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Presentation Outline

• Introduction to Smart Meter Data

• Estimating Unobservable Customers’ Contributions 
to System Peak Demand

• Outage Detection in Partially Observable Systems

• Conclusion and Future Work
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Data in Power Distribution Grids

3

• Where does the data come from?
• SCADA (supervisory control and 

data acquisition); Smart Meters; 
Protection Devices; (micro)PMUs 
(phasor measurement units)

• Measures 
voltage/current/frequency at 
different resolutions

• What are smart meters?
• Stay in your homes
• Measure energy and voltage, 

sometimes reactive power
• 5/15/30/60-minute resolution
• Single phase or three-phase (large 

commercial and industrial)

SCADA
/PMU

Smart 
Meters

microPMU

A Power distribution grid 
with different sensors



Smart Meter Data Collection
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K. K. Kee, S. M. F. Shahab and C. J. Loh, “Design and development of an innovative smart metering system with GUI-based 
NTL detection platform”



Exemplary Real Data from Utilities
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• More AMI data and circuit models:

• Duration: 4 years (2014 - 2018)

• Measurement Type: Smart Meters and SCADA

• Detailed circuit models of all feeders in Milsoft/OpenDSS and exact 
smart meter locations

• Data Time Resolution: 5 Minutes – 1 Hour

• Customer Type:

Residential Commercial Industrial Other
84.67% 14.11% 0.67% 0.55%

Utilities Substations Feeders Transformers Total 
Customer

Customers 
with Meters

3 5 27 1726 9118 6631



Smart Meter Data Pre-Processing
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• Smart Meter Data Problems:
Ø Outliers/Bad Data
Ø Communication Failure
Ø Missing Data

• Counter-Measures:
ü Engineering intuition (data 

inconsistency)
ü Conventional Statistical Tools 

(e.g. Z-score)
ü Robust Computation 

(e.g. relevance vector machines)
ü Anomaly Detection Algorithms



Data Sharing
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With permission from our utility partner, we share a real 
distribution grid model with one-year smart meter 
measurements. This dataset provides an opportunity for 
researchers and engineers to perform validation and 
demonstration using real utility grid models and field 
measurements.

§ The system consists of 3 feeders and 240 nodes and is 
located in Midwest U.S.

§ The system has 1120 customers and all of them are 
equipped with smart meters. These smart meters 
measure hourly energy consumption (kWh). We 
share the one-year real smart meter measurements for 
2017.

§ The system has standard electric components such as 
overhead lines, underground cables, substation 
transformers with LTC, line switches, capacitor 
banks, and secondary distribution transformers. The 
real system topology and component parameters are 
included.

§ You may download the dataset at: 
http://wzy.ece.iastate.edu/Testsystem.html , including 
system description (in .doc and .xlsx), smart meter 
data (in .xlsx), OpenDSS model, and Matlab code for 
quasi-static time-series simulation.

Iowa Distribution Test System

http://wzy.ece.iastate.edu/Testsystem.html


What can be learned from smart meter data 
to improve distribution system operation? 
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Estimating Customer Peak Contribution
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Problem Statement: Inferring unobservable residential customers’ peak contributions 
using their monthly energy bills.

Application: Intelligently targeting customers for peak shaving programs, smart meter 
(SM) investment, and rate design.

Challenges:
ü System is partially observable – no 

SM for unobservable customers.
ü Customers with high monthly bills 

do not necessarily have high peak 
load. 

ü Customers with high peak load do 
not necessarily have high peak 
contribution due to the 
noncoincidence between customers’ 
and system’s peak time.



A Data-Driven Customer Segmentation Strategy 
Based on Contribution to System Peak Demand
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Our Solution:
• Propose a new metric, coincident 

monthly peak contribution 
(CMPC), to quantify the 
customer peak contribution. 

• Propose a three-stage method to 
infer CMPC for unobserved 
customers using their monthly 
billing information and context 
data.

• Context data: sociodemographic 
data.

Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "A Data-Driven Customer Segmentation Strategy Based on Contribution to 
System Peak Demand," IEEE Trans. on Power Systems, accepted for publication.



Coincident Monthly Peak Contribution (CMPC)
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ü CMPC is basically the average 
customer contribution to the daily 
system peak demand during a month.

The percentage of residential customers 
whose peak demand coincides with the 
system peak load (only around 6% of 
customers have the same peak time as the 
system).

