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Motivation of Data-Driven Power Outage
Detection Method

- Based on EIA data, each customer lost

power for around 4 hours on average in gy
2016. ;

- In August, more than a million
customers across the Midwest are
without power due to a powerful
windstorm.

- Use of intelligent communication-
capable devices in distribution systems
has not become prevalent.

- Conventional expert-experience-based
methods that use customer calls are
laborious, costly, and time-consuming.

Ames, Iowa, 8/10/2020
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Outage Detection in Partially Observable
Distribution Systems

- Problem Statement: Developing a data-driven method for outage detection using
smart meter data in partially observable distribution systems.

Reference Data Source Solution Shortcoming
[1] Multi-label support vector machine
[2] Smart meter-based Fuzzy Petri nets-based approach System is fully observable.
[3] Probabilistic model-based method
[4] Non-smart meter-based Hypothesis testing-based framework
[5] (i.e., real-time power flow Social network-based method Limiting data availability
measurement, weather,
[6] social network data) Boosting algorithm

[1] Z. S. Hosseini, M. Mahoor, and A. Khodaei, “AMI-enabled distribution network line outage identification via multi-label SVM,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 54705472,
Sep. 2018.

[2]S.J. Chen, T. S. Zhan, C. H. Huang, J. L. Chen, and C. H. Lin, “Nontechnical loss and outage detection using fractional-order self synchronization error-based fuzzy petri nets in micro-
distribution systems,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 411-420, Jan. 2015.

[3] K. Sridharan and N. N. Schulz, “Outage management through AMR systems using an intelligent data filter,” IEEE Trans. Power Deli., vol. 16, no. 4, pp. 669-675, Oct. 2001.

[4] R. A. Sevlian, Y. Zhao, R. Rajagopal, A. Goldsmith, and H. V. Poor, “Outage detection using load and line flow measurements in power distribution systems,” IEEE Trans. Power Syst.,
vol. 33, no. 2, pp. 2053—2069, Mar. 2018.

[5] H. Sun, Z. Wang, J. Wang, Z. Huang, N. Carrington, and J. Liao, “Data driven power outage detection by social sensors,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2516-2524, Sep.
2016.

[6] P. Kankanala, S. Das, and A. Pahwa, “Adaboost+: An ensemble learning approach for estimating weather-related outages in distribution systems,” IEEE Trans. Power Syst., vol. 29, no.
1, pp. 359-367, Jan. 2014.
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Outage Detection in Partially Observable
Distribution Systems

Challenges:

> Most distribution systems are partially observable (i.c., not every customer has
smart meter).

> Most of the previous works handle the partially observable problem by
involving extra data sources, such as real-time power-flow measurements and
social network data.

> Outage detection can be considered as a classification problem (separating the
data samples of normal and outage). However, the size of the outage data is far
smaller compared to the data in normal conditions, which leads to a data
imbalanced problem.
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Outage Detection in Partially Observable
Distribution Systems

Our Solution [7]:
v Decomposing large-scale distribution networks into a set of intersecting outage detection
zones and performing zone-based outage detection rather than branch-based outage detection.

v Granularity of zone-based outage detection depends on the system observability (i.e., when
system is fully observable, our method provides branch-based results).

v Developing an unsupervised-based model for outage detection (only utilize the data in
normal conditions for model training).

v Optimizing the zone selection by exploiting the tree-like structure of distribution systems.

v Providing an anomaly score coordination process to simplify outage location in large-scale
networks.

[71Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "Outage detection in partially observable distribution systems using smart meters
and generative adversarial networks, " IEEE Trans. on Smart Grid, accepted for publication.
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Outage Detection Zone Definition

Definition: In a radial network, an outage detection zone, ¥;, is defined
as W; = {So1,S02, Zy,}, where S, and S, are two observable nodes,

with S, being upstream of Sy, and Zy, is the set of all the branches
downstream of S, .

v" Give that an outage event E:_Ii .
anywhere in the zone will Po ¥ Pui¥  Pu

PII+L—J

lead to deviations from the Yol e ,'—V"—*';'—"—lyf"—" ———"f”—bi—\ i
{ econdary Transformer
(voltage-power) data | b |
distribution obtained fi | Por s . Py |
istribution obtained from | Po ] ... Lew |
\ Vel SgY 0 SO Vel |
two observable nodes under

