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• Where does the data come from?
• SCADA (supervisory control and data

acquisition); Smart Meters; Protection
Devices; (micro)PMUs (phasor
measurement units)

• Measures voltage/current/frequency at
different resolutions

• What are smart meters?
• Different from conventional energy

meters
• Stay in your homes (not every home has

it)
• Measure energy and voltage
• 15/30/60-minute resolution

• What are barriers to apply big data
techniques in power industry?
• Critical infrastructure
• Conservative
• Confidentiality

SCADA
/PMU

Smart 
Meters

3

microPMU

A Power distribution grid

Power Distribution Grid Data
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• Where does the data come from?
• SCADA (supervisory control and data

acquisition); Smart Meters; Protection
Devices; (micro)PMUs (phasor
measurement units)

• Measures voltage/current/frequency at
different resolutions

• What are smart meters?
• Stay in your homes
• Measure energy and voltage
• 15/30/60-minute resolution

• Features of smart meters
• Very low resolution
• Limited sensing capability
• Severe data quality issues
• Is it a bad data source??
• But, they are widely deployed!

SCADA
/PMU

Smart 
Meters
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microPMU

A Power distribution grid

Power Distribution Grid Data
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Real Data from Utilities
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• We have NDAs with following utilities: MidAmerican Energy, Alliant Energy, Cedar Falls Utilities, Algona
Municipal Utilities, Maquoketa Valley Electric Coop, Bloomfield, WAPA…

• We have multi-year PMU/SCADA/Smart Meter data from utility partners.

Data Type Utilities Measurement 
Locations Data Length Renewable 

Penetration
Historical 

Commands

AMI & SCADA MVEC 140,000 customers
24 months with 

continuous 
updating

~45% relative 
to peak Yes

AMI & SCADA Alliant 10 substations
24 months with 

continuous 
updating

~35% relative 
to peak Yes

AMI CFU 2,500 customers
18 months with 

continuous 
updating

~10% relative 
to peak Yes

PMU/SCADA MidAmerican 3 Substations
24 months with 

continuous 
updating

~40% relative 
to peak Yes

AMI&SCADA Algona 3,000 customers 30 months Unknown N/A

SCADA GPC 5 Substations 5 months N/A Yes
SCADA Ameren 4 Substations 12 months Unknown Yes
SCADA BGE 4 Substations 5 months Unknown Yes
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• More AMI data and circuit models:

• Duration: 4 years (2014 - 2018)
• Measurement Type: Smart Meters and SCADA
• Detailed circuit models of all feeders in Milsoft/OpenDSS and exact 

smart meter locations
• Data Time Resolution: 5 Minutes – 1 Hour
• Customer Type:

6

Utilities Substations Feeders Transformers Total 
Customer

Customers 
with Meters

3 5 27 1726 9118 6631

Residential Commercial Industrial Other
84.67% 14.11% 0.67% 0.55%

Exemplary Real Data from Utilities



Iowa State University 7

K. K. Kee, S. M. F. Shahab and C. J. Loh, “Design and development of an innovative smart metering system with GUI-based NTL detection platform”

Smart Meter Data Collection
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Real Data from Utilities
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An exemplary distribution system and associated SM data from our utility partner:

• 2 substations
• 4 load tap changing substation 

transformers (69/13.8 kV)
• 14 feeders (83 miles)
• 1489 overhead line sections
• 2582 underground cable sections
• 5 capacitor banks
• 361 switching devices
• >1000 distribution transformers
• 5212 customers

System Information

• Time period: 4 years (2015-2018)
• 4321 residential customers
• 696 small commercial customers
• 146 large commercial customers
• 17 industrial customers
• 32 other customers
• Time resolution:
 Hourly – residential, small 

commercial
 15-min – large commercial, 

industrial

Smart Meter Data
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Real Data from Utilities
Smart Meter Measurement 
Data For Load Monitoring
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Sample Customer Energy Consumption

Sample Customer Voltage

Network Topology/Model 
Information 
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Data Sharing
With permission from our utility partner, we share a real distribution grid 
model with one-year smart meter measurements. This dataset provides 
an opportunity for researchers and engineers to perform validation and 
demonstration using real utility grid models and field measurements.