Customer peak contribution 
index, CMPC:

Why not use customer peak load to 
represent customer peak contribution? 

• !",$ %& - j-th customer’s demand at 
system peak time on the d-th day of the 
m-th month

• '$(%&)- System peak demand on the d-
th day of the m-th month

• %&- System peak time on the d-th day of 
the m-th month

Evidence from real data:*",$ = 1
-.&/0

1 !",$ %&
'$(%&)



Step I: Seasonal Residential Customer 
Behavior Pattern Bank
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• Methodology: unsupervised learning – spectral clustering (SC).

• Step I: Obtaining seasonal average customer load profiles based on 
smart meter data. 

• Step II: Calculating pair-wise similarity to build a weight matrix, 
W, based on Gaussian kernel function.

• Step III: Solving a graph partitioning problem. The objective 
function is to maximize both the dissimilarity between the different 
clusters and the total similarity within each cluster.

• Two Main Advantages of SC:
• Utilizing the weight matrix of the dataset rather than using the 

high-dimensional demand profile data directly.
• No assumptions on the data distribution. 

U. Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17, no. 4, pp. 395–416, Mar. 2007.



Step I: Seasonal Residential Customer 
Behavior Pattern Bank
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Typical discovered load 
profiles in different seasons 

from smart meter data

The percentage of observable 
customers belonging to each typical 

load profile in different seasons



Step II:  Unobservable Customer 
Classification
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• Methodology: supervised learning - multinomial logistic regression 
(MLR) algorithm (MLR).

• Data: The sociodemographic information of customers

• Advantage of MLR: MLR is able to obtain the likelihood of different 
typical profiles for customers rather than picking a single consumption 
pattern. The objective function of this classification model is defined as 
follows: 

! = #
$%&

'
[#
)%&

*
+$) ,) -.$ − 012#

)%&

*
exp( ,) -.$]

Where .$ is the approximate PDF of j’th customer, +$) is a binary 
string representing customer class membership. 



Step III:  Mapping CMPC with Energy Bills

15

• Problem: For observable customers in each pattern, what is the 
mapping relation between their CMPCs and monthly energy bills?

• Data: Monthly energy bills and CMPCs calculated using smart meter 
data.

• Methodology: supervised learning - linear regression model.

• A linear regression model is assigned and trained for each typical 
load profile using the corresponding data.

• The ordinary least square is utilized to estimate the parameters of 
the regression models.



Overview of Proposed Method 
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Ci – Typical Load Pattern
Pi – Classification 
Probability
Fi – Estimated CMPC 

ü All regression models are merged into a 
weighted clusterwise regression model. 
The probabilistic outcomes of the 
classification model are assigned as the 
weight values.



Numerical Results: Data Description
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• The data includes the smart meter measurements of over 3,000
residential customers.

• The data ranges from January 2015 to May 2018.

• The actual CMPC of each customer is calculated using real smart 
meter data.

• We assume that 20% of customers are unobservable and then 
compare the estimated results with the actual CMPCs.



Numerical Results: Unobserved Individual 
Customer CMPC Inference
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Numerical Results: Application of the 
Proposed Metric and Inference Method
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ü Application: select unobservable residential customers for the direct load 
control-based peak demand reduction.

ü For a 300-house distribution system, 35% of residential customers are selected 
for meter installation and participation in peak shaving program.

ü Three different customer segmentation strategies are tested: 1) select 
candidates randomly (base strategy); 2) select candidates by ranking monthly 
energy consumption; 3) select candidates based on the CMPC. 

ü We assumed the average load elasticity of customers to be 0.21 p.u. 

ü We have compared daily peak reductions for 28 days under the three different 
strategies.

C. Chen, J. Wang, and S. Kishore, “A distributed direct load control approach for large-scale residential demand response,” IEEE
Trans. Power Syst., vol. 29, no. 5, pp. 2219–2228, Sep. 2014.



Numerical Results: Application of the 
Proposed Metric and Inference Method
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Smart Meter Data-Driven Outage Detection
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• On August 10, a weather complex 
known as a “derecho” sent intense 
winds and thunderstorms over a 700-
mile stretch in Midwest. Between 
August 10 and 13, total outaged 
customers were 1.9 million, with 
585,000 in Iowa.

• The delay and inaccuracy of outage 
detection can cause waste of up to 80% 
of the invaluable restoration time.