) Vnin| = E{[Vc¢,|} Pninv= XPc
normal Operatlons' B Observable Node B Unobservable Node
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Outage Detection Zone Definition

* Give the radial structure of the feeder, the voltage drop between two nodes can be

expressed as [2]:
n+N

AV = |V, | — |Vpen| = | 2 Z(i-1,),avc * Li-1,il

i=n+1

* The above equation can be rewritten in terms of nodal power measurements:

n+N n+L

AV = fVﬁ| [Vﬁ+N| :E: :E:I(lillégll 1169

i=n+1 j=i

cosqb j

*  When outage happens at a node s downstream of node n,n + 1 < s <n + L, the
post-outage voltage drop value can be determined as follows:

min(s,n+N) P
Wy AVE D Ky ® g @
1I=n+1

The difference between AV and AV, are almost proportional to the outage magnitude AP;.

IOWA STATE UNIVERSITY



Step I: Breath-First Search-Based Zone
Selection

* Problem: Sectionalizing networks into multiple zones can be done in
more than one way. How to find the optimal set of zones?

*  Our Solution: Proposing a breadth-First Search-based Mechanism to
use all observable node pairs to build the zones.

* Each branch in the system belongs to at least one zone and each
zone 1s unique.

* Introducing a valid topological ordering, which simplifies outage
location identification process.
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Step Il: Breath First Search-Based Zone
Selection

S @
Topological Order 2 .
= {54,509}
{85, -, So} |_ . ) - = {53,513}
Topological Order 3

{510, . 516} —

Topological Order 4 !_ v, = {SS Sll} E % £
O Unobservable Node . Observable Node = === Breath-First Zone Search

* Each zone is determined by two neighboring observable nodes and contains all branches
downstream of these two nodes.

{51}

Topological Order 1

*  Selecting the zones using observable nodes at the present depth before moving on the
observable nodes at the next topological order.

* The outcome of our zone selection algorithm follows a valid topological order, meaning
that ¥; > .- > W,,.
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Step lll: Zone-Based Data Distribution Learning

Challenge: Learning the distribution of
measured variables X = {4V, Pt PE W34
within a time-window with length T (i.e., T = 3)
for each zone (high-dimensional distribution).

Existing methods:

* Parametric-based methods require
distributional assumptions.

* Traditional nonparametric-based methods (i.e.,
KDE) lack of scalability for large dataset.

Our Solution: Using Generative Adversarial
Network (GAN) to implicitly and efficiently
represent complex distributions without any
distributional assumptions.

* To address data imbalanced problem, we only
use the data in normal conditions.

IOWA STATE UNIVERSITY

D: Distinguishing the
generated datalfrom real data

@d Time-Window l
t=1 ‘ Historical normal e iminator
i=T

AMI samples
Random

Moise Input

-

Objective Function:

~

Training
Loss

———— — — — — — ]

G: Generating data using random noise

V(D,G) =
min max ]:Ex"}"i~px1y. (xqji) [log (D (lei))]
06 6p k
+E;p,(»[log (1 - D(6(2)) )]
Probability of D assigning the correct label to
real samples.

Probability of D assigning the incorrect label to
artificial samples from G.




Step lll: Zone-Based Data Distribution Learning

Why we use GAN to learn the data distribution?

Advantages:

1. GAN can learn complicated and high-dimensional data distributions without
any dimensional assumptions.

2. The performance of GAN is superior (one of the state-of-the-art deep learning

algorithms).

. GAN requires few computation sources during online applications.

4. The discriminator network in GAN provides good guidance for outage
detection.

(OS]

Disadvantages:
1. GAN cannot provide an explicit representation of data distribution.
2. The training of GAN 1s often difficult (sensitive to hyperparameters).

[8] L. J. Goodfellow, P.-A. Jean, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio, “Generative
adversarial nets,” NIPS, 2014.
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Step IV: Zone-Based Outage Detection

« Zone-based outage detection is achieved by defining a GAN-based anomaly
score that quantifies deviations between the learned normal data distribution
and real-time measurements [9].

