, Z. Wang, J. Wang, Q. Ai, and C. Wang, "A Data-Driven Stackelberg Market Strategy for Demand Response-
Enabled Distribution Systems," IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 2345-2357, May 2019.
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BTM PV Disaggregation -- Background

PV Generation

Net Demand Native Demand
Net Demand = Native Demand — PV Generation

* In most cases, utilities only measures net demand.

* PV generation and native demand are usually invisible to utilities.

* Posing challenges in load forecasting, outage load pickup, grid expansion
planning and grid control.
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Problem Statement
* Types of customers

Sp: Customers without PVs, whose native demand 1s recorded.

S¢: Fully observable customers with PVs, whose native demand and PV generation are
recorded.

Sy: Customers with PVs, whose net demand is recorded.

Feeder

Al LSS L
LA &

A
as - & s A
Sn
\J \J \J
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Problem Statement

« Problem formulation: Separate aggregate BTM PV generation of groups of customers

Feeder

\};

\ I I | |
Net Demand

Frm

/

0 [===- o rmmm———— gV ey emeemee———

v k P \ Ranm
et VT 4 N / N\ / % / \ 7 \ i
1 \/ -+ \‘ /= -t ‘\‘ "r ‘\‘ l‘; \‘\ ,r \‘ ; \\ 'f
=100 -~ . e \‘M." h =]
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State-of-the-Art and Challenges
 Approaches  Commems

PV performance models and weather
information are used to estimate solar
generation

Require detailed PV array parameters
Unadaptable to changing conditions

Decomposing solar generation and

demands of different appliances Require high-resolution data (1-second)

No prior knowledge of PV array
Leveraging low-resolution but widely-  models and parameters. Adaptive to
available smart meter data changing conditions such as PV
disconnection and new installation.

[1] D. L. King, W. E. Boyson, and J. A. Kratochvil, Photovoltaic Array Performance Model. Albuquerque, NM: Sandia National Labs.,
2004

[2] Q. Zhang, J. Zhang, and C. Guo, ‘“Photovoltaic plant metering monitoring model and its calibration and parameter assessment,” in
Proc. IEEE PES General Meeting, pp. 1-7, Jul. 2012.

[3] D. Chen and D. Irwin, “Sundance: Black-box behind-the-meter solar disaggregation,” in e-Energy, pp. 16-19, May. 2017.

[4] C. Dinesh, S. Welikala, Y. Liyanage, M. P. B. Ekanayake, R. I. Godaliyadda, and J. Ekanayake, “Non-intrusive load monitoring under
residential solar power influx,” Appl. Energy, vol. 205, pp. 1068—1080, Aug. 2017.
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Observations

Observed correlations from real smart meter data

1
20 038 260
o 240
16 10.7 90 10.95
14
b 10.6 200 oo
=10 180
10.5 <
X 160 .
6 04 140 .
4 120
5 0.3 100 0.8
SRR S I FT I3 &8 S8 IS
N, e e = . [o\ I o\ N Q\|
. 1 Ai(°)
N, or N, — size of customer group A, or A, — azimuth of PV panel

The correlation between
» native demands of two sizable groups of customers — high
» generations of two PVs with similar orientation — high
» native demand and PV generation — small

For a group of customers with BTM solar
» The number of customers with a particular demand pattern is unknown
» The number of PVs with a particular orientation is unknown
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Solution

« Step I: Building native demand and PV generation exemplars

» How to represent the exemplar of unknown native demand, using known typical demand
patterns

» How to represent the exemplar of unknown PV generation, using known typical solar
generation patterns

C _ M Ci c _ Cj
Pt = Li=1 Pt Wit d: = Zj:lgt 9j,t

pi"— candidate native demand exemplars corresponding to typical load patterns

gij — candidate PV generation exemplars corresponding to typical orientations

Exemplar Candidate Wi ¢ | @ t  Exemplars
AMI PR ( Demand \ ¢; Weights p .
P .
Sp He| o > | NS ‘ NA X : > Dy
F—E Solar c.
S - = g J 4
G O > ‘f\_ ‘_/\_ L > :)_> gg'
- —__J )
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Solution
« Step II: Disaggregating PV generation

The disaggregation is formulated as finding coefficients to rescale exemplars, by minimizing disaggregation

residuals.