 The system consists of 3 feeders and 240 nodes and is located in 
Midwest U.S.

 The system has 1120 customers and all of them are equipped with 
smart meters. These smart meters measure hourly energy 
consumption (kWh). We share the one-year real smart meter 
measurements for 2017.

 The system has standard electric components such as overhead 
lines, underground cables, substation transformers with LTC, line 
switches, capacitor banks, and secondary distribution transformers. 
The real system topology and component parameters are included.

 You may download the dataset at: 
http://wzy.ece.iastate.edu/Testsystem.html , including system 
description (in .doc and .xlsx), smart meter data (in .xlsx), OpenDSS
model, and Matlab code for quasi-static time-series simulation.

Test system diagram
The dataset has been 

viewed/downloaded more 
than 10,000 times since 

June 12, 2019

http://wzy.ece.iastate.edu/Testsystem.html
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Distribution Course Material Sharing
EE653: Power distribution system modeling, optimization and simulation
• Introduction to Distribution Systems 
• Modeling Series Components – Distribution Lines 
• Modeling Series Impedance of Overhead and Underground Lines 
• Modeling Shunt Admittance of Overhead and Underground Lines 
• Modeling Shunt Components – Loads and Caps 
• Distribution Feeder Modeling and Analysis Part I 
• Modeling Voltage Regulators 
• Modeling Three-Phase Transformers 
• Distribution Feeder Modeling and Analysis Part II 
• Various Power Flow Calculation Methods in Distribution Systems 
• Optimal Power Flow in Distribution Systems 
• Voltage/VAR Optimization and Conservation Voltage Reduction 
• Distribution System State Estimation and Smart Meter Data Analytics 
• Microgrids – Introduction and Energy Management 
• Microgrids – Dynamic Modeling and Control 
• OpenDSS Tutorial 
• Real Distribution System Modeling and Analysis using OpenDSS
• Introduction to GridLAB-D 
• Distribution System Resilience: Hardening, Preparation and Restoration 
• Energy Storage 

• You may download the course 
material at: 
http://wzy.ece.iastate.edu

• All slides are editable, feel free 
to use.

• Comments are very welcome! 
• The slides have been 

downloaded more than 5,000 
times since Dec. 25, 2019

http://wzy.ece.iastate.edu/
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Multi-timescale Load Inference
• Problem Statement: Inferring hourly consumption data from customer monthly 

billing information as pseudo-measurements in partially observable systems
• Challenges:
Loss of correlation between consumption time-series at different time-scales
Unobserved customers’ unknown typical behaviors

• Solution Strategy: Extending observability from observed customers to 
unobserved customers

• Proposed Solution:
Multi-timescale load inference (stage by stage inference chain)
Using data clustering for capturing customer typical behaviors
Using state-estimation-based Bayesian learning for inferring unobserved customers’ typical 

behaviors

12
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Very Small Correlation Between Different 
Customers’ Smart Meter Time-Series: 90% below 

0.27 (Loss of Correlation Across Customers) 

Average Correlation between Consumption of All 
Customers Decreases from Monthly to Hourly (Loss 

of Correlation Across Different Time-Scales)

Evidence from Data: How to Maintain Correlation
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Solution Step I: Smart Meter Data Pre-Processing

Smart Meter Data Problems:
 Outliers/Bad Data
 Communication Failure
 Missing Data

Counter-Measures:
 Engineering intuition (data inconsistency)
 Conventional Statistical Tools 
(e.g. Z-score)
 Robust Computation 
(e.g. relevance vector machines)
 Anomaly Detection Algorithms

14
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Solution Step II: Using Observed Customers’ Data for 
Training Multi-Timescale Load Inference Chain Models

15

EM – Monthly Consumption
EW – Weakly Consumption
ED – Daily Consumption
EH – Hourly Consumption

Extends observability using data of customers with smart 
meters to obtain a stage-by-stage consumption transition 
process (Maintains High Correlation!)
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Solution Step III: Observed Customer Daily Load Pattern 
Bank Formation and Training Multi-Timescale Models
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• Problem: Performance of Multi-timescale Chain 
Models Highly Depend on Typical Daily 
Consumption Patterns of Different Customers