* The deviation is defined as follows:
C‘l’«; (mfmu,') — (1 _ )\) ' 5}{(3:;611}) + A 51-)(3:51611})
O 1s the residual error that describes the extent to which new measurement
follows the learned distribution of the GAN:
63(:1:5{1611!1) = min ‘:I::lew - G(Z)‘

Op 1s the discriminator error that measures how well the optimal solution of the
above optimization (z*) follows the learned data distribution of the GAN.

(SU (:I;izefr;;) - = lt)g D(:I;:ze*r;,r) - 10{:-’,(1 o D(G(Z*)))

[9] P. S. S. Thomas, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised anomaly detection with generative
adversarial networks to guide marker discovery,” IPMI, 2017.
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Step IV: GAN-Based Anomaly Score

80 \ !
@ Normal Condition
— o
70 Outage Condition |
60
350
o
8_40
&
L

W
o
\

N
o

=X
o

1.26 1.28 1.3 1.32 1.34 1.36 1.38
Anomaly Score

v" A high anomaly score implies outage somewhere in the zone.
13
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Step V: GAN-Based Zone Coordination

- Problem: Multiple zones can contain the faulted branch. How to efficiently
select the zone that contains the maximum information on the outage event?

- Solution: Using the topological ordering and multiple anomaly scores.

- Zone coordination follows a bottom-up fashion until no outage-related zone
exits.

lIJl >' e >' q"n_l >' qJn >' lpn+1
Zonel T > ZoneN-1T > Zone N > Zone N+I1CT D

Multiple zones include the outage location (i.e., Zone 1, Zone N-1, etc).
Zone N contains the maximum information on the outage event.
The minimum branch candidates are Zy, \Zy,,,
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Theoretical Features of the Proposed
Framework

1) Maximum QOutage Location Information Extraction
* The proposed algorithm is able to obtain the optimal zone set as it

maximizes the amount of information on the location of outage events in
partially observable systems.

2) Robustness Against Bad Data Samples

* The proposed algorithm introduces robustness against bad data samples by
taking advantage of existing redundancy of the zones (It 1s highly unlikely
to have bad data problem for all zones simultaneously.)
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Numerical Results: 164-node Feeder Topology

- — — Zonel — — — — Zone2 — — — — Zone} — — — — Zone4
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— — — — Zone 5

Six observable nodes are

assumed in this feeder (Node
1,22, 31, 83,109, 158).

Five zones are defined based
on these nodes W; > ¥, >
Y, >Y, > Y.,

Three outage events are
simulated with different
outage magnitudes (case 1: 20
customers are disconnected;
case 2: 50 customers are
disconnected; case 3: 80
customers are disconnected.)




Numerical Results: Accuracy Analysis

]
o

Outage Detection ‘ézz 7 raraet Accuracy
Accuracy £l 80.34%
Case | 80.34% Lu
Case 2 93.64% EZZ
Case 3 94.63% © ol

Case 1

Target Accuracy
93.64%

Case 2

BlProposed Method
BSVM-based Method[1]

Target Accuracy
94.63%

Case 3

v For three cases, we have tested if our v' The previous method uses the last gasp signal

method can detect outages in zone 5. from smart meters as the input of SVM to

The table shows the results for three identify event location.

cases. v" The previous method requires a much higher
v 'We have conducted numerical level of observability (i.e., around 10 times) to

comparisons with a previous method. achieve similar accuracy with our method.

[1] Z. S. Hosseini, M. Mahoor, and A. Khodaei, “AMI-enabled distribution network line outage identification via multi-label SVM,”

IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 5470-5472, Sep. 2018.
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Numerical Results: Sensitivity of Outage
Detection Accuracy

Knee Point

Detection Accuracy

04 | | | | | | | | |
43 48 55 62 72 86 108 144 216 432 4320

Training Data Size (Sample)
v The performance of our model can reach acceptable detection

accuracy with a small training set (around 3 days of data, hourly
smart meter data).
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Numerical Results: Method Adaption

100!\ ' P e
N | Capacitor Switching Occurs P ”’ |
801 ).l/ _ - \ |
) ~ NS / |
3 60" \ 4 |
&) | / I
< \
S ' ’ |
S 40_ I \ / I i
o)
é I \s |
20_ I I |
I Adaptation Time |
k- —_—_—_—_= === =9 |

0 |
8:00 12:00 16:00 20:00 24:00 4:00 8:00 12:00 16:00 20:00
Time (Hours)

v" Our method can adapt to changes in system conditions (i.e.,
capacitor switching) with a relatively short time (around 1 day).
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Conclusion

*  We have presented a new data-driven method to detect and locate
outage events in partially observable distribution systems using
only smart meter data.