Native demand exemplar PV generation exemplar
: 1 } C 2 + __ C 2
min (llpe —pracllz+llge — 9:Bell2)
Pt, 9t.9¢.Bt 2
s.t. + g = p?
} ‘ gt< ¥~ Recorded net demand
Unknown native demand Unknown PV generation
{ Game Theo Residuals
For a group of customers, we a— Exemplar Library w.' ht' il
" h C1 S
dO not knOW the number Of AMI PR Demand Candidates ¢; ; tg ertc — ) d
) , P, , pt Disaggregated Data
customers with a particular s, Ul o > I{\ Iw X > , 3
= a
load pattern. ThCI’CfOI‘C, the 5 Solar Candidates c l '% 4\ | Native Demand
. . ] @2 J ¢ E i
Welgl.lts, w; and 6; ¢, should be S; = = Lo If\' IA g, »@gf A2 e
iteratively updated based on the z 1\ PV Generation
disaggregation residuals. Sy > N v
| —
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Solution
« Step III: Updating weights

_——— e — — — — — — — — — — — — — — — — — —— —

f
E { Weight Update J<
|
|

Weights

\
|
I
| , -
Disaggregamljﬁ( Residual e J—> |
Regret: | i
n=e—& V| + | :
Demand Exemplar 2% [ . ]_ | { . ] Regret '
. > D t : 5 |
Weight: [ Candidate 1 J e T» Residual e, Evaluation | |
e)lri : * : : i

w; —
l . 8/17‘]- Demand Exemplar] pt{Disa . ator]—-!—» Residual :
J= Candidate M | gg; ° i Gttt I ¢ )
| |
! | Repeated games with vector payoff |
( Solar Exemplar J o _

* The PV generation candidates have a similar weights updating mechanism.
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Case Study

* Disaggregate PV generation on 19 laterals of a real distribution system in the Midwest
U.S.

£ \
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Case Study

* Disaggregated PV generation and native demand profiles

wor [z Disaggregated | | 250+~ T Disaggregated | -
Actual Actual
200
—~ 100 —~
g E/ 150
> Ry L
sol | 100
50
0 L 1 L 0 I 1 I 1 1 | 1 1
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Time (hour) Time (hour)
(a) PV generation (b) Native demand

* 20% PVs are suddenly disconnected

I I | |
————— Actual

Disaggregated - v+ Model-based

|<444444444447. Transition

100 —
=
o
SN

50

50

1 200 250 300
Time (hour)

| <«—————— Normal condition I / Some PVs are disconnected / |
Since we do not know which PVs are disconnected, model- Our data-driven approach is
based method suffers from overestimation. adaptive.
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Multi-timescale Load Inference

* Problem Statement: Inferring hourly consumption data from customer monthly
billing information as pseudo-measurements in partially observable systems

* Challenges:
v'Loss of correlation between consumption time-series at different time-scales
v'Unobserved customers’ unknown typical behaviors

* Solution Strategy: Extending observability from observed customers to
unobserved customers

* Proposed Solution:
v’ Multi-timescale load inference (stage by stage inference chain)
v'Using data clustering for capturing customer typical behaviors

v'Using state-estimation-based Bayesian learning for inferring unobserved customers’ typical
behaviors
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Evidence from Data: How to Maintain Correlation

100
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0

Very Small Correlation Between Different
Customers’ Smart Meter Time-Series: 90% below
0.27 (Loss of Correlation Across Customers)
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Daily T — <
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Average Correlation between Consumption of All
Customers Decreases from Monthly to Hourly (Loss
of Correlation Across Different Time-Scales)
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Solution Step I: Smart Meter Data Pre-Processing

0.1-
v'Smart Meter Data Problems:
. __0.08
= Qutliers/Bad Data 3
. . . % 0.06
= Communication Failure :
. . o 0.04 Communication Failure
= Missing Data (Missing Data)
0.02 -
0 LY 'l 3 ‘ ‘
v Counter-Measures: ey,
» Engineering intuition (data inconsistency) Anomalous Data Samples
. . . 120 {(More than 15 Times Load Capacity) ~~
= Conventional Statistical Tools L
100 L i
(e.g. Z-score) g
= Robust Computation . ]
(e.g. relevance vector machines) " a0
* Anomaly Detection Algorithms 20
00 At e o 2/ ‘-(;"'r:)r:-:;m_".‘.um.dh Milu:‘.:) ;g g ol il u6 01-(;:; il ), 80 A;]:].m e :aunou 01 (w). AT ‘:\;{;\B -0
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Solution Step II: Using Observed Customers’ Data for
Training Multi-Timescale Load Inference Chain Models