• Solution: Assign a Multi-Timescale Model to Each 
Typical Load Behavior Pattern Discovered From 
Observed Loads (Method: Data Clustering)

• Train Load Inference Chain Models Using the Data 
of Observed Customers Belonging to Each Cluster 
(Ci)
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Methodology: Data Clustering (Unsupervised Learning – Spectral Clustering Algorithm)

Customer Behavior Pattern Bank: Sensitivity to Time of 
Day and Load Type

Typical discovered load profiles in different 
seasons from smart meter data

The percentage of customers 
belonging to each typical load profile 

in different seasons
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Solution Step IV: Unobserved Customers’ Pattern 
Identification and Hourly Consumption Inference
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• Basic Idea: Pick the Cluster that has the Best State 
Estimation Performance for Each Customer

• Methodology: Assign and Update Probability Values to 
Different Clusters Based on State Estimation Residuals 
(Recursive Bayesian Learning)

• Outcome: Pick the Most Probable Cluster for Each 
Unobserved Customer and Use its Corresponding 
Chain Model for Hourly Load Inference
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Overall Structure of the Proposed Solution

19
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Inferring the hourly demand of an unobserved 
residential load in one month (average estimation 

error ≈ 8.5% of total energy)

Impact of accurate consumption pattern 
identification on the accuracy of the inference 
(industrial load patterns are close and stable)

Numerical Results: Unobserved Individual Customer 
Hourly Load and Pattern Inference 
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Sensitivity Analysis of Observability

21



Iowa State University

Assessing Cold Load Pick up Demands Using Smart Meter Data 
• Problem Statement: Estimating post-outage cold load pick up (CLPU) 

demand at feeder-level and customer contribution to CLPU overshoot 
using smart meter data. This overshoot is critical in designing 
restoration plan since it may overload transformers and DERs.

• Challenges:
Customer behavior volatility
Lack of behind-the-meter information on customer thermostatically controlled 

loads

• Solution Strategy: Develop a data-driven “model-free” framework to 
estimate CLPU demand at both feeder-level and customer-level using 
only smart meter data

• Proposed Solution Components:
Machine learning-based diversified load predictor at feeder-level
Probabilistic reasoning at customer-level to model behavioral uncertainty

22
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Abnormal Post-Outage Demand Increase: Cold Load Pick-up

Impact of Outage on Customer Behavior
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To be 
predicted

Observed

Real CLPU at the Feeder-Level

Post-Outage Cold Load Pick-up (CLPU): Loss of Diversity
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Literature Review
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• Previous works have mainly focused on model-driven methods to obtain CLPU
ratios [1-3]
Use thermostatically controlled load models and thermal parameters to model houses

• Comments:
Need to collect detailed house-level thermal parameters

Need to model individual thermostatically controlled load

[1] K. P. Schneider, E. Sortomme, S. S. Venkata, M. T. Miller, and L. Ponder, “Evaluating the magnitude and duration of cold
load pick-up on residential distribution using multi-state load models,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3765–
3774, Sep. 2016.
[2] D. Athow and J. Law, “Development and applications of a random variable model for cold load pickup,” IEEE Trans.
Power Del., vol. 9, no. 3, pp. 1647–1653, Jul. 1994.
[3] E. Agneholm and J. Daalder, “Cold load pick-up of residential load,” IEE Proceedings - Generation, Transmission and
Distribution, vol. 147, no. 1, pp. 44–50, Jan. 2000.
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 Characterizes CLPU at Feeder-level 
Using Learning-Based Demand 
Prediction

 Determine Customer Contribution to 
CLPU Demand Increase Using 
Probabilistic Reasoning (GMM)

 Obtain Useful Statistics at Feeder- and 
Customer-Level to Fully Quantify 
CLPU

Overall Structure of Data-Driven CLPU Estimation Method
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Feeder-Level Data-Driven CLPU Ratio Estimation

T – Ambient 
temperature
Pd – Normal 
feeder 
demand

Trained to Predict Feeder Load Under Normal 
Operation (Least-squares support-vector machines )

Machine Learning 
Model Parameters

Estimated  Diversified Demand (what 
would happen if there was no outage)

