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Motivation of Data-Driven Power Outage 
Detection Method

• Based on EIA data, each customer lost 
power for around 4 hours on average in 
2016.

• In August, more than a million 
customers across the Midwest are 
without power due to a powerful 
windstorm. 

• Use of intelligent communication-
capable devices in distribution systems 
has not become prevalent. 

• Conventional expert-experience-based 
methods that use customer calls are 
laborious, costly, and time-consuming.
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Outage Detection in Partially Observable 
Distribution Systems

• Problem Statement: Developing a data-driven method for outage detection using 
smart meter data in partially observable distribution systems. 
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Reference Data Source Solution Shortcoming

[1]

Smart meter-based

Multi-label support vector machine

System is fully observable.[2] Fuzzy Petri nets-based approach

[3] Probabilistic model-based method

[4] Non-smart meter-based 
(i.e., real-time power flow 

measurement, weather, 
social network data)

Hypothesis testing-based framework

Limiting data availability[5] Social network-based method

[6] Boosting algorithm

[1] Z. S. Hosseini, M. Mahoor, and A. Khodaei, “AMI-enabled distribution network line outage identification via multi-label SVM,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 5470–5472, 
Sep. 2018.
[2] S. J. Chen, T. S. Zhan, C. H. Huang, J. L. Chen, and C. H. Lin, “Nontechnical loss and outage detection using fractional-order self synchronization error-based fuzzy petri nets in micro-
distribution systems,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 411–420, Jan. 2015.
[3] K. Sridharan and N. N. Schulz, “Outage management through AMR systems using an intelligent data filter,” IEEE Trans. Power Deli., vol. 16, no. 4, pp. 669–675, Oct. 2001.
[4] R. A. Sevlian, Y. Zhao, R. Rajagopal, A. Goldsmith, and H. V. Poor, “Outage detection using load and line flow measurements in power distribution systems,” IEEE Trans. Power Syst., 
vol. 33, no. 2, pp. 2053– 2069, Mar. 2018.
[5] H. Sun, Z. Wang, J. Wang, Z. Huang, N. Carrington, and J. Liao, “Data driven power outage detection by social sensors,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2516–2524, Sep. 
2016.
[6] P. Kankanala, S. Das, and A. Pahwa, “Adaboost+: An ensemble learning approach for estimating weather-related outages in distribution systems,” IEEE Trans. Power Syst., vol. 29, no. 
1, pp. 359–367, Jan. 2014.



Outage Detection in Partially Observable 
Distribution Systems

Challenges:
 Most distribution systems are partially observable (i.e., not every customer has 

smart meter). 

 Most of the previous works handle the partially observable problem by 
involving extra data sources, such as real-time power-flow measurements and 
social network data.

 Outage detection can be considered as a classification problem (separating the 
data samples of normal and outage). However, the size of the outage data is far 
smaller compared to the data in normal conditions, which leads to a data 
imbalanced problem.
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Outage Detection in Partially Observable 
Distribution Systems

Our Solution [7]:
 Decomposing large-scale distribution networks into a set of intersecting outage detection

zones and performing zone-based outage detection rather than branch-based outage detection.

 Granularity of zone-based outage detection depends on the system observability (i.e., when 
system is fully observable, our method provides branch-based results).

 Developing an unsupervised-based model for outage detection (only utilize the data in 
normal conditions for model training).

 Optimizing the zone selection by exploiting the tree-like structure of distribution systems.

 Providing an anomaly score coordination process to simplify outage location in large-scale 
networks.
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[7] Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "Outage detection in partially observable distribution systems using smart meters 
and generative adversarial networks, " IEEE Trans. on Smart Grid, accepted for publication.



Outage Detection Zone Definition
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Definition:  In a radial network, an outage detection zone, Ψ𝑖𝑖, is defined 
as Ψ𝑖𝑖 = {𝑆𝑆𝑜𝑜𝑜, 𝑆𝑆𝑜𝑜𝑜,𝑍𝑍Ψ𝑖𝑖}, where 𝑆𝑆𝑜𝑜𝑜 and 𝑆𝑆𝑜𝑜𝑜 are two observable nodes, 
with 𝑆𝑆𝑜𝑜𝑜 being upstream of 𝑆𝑆𝑜𝑜𝑜, and 𝑍𝑍Ψ𝑖𝑖 is the set of all the branches 
downstream of 𝑆𝑆𝑜𝑜𝑜.

 Give that an outage event 
anywhere in the zone will 
lead to deviations from the 
(voltage-power) data 
distribution obtained from 
two observable nodes under 
normal operations.