* Our method performs zone-based outage detection rather than
branch-based outage detection to handle the poor observability of

systems.

* Our method follows an unsupervised learning fashion, thus solving
the data imbalanced problem caused by outage data scarcity.

* Out method has been tested using a real distribution feeder and the
corresponding smart meter data.
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Recent Works Using Smart Meter Data

Distribution System Decision Making:

* Q. Zhang, K. Dehghanpour, Z. Wang, and Q. Huang, "A Learning-based Power Management Method for Networked Microgrids
Under Incomplete Information," IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1193-1204, March 2020.

* T.Lu, Z. Wang, J. Wang, Q. Ai, and C. Wang, "A Data-Driven Stackelberg Market Strategy for Demand Response-Enabled
Distribution Systems," IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 2345-2357, May 2019.

Distribution System Situational Awareness:

* K. Dehghanpour, Y. Yuan, Z. Wang, and F. Bu, "A Game-Theoretic Data-Driven Approach for Pseudo-Measurement Generation in
Distribution System State Estimation," IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 5942-5951, November 2019.

* H. Sun, Z. Wang, J.Wang, Z.Huang, N. Carrington, and J. Liao, "Data-Driven Power Outage Detection by Social Sensors," IEEE
Transactions on Smart Grid, vol. 7, no. 5, pp. 2516-2524, September 2016.

* Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "Outage Detection in Partially Observable Distribution Systems using Smart Meters
and Generative Adversarial Networks, " IEEE Transactions on Smart Grid, accepted for publication.

* Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "A Data-Driven Customer Segmentation Strategy Based on Contribution to System
Peak Demand," IEEE Transactions on Power Systems, accepted for publication.

Distribution System Load Modeling:

* F. Bu, K. Dehghanpour, Z. Wang, and Y. Yuan, "A Data-Driven Framework for Assessing Cold Load Pick-up Demand in Service
Restoration," IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4739-4750, November 2019.

* C. Wang, Z. Wang, J. Wang, and D. Zhao, "Robust Time-Varying Parameter Identification for Composite Load Modeling," IEEE
Transactions on Smart Grid, vol. 10, no. 1, pp. 967-979, January 2019.

* C. Wang, Z. Wang, J. Wang, and D. Zhao, "SVM-Based Parameter Identification for Composite ZIP and Electronic Load
Modeling," IEEE Transactions on Power Systems, vol. 34, no. 1, pp. 182-193, January 2019.
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Thank You!
Q& A

Zhaoyu Wang
http://wzy.ece.1astate.edu
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http://wzy.ece.iastate.edu/

What is Data Imbalanced Problem?

Original Dataset
. I

=1

=2

-3

— —

Majority Type
(Normal

Operation)
99% of the Data

Minority Type

(Outage Data) —se——

19 of the Data

Offline Model
Training
(Minimize
Error)

The model always classifies the

Majority Type

data point as the majority type,
which can reach the highest

accuracy.

Majority Type

)

Machme
Learning Model
(1.e., event
identifier)

New Observation

New Observation
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Step Il: Breath First Search-Based Zone
Selection - Algorithm

*  Step I: Consider a partially observable distribution system, g, with a total number of M branches, B; =
{by, ..., by}, and a set of O + 1 observable nodes, S; = {5, Sy, ..., Sp}, Where S, represents the network’s
root node (i.e. main substation).

»  Step II: Define and initialize the zone set and the neighboring node set for g, as W9 and N(g) = {¢}. Note
that the set W9 is an ordered set, where new elements are added to the right side of the current elements in
the set. Initialize the set of candidate observable nodes as S = {S,.}, and the zone counter £ « 1.