Estimates the CLPU Overshoot (RCLPU) by Dividing 
the Observed Feeder Demand at Time of Restoration 
(Pu) by the Estimated “Expected” Hypothetical 
Predicted Normal Demand, E{Pd}
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Customer-Level Contribution to CLPU Estimation
Pd – Normal feeder demand
pd,i – Normal customer demand
pu,i – Post-outage customer demand at the 
time of restoration

Calculate customer contribution to 
normal feeder demand (Ci) at different 
times

pu,i – Post-outage customer demand at the time 
of restoration
Ii – Customer contribution to CLPU demand

At restoration the learned GMM-based joint 
distribution of Ci and Pd (quantifying customer’s 
normal behavior) is used to identify customer 
contribution to CLPU by estimating customer 
deviation from its expected normal load

Given the time-variability and 
uncertainty of customer 
behavior Gaussian Mixture 
Modeling (GMM) has been 
used to model the probability 
distribution of Ci and Pd in 
normal operation
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Gaussian Mixture Model (GMM) 
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Why do we need GMM?
• The estimated feeder-level normal demand, �𝑃𝑃𝑑𝑑𝑡𝑡𝑡𝑡, follows a distribution due 

to regression residuals.
• The historical customer contribution factor, 𝐶𝐶𝑖𝑖 , also follows a distribution 

due to the uncertainty of customer demand. Note that historical 𝐶𝐶𝑖𝑖 is 
calculated by 𝐶𝐶𝑖𝑖 = 𝑝𝑝𝑑𝑑,𝑖𝑖 / 𝑃𝑃𝑑𝑑 .

• The bivariate pair, { �𝑃𝑃𝑑𝑑𝑡𝑡𝑡𝑡 ,𝐶𝐶𝑖𝑖}, forms a 2-dimensional empirical histogram.

• This 2-dimensional histogram does not 
strictly fit a single distribution model. 
Therefore, a mixture model should be 
used to represent the empirical histogram. 

• In our problem, we used Gaussian 
mixture models (GMM).
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Gaussian Mixture Model (GMM) 
• For our problem, we approximate the joint 2-dimensional PDF of �𝑃𝑃𝑑𝑑𝑡𝑡𝑡𝑡 and 𝐶𝐶𝑖𝑖, using multiple 

Gaussian functions

Empirical histogram GMM-based estimation
�𝑃𝑃𝑑𝑑
𝑡𝑡𝑟𝑟 -- Estimated feeder-level normal demand at 𝑡𝑡𝑡𝑡 𝐶𝐶𝑖𝑖 -- Historical customer contribution factor

𝑓𝑓( �𝑃𝑃𝑑𝑑
𝑡𝑡𝑟𝑟 ,𝐶𝐶𝑖𝑖) = �

𝑗𝑗=1

𝑆𝑆𝑖𝑖

𝜔𝜔𝑗𝑗𝑔𝑔𝑗𝑗( �𝑃𝑃𝑑𝑑
𝑡𝑡𝑟𝑟 ,𝐶𝐶𝑖𝑖)

where, 𝑔𝑔𝑗𝑗 · denotes a bi-variate Gaussian function, 𝑤𝑤𝑗𝑗 is the weight corresponding to each 𝑔𝑔𝑗𝑗 · , 𝑆𝑆𝑖𝑖 is
the total number of Gaussian functions. Note that 𝑤𝑤𝑗𝑗 and the parameters in 𝑔𝑔𝑗𝑗 · are determined by the
maximum likelihood (ML) estimation, using the empirical histogram.
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CLPU ratio increases and 
saturates with outage 
duration

CLPU ratio is sensitive to 
ambient temperature

Feeder-Level CLPU Characteristics
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Feeder-Level CLPU ratio characterization 
through regression as a function of outage 
duration and ambient temperature in summer

CLPU 
Ratio

Outage 
Duration Ambient 

Temperature

CLPU Characteristics: Feeder- and Customer-Level

Expected customer contribution to CPLU 
demand as a function of outage duration and 
ambient temperature in summer
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• We have archived a large amount of real data from utility partners, including smart meters, 

SCADA, PMUs and circuit models.