• Conventional expert-experience-based 
methods that use customer calls are 
laborious, costly, and time-consuming. Ames, Iowa, 8/11/2020

National Electrical Manufacturers Association, “Smart meters can reduce power outages and restoration time.” [Online]. Available: 
https: //www.nema.org/Storm-Disaster-Recovery/Smart-Grid Solutions/Pages/ Smart-Meters-Can-Reduce-Power-Outages-and-
Restoration-Time.aspx



Outage Detection in Partially Observable 
Distribution Systems
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Challenges:
Ø Smart meters can send last-gasp signals. However, most distribution 

systems are only partially observable (i.e., not every customer has 
smart meter). 

Ø Most of the previous works handle the partially observable problem by 
involving extra data sources, such as real-time power-flow 
measurements and social network data.

Ø Outage detection can be considered as a classification problem 
(separating the data samples of normal and outage). However, the size of 
the outage data is far smaller compared to the data in normal conditions, 
which leads to a data imbalanced problem.



Outage Detection in Partially Observable 
Distribution Systems

23

Our Solution:

ü Decomposing large-scale distribution networks into a set of intersecting outage 
detection zones and performing zone-based outage detection rather than branch-based 
outage detection.

ü Optimizing the zone decomposition by exploiting the tree-like structure of distribution 
networks and the system observability (i.e., when system is fully observable, our method 
provides branch-based results).

ü Developing an unsupervised-based model for outage detection (only utilize the data in 
normal conditions for model training).

ü Providing an anomaly score coordination process to accelerate outage location in large-
scale networks.

Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "Outage detection in partially observable distribution systems using smart meters 
and generative adversarial networks, " IEEE Trans. on Smart Grid, accepted for publication.



Outage Detection Zone Definition
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ü Give that an outage event 
anywhere in the zone will 
lead to deviations from the 
(voltage-power) data 
distribution obtained from 
two observable nodes under 
normal operations.

∆"# = "% − |"%()| ≈ ∆" + ,
-.%(/

012(4,%())

7-8/,- ⊗ :-8/,- ⊗
∆;4
<=>?4

Definition:  In a radial network, an outage detection zone, Ψ-, is defined 
as Ψ- = {BC/, BCD, EFG}, where BC/ and BCD are two observable nodes, 
with BC/ being upstream of BCD, and EFG is the set of all the branches 
downstream of BC/.



Step I: Breath-First Search-Based 
Zone Selection
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• Problem: How to optimally sectionalize networks into multiple 
zones based on the limited observability to maximize outage 
detectability? 

• Our Solution: Proposing a breadth-first search-based 
mechanism to use all observable node pairs to build the zones.

• Each branch in the system belongs to at least one zone.

• Introducing a topological ordering, which simplifies outage 
location identification process.



Step I: Breath-First Search-Based 
Zone Selection
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• Each zone is determined by two neighboring observable nodes and contains all 
branches downstream of these two nodes. 

• Selecting the zones using observable nodes at the present layer before moving on 
the observable nodes at the next topological layer.

• The outcome of our zone selection algorithm follows a topological order, meaning 
that Ψ" ≻ ⋯ ≻ Ψ%.



Step II: Zone-Based Data Distribution Learning
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Challenge: Learning the distribution of 
measured variables 
within a time-window with length T (i.e., T = 3) 
for each zone (high-dimensional distribution).

Existing methods:
• Parametric-based methods require 

distributional assumptions.
• Traditional nonparametric-based methods 

(e.g., KDE) lack of scalability for large 
dataset.

Our Solution: Using Generative Adversarial
Network (GAN) to implicitly and efficiently 
represent complex distributions without any 
distributional assumptions. 

• To address data imbalanced problem, we 
only use the data in normal conditions.

# = {%&', )*
', )*+,

' }'./
0

min
45

max
48

& 9, : =

;<=>~@A=>
BC>

log 9 BC>

+;H~@I(H)[log 1 − 9 : O ]

Objective Function:
G: Generating data using random noise

Probability of D assigning the correct label to 
real samples.
Probability of D assigning the incorrect label 
to artificial samples from G.

D: Distinguishing the 
generated data from real data



Step III: Zone-Based Outage Detection
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• Zone-based outage detection is achieved by defining a GAN-based anomaly 
score for each zone, which quantifies deviations between the learned 
normal data distribution and real-time measurements.