« Step III: If N(g) = {¢}, randomly select and then remove a node,S,;, from Sg. Else if N(g) # {¢},
randomly select and remove a node, S,;, from N(g).

e Step IV: Find all the immediate observable nodes downstream of S,;, and randomly select a node from this
set, which is denoted as S,,. If N(g) = {¢}, add all the immediate observable nodes downstream of S, to
N(g); otherwise, add them to Sj.

* Step V: Select a new zone ¥, with S,; and S,,, and include all the branches downstream of S,; into
Zy, . Add Wy to the right side of the current zones in 9.

» Step VI: k — k + 1. Go back to Step III until N(g) is empty for all the nodes in Sg.

»  Step VII: Output the ordered set of all network zones, Y9 = {¥,, ..., ¥,, }with w denoting the number of
selected zones.
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Step Il: Breath First Search-Based Zone
Selection — An Example

simple
/ Breadth-first-search-based Zone Selection \

1) In this exemplary system, B, =
{bl, ey b36} and Sg — {ST" S]_, . 58}

2) k=1,%9 and N(g) are both empty. S,
1s selected to be the first observable
node, Sg = {S,-}.

3) So1 < Sr,Sp < {0}
4) S,, is selected randomly from the

immediate observable downstream node
of S, Syp < 5.

-~ L3 |
\e B o o e w ) 8) W1 ={Sp 51,2y, }WE = {¥1}
: 2 : 2 E 2
{ Topological Ordering W, ='W, =¥, =¥, =W >Y¥ ‘ 6) k — k + 1
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Step lll: Zone-Based Data Distribution Learning

* GAN relies on two interconnected Algorithm 1 GAN Training for zone W,
DNNSs, which are Simultaneously trained  Require: : Seasonal normal behavior data for zone W;

ia an adversarial or [8] Require: : Learning rate «, batch size m, number of iterations
v vers process ) for D per (G iteration np, initial learning parameters for

(G and D, 0p and O¢
while Nash equilibrium has not been achieved do
fort=10,...,np do
Generate sample batch from the latent space z
P — {(z;']};n=l

Obtain sample batch from the historical data
m

px\lri _} {:I:\Ilg (j)}‘}lzl
Update discriminator parameters using gradient
descent with o based on the discriminator loss

v Discriminator D: maximizing the
probability of assigning the correct label
to both training examples and generated
samples from G.

AN U T

v Generator G: generating artificial

samp.les .thgt maximize the p.robablhty of 5o _ Ly [“log D(ze,(j) —
the discriminator D mislabeling. log(1 — D(G(z:)))] '
9: 6'[) = QD—Q*VQD&-D
10: end for
« After training, G can recover the 11: Update generator parameters using gradient descent
with a

undelrlymi,g1 distribution Qf j[he t}raﬁnﬁlg 2 b= Y log D(G(e))
data and the D cannot distinguish the true 5. 4. .—%, o vy dc
samples from the artificially generated !4 end while

samples
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Step IV: Zone-Based Outage Detection

/ . \ - Basic Idea: Detecting the outage
Anomaly Score (Discriminator) by utilizing the learned data

- \|p6E thew| 11 . .. :
: @ i JE distribution in normal operations.
=
Xaew Data
s - Methodology: Quantifying
-. @) z -
Residual Loss | |+ g
=

deviations between the learned

) L) / distribution and real-time
measurements by combining two
GAN-based Anomaly Score [9]: error metrics: the residual dz, and

the discriminator error 6p.

t —(1=2). t
Sw; (Xnew) = (1 ;}) Or (Xnew) Outcome: GAN-based anomaly
+A - 6p(Xpew) score, ¢y, (), for each zone.
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Step V: GAN-Based Zone Coordination -
Algorithm

Stage I: Assign a GAN to each zone, ¥; € W9 and use the historical seasonal data of the
two observable nodes of each zone to learn the joint distribution of the measurement data.

Stage II: After training for each zone, ¥; , obtain the anomaly score for training samples in
the zone; determine the anomaly score sample mean and sample variance, denoted as py,

and oy, , respectively.

Stage III: At time 7, observe the anomaly scores of all the zones in the set W9 based on the
latest real-time measurements.

Stage IV: Select the first zone from the right side of the set W9 that has an abnormal
anomaly score value and denote it as W, .