• We have shared one real distribution grid model with one-year smart meter data.

• A Data-Driven Load Inference method is developed for Monitoring Distribution Systems:

 Identifying Temporal Correlations for Load Estimation 

Exploiting Latent Trends  in Customer Behavior at Different Time-Scales for Enhancing 

Inference Accuracy

• We have used smart meter data to model the cold load pick up, which would be useful to 

utilities in designing restoration plan.

33

Conclusions
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BTM PV Disaggregation -- Background

Net Demand = Native Demand − PV Generation
• In most cases, utilities only measures net demand. 
• PV generation and native demand are usually invisible to utilities.
• Posing challenges in load forecasting, outage load pickup, grid expansion 

planning and grid control.



Iowa State University 36

Problem Statement
• Types of customers

𝑆𝑆𝑃𝑃: Customers without PVs, whose native demand is recorded.
𝑆𝑆𝐺𝐺: Fully observable customers with PVs, whose native demand and PV generation are

recorded.
𝑆𝑆𝑁𝑁: Customers with PVs, whose net demand is recorded.
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Problem Statement
• Problem formulation: Separate aggregate BTM PV generation of groups of customers

KnownUnknown
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State-of-the-Art and Challenges
Approaches Comments

Model-based methods 
[1-3]

PV performance models and weather 
information are used to estimate solar 

generation

Require detailed PV array parameters
Unadaptable to changing conditions

Non-Intrusive Load 
Monitoring (NILM) 

methods [4]

Decomposing solar generation and 
demands of different appliances Require high-resolution data (1-second)

Our approach Leveraging low-resolution but widely-
available smart meter data

No prior knowledge of PV array 
models and parameters. Adaptive to 

changing conditions such as PV 
disconnection and new installation.

[1] D. L. King, W. E. Boyson, and J. A. Kratochvil, Photovoltaic Array Performance Model. Albuquerque, NM: Sandia National Labs., 
2004
[2] Q. Zhang, J. Zhang, and C. Guo, “Photovoltaic plant metering monitoring model and its calibration and parameter assessment,” in 
Proc. IEEE PES General Meeting, pp. 1–7, Jul. 2012.
[3] D. Chen and D. Irwin, “Sundance: Black-box behind-the-meter solar disaggregation,” in e-Energy, pp. 16–19, May. 2017.
[4] C. Dinesh, S. Welikala, Y. Liyanage, M. P. B. Ekanayake, R. I. Godaliyadda, and J. Ekanayake, “Non-intrusive load monitoring under 
residential solar power influx,” Appl. Energy, vol. 205, pp. 1068–1080, Aug. 2017.
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Observations
• Observed correlations from real smart meter data

The correlation between
 native demands of two sizable groups of customers → high
 generations of two PVs with similar orientation → high
 native demand and PV generation → small

For a group of customers with BTM solar
 The number of customers with a particular demand pattern is unknown
 The number of PVs with a particular orientation is unknown 

N1 or N2 – size of customer group                            A1 or A2 – azimuth of PV panel
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Solution
• Step I: Building native demand and PV generation exemplars
 How to represent the exemplar of unknown native demand, using known typical demand

patterns
 How to represent the exemplar of unknown PV generation, using known typical solar

generation patterns

𝒑𝒑𝑡𝑡𝐶𝐶 = ∑𝑖𝑖=1𝑀𝑀 𝒑𝒑𝑡𝑡
𝑐𝑐𝑖𝑖𝜔𝜔𝑖𝑖,𝑡𝑡 𝒈𝒈𝑡𝑡𝐶𝐶 = ∑𝑗𝑗=1𝑁𝑁 𝒈𝒈𝑡𝑡

𝑐𝑐𝑗𝑗𝜃𝜃𝑗𝑗,𝑡𝑡
𝒑𝒑𝑡𝑡
𝑐𝑐𝑖𝑖– candidate native demand exemplars corresponding to typical load patterns
𝒈𝒈𝑡𝑡
𝑐𝑐𝑗𝑗– candidate PV generation exemplars corresponding to typical orientations
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Solution
• Step II: Disaggregating PV generation

The disaggregation is formulated as finding coefficients to rescale exemplars, by minimizing disaggregation
residuals.