• The deviation is defined as follows:

!" is the residual error that describes the extent to which new measurement 
follows the learned distribution of the GAN:

!# is the discriminator error that measures how well the optimal solution 
of the above optimization ($∗) follows the learned data distribution of the 
GAN. 

P. S. S. Thomas, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised anomaly detection with generative 
adversarial networks to guide marker discovery,” IPMI, 2017.



Step III: Zone-Based Outage Detection
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ü A high anomaly score implies outage somewhere in the zone.



Step IV: GAN-Based Zone Coordination
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• Problem: Multiple zones may contain the same outaged branch. How to 
down select the zone?

• Solution: Using the topological ordering and multiple anomaly scores. 

• Zone coordination follows a bottom-up fashion until no outage-related zone 
exits.



Numerical Results: 164-node Feeder Topology
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• Six observable nodes are 
assumed in this feeder (Node 
1, 22, 31, 83, 109, 158).

• Five zones are defined based 
on these nodes Ψ" ≻ Ψ$ ≻
Ψ% ≻ Ψ& ≻ Ψ'.

• Three outage events are 
simulated with different 
outage magnitudes (case 1: 20 
customers are disconnected; 
case 2: 50 customers are 
disconnected; case 3: 80 
customers are disconnected.)



Numerical Results: Accuracy Analysis
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ü A previous method uses the last gasp signal 
from smart meters as the input of SVM to 
identify event location. 

ü The previous method requires a much 
higher level of observability (i.e., around 
10 times) to achieve similar accuracy as 
our method. 

Z. S. Hosseini, M. Mahoor, and A. Khodaei, “AMI-enabled distribution network line outage identification via multi-label SVM,” 
IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 5470–5472, Sep. 2018.

Outage Detection 
Accuracy

Case 1 80.34%
Case 2 93.64%
Case 3 94.63%

ü For three cases, we have tested if 
our method can detect outages in 
zone 5. The table shows the 
results for three cases.

ü We have conducted numerical 
comparisons with a previous 
method.



Numerical Results: Sensitivity Analysis and 
Method Adaption
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ü The performance of our model can 
reach reasonable detection accuracy 
with a small training set (around 3 
days of data, hourly smart meter 
data).

ü Our method can adapt to changes 
in system conditions (i.e., 
capacitor switching) with a 
relatively short time (around 1 
day). 



Conclusion and Future Work

34

• Smart meter data, although may be of low resolution and limited 
measurement variables, can be used to significantly enhance 
distribution system observability. There are many applications such 
as load profiling, outage detection, behind-the-meter solar 
disaggregation and network modeling.  

• However, many utilities do not have full smart meter coverage. We 
demonstrated how to use available smart meter data together with 
machine learning to estimate unobservable customers’ peak 
contributions and detect outages in partially observable systems. 

• In the future, we will focus on using real smart meter data to 
identify/calibrate network models as well as distribution system state 
estimation. 



Distribution Course Material Sharing
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EE653: Power distribution system modeling, optimization and 
simulation
• Introduction to Distribution Systems 
• Modeling Series Components – Distribution Lines 
• Modeling Series Impedance of Overhead and Underground Lines 
• Modeling Shunt Admittance of Overhead and Underground Lines 
• Modeling Shunt Components – Loads and Caps 
• Distribution Feeder Modeling and Analysis Part I 
• Modeling Voltage Regulators 
• Modeling Three-Phase Transformers 
• Distribution Feeder Modeling and Analysis Part II 
• Various Power Flow Calculation Methods in Distribution Systems 
• Optimal Power Flow in Distribution Systems 
• Voltage/VAR Optimization and Conservation Voltage Reduction 
• Distribution System State Estimation and Smart Meter Data Analytics 
• Microgrids – Introduction and Energy Management 
• Microgrids – Dynamic Modeling and Control 
• OpenDSS Tutorial 
• Real Distribution System Modeling and Analysis using OpenDSS
• Introduction to GridLAB-D 
• Distribution System Resilience: Hardening, Preparation and 

Restoration 
• Energy Storage 

• You may download the course 
material at: 
http://wzy.ece.iastate.edu

• All slides are editable, feel 
free to use.

• Comments are very welcome! 

http://wzy.ece.iastate.edu/


Thank You!
Q & A

Zhaoyu Wang
http://wzy.ece.iastate.edu

36

http://wzy.ece.iastate.edu/