Stage V: Output the set of candidate branches that are potential locations of outage event
as B, = Zy \{Zy,,, UZy, U UZy }, where A\ B represents the elements of set 4

that are not in set B.

IOWA STATE UNIVERSITY




Step V: GAN-Based Zone Coordination

Valid Topological Ordering of the Zones

¥; > W¥;: ¥, has a higher topological order than ¥}, thus Zy, & lej
(either all branches in ¥; are located downstream of the branches of '¥;
or the branches of ¥; and ¥; do not share any common path)

* The outcome of our zone selection algorithm follows a valid
topological order, meaning that ¥; > --- > W¥,,,.

* This property eliminates the need for a burdensome comprehensive

search process in zone coordination process (only need to check one
zone).

IOWA STATE UNIVERSITY



Theoretical Properties of the Proposed
Framework

Property — Maximum Qutage Location Information Extraction

* To mathematically prove this property, we first define a set of undetectable
branch sets U(WY) = {uy, ..., uy}, where u;, =

{bkl’ . bkn: kai' bkj,]/g (bki) = ]/g (bkj)}' ]/'g (bki) = {qul bki €
Zy,¥; € W9},

* Leverage the concept of entropy to quantify the amount of outage location
information in W9 [10]:

lul |u; |
HUWI)=2i-, ~Flog—T

Where, |u;| is the cardinality of the set u; and M is the total number of
branches.

IOWA STATE UNIVERSITY



Theoretical Properties of the Proposed
Framework

Property — Maximum QOutage Location Information Extraction

Theorem 1. For any partially observable network, the proposed BFS-based zone
selection algorithm maximizes the outage detection entropy.

Proof. We prove the local optimality of the selected zone set, ¥9, by showing that
any deviation from WY in a decline in outage detection information entropy.

The case of removing an arbitrary zone ¥; € W9: mathematically, this leads to
(|ul_1|+|ul|)|ul—1|+|ull

g =2l gy Pl

a decrease in H(U(W9)); the decline equals % log

The case of adding a zone to ¥9: since the proposed algorithm has already
utilized all the observable nodes to build zone, any additional zone 1s duplicated.
U(W9) will not change and the entropy remains unchanged.

IOWA STATE UNIVERSITY



Theoretical Properties of the Proposed
Framework

Property — Robustness Against Bad Data Samples

* Bad AMI data samples could generate high anomaly scores, thus leading to
misclassification.

* The proposed method has integrated a bad data mechanism by taking
advantage of existing redundancy of the zones in W9.

* In the zone coordination process, a set of redundant zones W¥ is selected that
consists of the zones with lower topological order than W,.

 If the probability of receiving an anomaly due to bad data for each zone is 7,
then the probability of misclassifying a case of bad data as outage decreases

with %"l

IOWA STATE UNIVERSITY



Numerical Results: Accuracy Analysis

(TP +TN) Zone Case Accu Recall Prec Fy
Accuracy = - _

(TP+ FP+FN +TN) case 1 0.752 0.645 0.8206 0.7223
(rp) Wy case 2 0.913 0.967 0.8727 0.9175
Recall = se 3 0.928 0.9970 0.8761 0.9326
(I'P+ FN) — — . —
case | 0.8355 0.784 0.874 0.8266
. (TP) Wy case 2 0.9435 I 0.8985 0.9465

Precision = S S _ - -
(TP + FP) case 3 0.9435 1 0.8985 0.9465
, case 1 0.673 0.506 0.7685 0.6074

_, | ,
p, — B+ 1) x Precx Recall Uy case2 0912 0984 08601 09179
2 p]
(62 * Prec + Recall) case 3 0914 0988 08606 09199
TP: True positive (Correctly predict case | 0.9225 ().884 0.964 0.9223
the outage class) Wy case 2 0.953 0.939 0.966 0.9523
TN: True negative (correctly predict case 3 0.981 0.995 0.968 0.9813
thlf r;oTnal Cl?‘ts,s) , v oredict case | 0.834 0.738 09134  0.8164
. ralse positive (1ncorrec rcdic

p ( yp W case 2 09605  0.99] 0934 09617

the outage class) _ o o
case 3 0.965 | 0.9346 0.9662

FN: False negative (incorrectly predict
the normal class)
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Numerical Results: Accuracy Analysis for 19-

Zone Case

—_——— =

—

N~
59 60 61 62 63 B4 ~

58 \ N\

155 154

153 152 151 150

N ~
N\ 161 160 1 158 146 147 148 149
AN ——
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We have conducted a test
case with more observable
nodes, and hence finer
ZOnes.