11
Layer 11 — _L_a yer o -
—————— Weekd \
5 . ° ag t ANN |
g ANN raining 1e i |
El ... FE : |
s Weekly e NN @ |
i Training Set ANN ER, - EP: }I
E By Em] R —
= P Weekend \
E’ Ewr o Bwa Training Set ANN :
E ANN Ebs  Ebr - |
S P ANN (B |
i Epe Ep7 )
— — — — — — — — -’
w D ED N EH
E,;— Monthly Consumption o . .
E,,— Weakly Consumption v'Extends observability using data of customers with smart
Ej, — Daily Consumption meters to obtain a stage-by-stage consumption transition

£}y — Hourly Consumption process (Maintains High Correlation!)

Iowa State Universit



Solution Step III: Observed Customer Daily Load Pattern
Bank Formation and Training Multi-Timescale Models

Observed Customers’ Data History at
Different Time-scales

Consumption Pattern Bank
(Spectral Clustering)

\ / N\ /7 \ / \ /
~ —_ ~ —_ ~N —_— ~ —_

Multi-Timescale Consumption Inference
(Chain Models)

s, G T T c, 6w O

[

s A VI
______I._____I_ _______
v v v v

* Problem: Performance of Multi-timescale Chain
Models Highly Depend on Typical Daily
Consumption Patterns of Different Customers

* Solution: Assign a Multi-Timescale Model to Each
Typical Load Behavior Pattern Discovered From
Observed Loads (Method: Data Clustering)

* Train Load Inference Chain Models Using the Data
of Observed Customers Belonging to Each Cluster

(C)
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Customer Behavior Pattern Bank: Sensitivity to Time of
Day and Load Type

Typical discovered load profiles in different The percentage of customers
seasons from smart meter data belonging to each typical load profile
C1: Spring C2: Spring C3: Spring C4: Spring in different seasons
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v Methodology: Data Clustering (Unsupervised Learning — Spectral Clustering Algorithm)
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Solution Step IV: Unobserved Customers’ Pattern
Identification and Hourly Consumption Inference

Unobserved Customers’ Input Data

Monthly Billing
Data * Basic Idea: Pick the Cluster that has the Best State

Estimation Performance for Each Customer

Consumption Pattern Bank

Multi-Timescale
Consumption Inference

* Methodology: Assign and Update Probability Values to
Different Clusters Based on State Estimation Residuals
(Recursive Bayesian Learning)

1
Eq for Different Clusters

L/

Branch Current State

<—,
- Estimation :?
o .
43 S * Outcome: Pick the Most Probable Cluster for Each
5 g Unobserved Customer and Use its Corresponding
||  Cluster Probability Chain Model for Hourly Load Inference
\ /

N~ e e e e o ——_— —_— —_— — — — — -

Daily Consumption Pattern Identification
(Recursive Bayesian Learning)
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Overall Structure of the Proposed Solution

Customers With SM | Customers Without SM

m | Daily Consumption Pattern
I Identification

Consumption Pattern Bank (lie;cir s:re_Biy 2“1_11 Eefn_u-lg)
(Data Clustering) I / \|
{/ C, C, Cs Cu ) : Cluster Probability |
Assessment
{|m |\f ‘:\f\f\||l | I
N _// | T l I
; il |
I
Multi-Timescale Consumption Inference I —> Branch C'urr('ent State |
(Multi-Layer Learning) | Estimation |
e - | |
\
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Numerical Results: Unobserved Individual Customer
Hourly Load and Pattern Inference

40 1
----------- Sample Customer Load Inference
—Sample Customer Real Load Profile
= 0.8 -
=
=
c #
. o
2 . s 306
= t U ' ©
E ¥ LT TG
=] 'H v { H 4
g >
[\ L
8 = 0.4
>
E’10
510 | i
E I 0.2
JL«ML-&J Qﬁwdhﬁwﬂl\bbﬂum“m%
0 ' 0
0 100 200 300 400 500 600

Time (Hour)

Inferring the hourly demand of an unobserved
residential load in one month (average estimation
error =~ 8.5% of total energy)
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Impact of accurate consumption pattern
identification on the accuracy of the inference
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Sensitivity Analysis of Observability

Multi-Timescale Hourly Load Inference Performance
| | \
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Conclusions

We have archived a large amount of real data from utility partners, including smart meters,

SCADA, PMUs and circuit models.