min
𝒑𝒑𝑡𝑡, 𝒈𝒈𝑡𝑡,𝛼𝛼𝑡𝑡,𝛽𝛽𝑡𝑡

1
2

(||𝒑𝒑𝑡𝑡 − 𝒑𝒑𝑡𝑡𝐶𝐶𝛼𝛼𝑡𝑡||22+||𝒈𝒈𝑡𝑡 − 𝒈𝒈𝑡𝑡𝐶𝐶𝛽𝛽𝑡𝑡||22)

s.t. 𝒑𝒑𝑡𝑡 + 𝒈𝒈𝑡𝑡 = 𝒑𝒑𝑡𝑡𝑛𝑛

Native demand exemplar PV generation exemplar

Recorded net demand
Unknown native demand Unknown PV generation

For a group of customers, we 
do not know the number of 
customers with a particular 
load pattern. Therefore, the 
weights, 𝜔𝜔𝑖𝑖,𝑡𝑡 and 𝜃𝜃𝑗𝑗,𝑡𝑡, should be 
iteratively updated based on the 
disaggregation residuals.



Iowa State University 42

Solution
• Step III: Updating weights

* The PV generation candidates have a similar weights updating mechanism.

Regret:
𝑟𝑟𝑖𝑖 = 𝑒𝑒 − 𝑒𝑒𝑖𝑖

Weight:

𝜔𝜔𝑖𝑖 =
𝑒𝑒𝜆𝜆𝑡𝑡𝑖𝑖

∑𝑗𝑗=1𝑀𝑀 𝑒𝑒𝜆𝜆𝑡𝑡𝑗𝑗
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Case Study
• Disaggregate PV generation on 19 laterals of a real distribution system in the Midwest

U.S.

• Time resolution: 
hourly

• Customer number: 
1120

• PV number: 337
• Percentage of 

observable PV: 5%
Laterals with 
residential 
customers

--

-- Transformers 
with observable 
PVs

--
Transformers 
with BTM solar 
or no solar



Iowa State University 44

Case Study
• Disaggregated PV generation and native demand profiles

(a) PV generation (b) Native demand

• 20% PVs are suddenly disconnected

Since we do not know which PVs are disconnected, model-
based method suffers from overestimation. 

Our data-driven approach is 
adaptive.
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Multi-timescale Load Inference
• Problem Statement: Inferring hourly consumption data from customer monthly 

billing information as pseudo-measurements in partially observable systems
• Challenges:
Loss of correlation between consumption time-series at different time-scales
Unobserved customers’ unknown typical behaviors

• Solution Strategy: Extending observability from observed customers to 
unobserved customers

• Proposed Solution:
Multi-timescale load inference (stage by stage inference chain)
Using data clustering for capturing customer typical behaviors
Using state-estimation-based Bayesian learning for inferring unobserved customers’ typical 

behaviors

45
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Very Small Correlation Between Different 
Customers’ Smart Meter Time-Series: 90% below 

0.27 (Loss of Correlation Across Customers) 

Average Correlation between Consumption of All 
Customers Decreases from Monthly to Hourly (Loss 

of Correlation Across Different Time-Scales)

Evidence from Data: How to Maintain Correlation
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Solution Step I: Smart Meter Data Pre-Processing

Smart Meter Data Problems:
 Outliers/Bad Data
 Communication Failure
 Missing Data

Counter-Measures:
 Engineering intuition (data inconsistency)
 Conventional Statistical Tools 
(e.g. Z-score)
 Robust Computation 
(e.g. relevance vector machines)
 Anomaly Detection Algorithms

47
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Solution Step II: Using Observed Customers’ Data for 
Training Multi-Timescale Load Inference Chain Models

48

EM – Monthly Consumption
EW – Weakly Consumption
ED – Daily Consumption
EH – Hourly Consumption

Extends observability using data of customers with smart 
meters to obtain a stage-by-stage consumption transition 
process (Maintains High Correlation!)
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Solution Step III: Observed Customer Daily Load Pattern 
Bank Formation and Training Multi-Timescale Models
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• Problem: Performance of Multi-timescale Chain 
Models Highly Depend on Typical Daily 
Consumption Patterns of Different Customers