33 observable nodes are
assumed 1n the feeder
(node 1, 9, 12, 18, 21, 22,
26, 29, 31, 35, 39, 41, 43,
48, 53, 73,75, 83, 85, 90,
93, 95, 99, 106, 108, 109,
110, 114, 125, 129,134,
141, 158), where 19
zones are defined based
on these nodes.



Numerical Results: Accuracy Analysis for 19-
Zone Case

Zone Case Accu Recall Prec y Zone Case Accu Recall Prec Fy
case | 0.752 0.645 0.8206 0.7223 case 1 0.9225 0.884 0.964 0.9223
L5 case 2 0913 0.967 0.8727 0.9175 Wy case 2 0.953 0.939 0.966 0.9523
case 3 0.928 0.997 0.8761 0.9326 case 3 0.981 0.995 0.968 09813
case | 0.9495 0.955 0.9446 0.9498 case 1 0.94 0.94 0.94 0.94
o case 2 0.95 0.956 0.944 0.951 ST case 2 0.94 0.94 0.94 0.94
case 3 0.951 0.958 0.9447 0.951 case 3 0.9405 0.941 0.9401 0.9405
case | 0.922 0.929 0.916 0.923 case 1 0.96 0.96 0.96 0.96
L case 2 0.9225 0.93 09163 0.9231 L F:! case 2 0.961 0.962 0.9601 0.961
case 3 0.9175 0.92 09154 0.9177 case 3 0.958 0.956 0.9598 0.9579
case | 0.8355 0.784 0.874 0.8266 case 1 0.9625 0.962 0.963 0.9625
Wy case 2 0.9435 1 0.8985 0.9465 Wiy case 2 0.962 0.961 0.9629 0.962
case 3 0.9435 1 0.8985 0.9465 case 3 0.9635 0.964 0.963 0.9635
case | 0.9335 0.932 0.9348 0.9334 case 1 0.945 0.946 0.9441 0.9451
vy case 2 0.9315 0.928 0.9345 0.931 Wis case 2 0.9455 0.947 0.9442 0.9456
case 3 0.9365 0938 0.9352 0.9366 case 3 0.946 0.948 0.9442 0.9461
case 1 0.973 0972 0.9739 0.973 case 1 0.834 0.738 09134 0.8164
g case 2 0.975 0977 0.974 0.975 P16 case 2 0.9605 0.991 0.934 0.9617
case 3 0.976 0978 0.947 0.976 case 3 0.965 1 0.9346 0.9662
case | 0.9455 0.94 0.9505 0.9452 case 1 0.929 0.93 0.9281 0.9291
Wy case 2 0.945 0.94 0.95 0.945 Wiy case 2 0.928 0.928 0.927 0.928
case 3 0.9465 0.942 0.9506 0.9463 case 3 0.934 0.94 0.9289 0.9344
case 1 0.902 0.908 0.8981 0.903 case 1 0.976 0.972 0.9798 0.9759
Ts case 2 0.9055 0914 0.8987 0.9063 Pig case 2 0.977 0.974 0.979 0.9769
case 3 0.9065 0916 0.9 0.9074 case 3 0.9785 0.977 0.98 0.9785
case 1 0.673 0.506 0.7685 0.6074 case 1 09115 0.908 0.9144 09112
Ty case 2 0.912 0.984 0.8601 09179 Pig case 2 0.9165 0918 0.9153 0.9166
case 3 0.914 0.988 0.8606 0.9199 case 3 0.9195 0.924 0.9158 0.92
case 1 0.9295 0.929 0.93 0.929 case 1 0.9051 0.881 0.922 0.899
Tig case 2 0.9305 0931 0.9301 0.9305 Mean case 2 0.9406 0.952 0.932 0.941
case 3 0.9296 0.93 0.93 0.9295 case 3 0.944 0.9575 0.931 0.945
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