We have shared one real distribution grid model with one-year smart meter data.

A Data-Driven Load Inference method is developed for Monitoring Distribution Systems:
v’ Identifying Temporal Correlations for Load Estimation

v Exploiting Latent Trends in Customer Behavior at Different Time-Scales for Enhancing

Inference Accuracy

We have developed a data-driven method to take advantage of low-resolution but widely

available smart meter data to disaggregate BTM solar generation.
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Thank You!
Q&A

Zhaoyu Wang
http://wzy.ece.iastate.edu
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Real Data from Outage Management Systems

Year: 2011
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Outage Causes

Animal Indeterminable Other [ Trees Wind
caree B [ M otnor M Trees [
. Broken/Faulty Equipment . Lightning . Snow . Vehicle

-
o . Restoration Time (hrs) Repair Time (hrs)
. _ Cause mean | standard deviation | mean | standard deviation
Animal 1.79 1.76 0.41 0.63
Broken/Faulty Equipment | 4.43 5.07 1.58 2.38
e - Indeterminable 3.32 422 0.67 1.29
@ Lightning 5.26 5.46 0.82 2.04
g omen - Other 3.41 13.11 1.46 13.26
Snow 37.37 29.04 0.89 4.87
Hghining . Trees 10.48 17.59 0.97 2.07
Vehicle 2.82 2.50 1.91 6.11

5000 10000
Number of Outages
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Iowa State Universit




Outages and Weather Events

[ cold/wind Chil ¥ Fiood M Heat M Lightning [ Tropical Storm Restoration Time (hrs) Repair Time (hrs)
storm Event [ Excessve Heat Ml FrostiFreeze [l Heavy Snow [ Storm Surge/Tide  [Bl Winter Storm Weather Event — -

[ Extreme Cold/wind chil Jll Funnel Cloud [l High Wind | Strong Wind [ Winter Weather mean | standard deviation | mean | standard deviation
Wl Fiash Flood Wrai  Wice som W Thunderstom wing Cold/Wind Chill 2.73 1.79 1.09 1.39
winter Weatner- [ Excessive Heat 6.80 5.84 1.25 1.32
Winter Storm- Extreme Cold/Wind Chill | 2.73 2.07 1.74 2.31
Tropical Storm- - Flash Flood 26.07 28.68 0.76 3.07
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Excessive Heat- - Winter Storm 37.55 29.83 0.79 4.63
Cold/Wind Chill- - Winter Weather 4.47 5.12 1.17 1.42
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Resilience Curves — Real Data

* The figures show the number of interrupted customers and outages for three different

events
* Storm Alfred (October 2011)

* Hurricane Sandy (October 2012)
*  Winter storm (November 2014)

e Storm Alfred occurred two months after Hurricane Irene
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Resilience Curves — Real Data (cont.)

Small Event

* There are 1637 outage oF
events. [

Threshald

hax Threshald
|-| ] Example Curve

* We classify them into three
categories:

Outaged Poles

* 1493 small: number of |
outaged poles <9 i
* 87 medium: 10 < number S
of outaged poles < 19 - e o
e 57 large: 20 < number of
outaged poles

Min Threshold
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Data Statistics — Small Events

* Repair time
* Average = 1.08 hours

e Standard deviation = 1.69
hours

e Maximum = 24.6 hours | | — | |

1000 1500
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|

0
|

e Restoration time
* Average = 2.53 hours

e Standard deviation = 2.68
hours

e Maximum =64.78 hours g |

Repair Time {hrs)
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Freguency

50

Restoration Time (hrs)
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Data Statistics — Medium Events

* Repair time
* Average = 1.01 hours
e Standard deviation = 1.5 hours
 Maximum = 36.92 hours

* Restoration time
* Average = 2.71 hours
e Standard deviation = 2.4 hours
 Maximum =39.73 hours
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Data Statistics — Large Events

* Repair time
* Average = 1.35 hours

e Standard deviation =
3.33 hours

e Maximum = 91.5 hours

Fregquency

1000 2000 3000 4000

0
|

* Restoration time
* Average = 14.7 hours

e Standard deviation =
21.32 hours

e Maximum =134 hours

Repair Time (hrs)

Frequency
1500
|

* The data show that large
events have higher repair 1 e e e
and restoration times ; : . - 2

Restoration Time (hrs)
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