• Solution: Assign a Multi-Timescale Model to Each 
Typical Load Behavior Pattern Discovered From 
Observed Loads (Method: Data Clustering)

• Train Load Inference Chain Models Using the Data 
of Observed Customers Belonging to Each Cluster 
(Ci)
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Methodology: Data Clustering (Unsupervised Learning – Spectral Clustering Algorithm)

Customer Behavior Pattern Bank: Sensitivity to Time of 
Day and Load Type

Typical discovered load profiles in different 
seasons from smart meter data

The percentage of customers 
belonging to each typical load profile 

in different seasons
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Solution Step IV: Unobserved Customers’ Pattern 
Identification and Hourly Consumption Inference
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• Basic Idea: Pick the Cluster that has the Best State 
Estimation Performance for Each Customer

• Methodology: Assign and Update Probability Values to 
Different Clusters Based on State Estimation Residuals 
(Recursive Bayesian Learning)

• Outcome: Pick the Most Probable Cluster for Each 
Unobserved Customer and Use its Corresponding 
Chain Model for Hourly Load Inference



Iowa State University

Overall Structure of the Proposed Solution
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Inferring the hourly demand of an unobserved 
residential load in one month (average estimation 

error ≈ 8.5% of total energy)

Impact of accurate consumption pattern 
identification on the accuracy of the inference 
(industrial load patterns are close and stable)

Numerical Results: Unobserved Individual Customer 
Hourly Load and Pattern Inference 
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Sensitivity Analysis of Observability
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• We have archived a large amount of real data from utility partners, including smart meters, 

SCADA, PMUs and circuit models.

• We have shared one real distribution grid model with one-year smart meter data.

• A Data-Driven Load Inference method is developed for Monitoring Distribution Systems:

 Identifying Temporal Correlations for Load Estimation 

Exploiting Latent Trends  in Customer Behavior at Different Time-Scales for Enhancing 

Inference Accuracy

• We have developed a data-driven method to take advantage of low-resolution but widely 

available smart meter data to disaggregate BTM solar generation.
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Thank You!
Q & A

Zhaoyu Wang
http://wzy.ece.iastate.edu

http://wzy.ece.iastate.edu/
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Real Data from Outage Management Systems
Year:

Storm-related outages
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• Outages from 2011-2016
• 32,291 power outages
• 63 cause codes
• 253 Circuits
• 32 weather events (including 19 storm events)
• Hurricane Irene (2011) and Sandy (2012)
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Outage Causes
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Outages and Weather Events
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• The figures show the number of interrupted customers and outages for three different 
events

• Storm Alfred (October 2011) 
• Hurricane Sandy (October 2012)
• Winter storm (November 2014)

• Storm Alfred occurred two months after Hurricane Irene

Resilience Curves – Real Data
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Large EventMedium Event
• There are 1637 outage 

events. 

• We classify them into three 
categories:

• 1493 small: number of 
outaged poles ≤ 9 

• 87 medium: 10 ≤ number 
of outaged poles ≤ 19 

• 57 large: 20 ≤ number of 
outaged poles 

Time

Small Event

O
ut

ag
ed

 P
ol

es

Resilience Curves – Real Data (cont.)



Iowa State University 63

Data Statistics – Small Events
• Repair time

• Average = 1.08 hours
• Standard deviation = 1.69 

hours 
• Maximum = 24.6 hours

• Restoration time
• Average = 2.53 hours
• Standard deviation = 2.68 

hours
• Maximum =64.78 hours
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Data Statistics – Medium Events
• Repair time

• Average = 1.01 hours
• Standard deviation = 1.5 hours 
• Maximum = 36.92 hours

• Restoration time
• Average = 2.71 hours
• Standard deviation = 2.4 hours
• Maximum =39.73 hours
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Data Statistics – Large Events
• Repair time

• Average = 1.35 hours
• Standard deviation = 

3.33 hours 
• Maximum = 91.5 hours

• Restoration time
• Average = 14.7 hours
• Standard deviation = 

21.32 hours
• Maximum =134 hours

• The data show that large 
events have higher repair 
and restoration times
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