Outage Detection Zone Definition
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∆𝐕𝐕 = 𝐕𝐕𝑛𝑛 − 𝐕𝐕𝑛𝑛+𝑁𝑁 ≈ �
𝑖𝑖=𝑛𝑛+𝑜

𝑛𝑛+𝑁𝑁

�
𝑗𝑗=𝑖𝑖

𝑛𝑛+𝐿𝐿

𝐊𝐊𝑖𝑖−𝑜,𝑖𝑖 ⊗ 𝐈𝐈𝑖𝑖−𝑜,𝑖𝑖 ⊗
𝐏𝐏𝑗𝑗

𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑗𝑗

• The above equation can be rewritten in terms of nodal power measurements:

• When outage happens at a node s downstream of node n, 𝑛𝑛 + 1 ≤ 𝑐𝑐 ≤ 𝑛𝑛 + 𝐿𝐿, the 
post-outage voltage drop value can be determined as follows:

∆𝐕𝐕o ≈ ∆𝐕𝐕 + �
𝑖𝑖=𝑛𝑛+𝑜

min(𝑠𝑠,𝑛𝑛+𝑁𝑁)

𝐊𝐊𝑖𝑖−𝑜,𝑖𝑖 ⊗ 𝐈𝐈𝑖𝑖−𝑜,𝑖𝑖 ⊗
∆𝐏𝐏𝑠𝑠
𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑠𝑠

∆𝐕𝐕 = 𝐕𝐕𝑛𝑛 − |𝐕𝐕𝑛𝑛+𝑁𝑁| ≈ | �
𝑖𝑖=𝑛𝑛+𝑜

𝑛𝑛+𝑁𝑁

𝐙𝐙 𝑖𝑖−𝑜,𝑖𝑖 ,𝑎𝑎𝑎𝑎𝑎𝑎 � 𝐈𝐈𝑖𝑖−𝑜,𝑖𝑖|

• Give the radial structure of the feeder, the voltage drop between two nodes can be 
expressed as [2]: 

The difference between ∆𝐕𝐕 and ∆𝐕𝐕o are almost proportional to the outage magnitude ∆𝐏𝐏𝑠𝑠.  



Step I: Breath-First Search-Based Zone 
Selection
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• Problem: Sectionalizing networks into multiple zones can be done in 
more than one way. How to find the optimal set of zones?

• Our Solution: Proposing a breadth-First Search-based Mechanism to 
use all observable node pairs to build the zones.

• Each branch in the system belongs to at least one zone and each 
zone is unique.

• Introducing a valid topological ordering, which simplifies outage 
location identification process.



Step II: Breath First Search-Based Zone 
Selection
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• Each zone is determined by two neighboring observable nodes and contains all branches 
downstream of these two nodes. 

• Selecting the zones using observable nodes at the present depth before moving on the 
observable nodes at the next topological order.

• The outcome of our zone selection algorithm follows a valid topological order, meaning 
that Ψ𝑜 ≻ ⋯ ≻ Ψ𝑤𝑤.



Step III: Zone-Based Data Distribution Learning
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Challenge: Learning the distribution of 
measured variables 
within a time-window with length T (i.e., T = 3) 
for each zone (high-dimensional distribution).

Existing methods:
• Parametric-based methods require 

distributional assumptions.
• Traditional nonparametric-based methods (i.e., 

KDE) lack of scalability for large dataset.

Our Solution: Using Generative Adversarial
Network (GAN) to implicitly and efficiently 
represent complex distributions without any 
distributional assumptions. 

• To address data imbalanced problem, we only 
use the data in normal conditions.

𝑋𝑋 = {𝛥𝛥𝑉𝑉𝑡𝑡 ,𝑃𝑃𝑛𝑛𝑡𝑡 ,𝑃𝑃𝑛𝑛+𝑁𝑁𝑡𝑡 }𝑡𝑡=𝑜𝑇𝑇

min
𝜃𝜃𝐺𝐺

max
𝜃𝜃𝐷𝐷

𝑉𝑉 𝐷𝐷,𝐺𝐺 =
𝔼𝔼𝑥𝑥Ψ𝑖𝑖~𝑝𝑝𝑥𝑥Ψ𝑖𝑖

𝑥𝑥Ψ𝑖𝑖 log 𝐷𝐷 𝑥𝑥Ψ𝑖𝑖

+𝔼𝔼𝑧𝑧~𝑝𝑝𝑧𝑧(𝑧𝑧)[log 1 − 𝐷𝐷 𝐺𝐺 𝑧𝑧 ]

Objective Function:

D: Distinguishing the 
generated data from real data

G: Generating data using random noise

Probability of D assigning the correct label to 
real samples.
Probability of D assigning the incorrect label to 
artificial samples from G.



Step III: Zone-Based Data Distribution Learning
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Why we use GAN to learn the data distribution?

Advantages: 
1. GAN can learn complicated and high-dimensional data distributions without 

any dimensional assumptions.
2. The performance of GAN is superior (one of the state-of-the-art deep learning 

algorithms). 
3. GAN requires few computation sources during online applications. 
4. The discriminator network in GAN provides good guidance for outage 

detection. 

Disadvantages: 
1. GAN cannot provide an explicit representation of data distribution. 
2. The training of GAN is often difficult (sensitive to hyperparameters).

[8] I. J. Goodfellow, P.-A. Jean, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio, “Generative 
adversarial nets,” NIPS, 2014.



Step IV: Zone-Based Outage Detection
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• Zone-based outage detection is achieved by defining a GAN-based anomaly 
score that quantifies deviations between the learned normal data distribution 
and real-time measurements [9].

• The deviation is defined as follows:

𝛿𝛿𝑅𝑅 is the residual error that describes the extent to which new measurement 
follows the learned distribution of the GAN:

𝛿𝛿𝐷𝐷 is the discriminator error that measures how well the optimal solution of the 
above optimization (𝑧𝑧∗) follows the learned data distribution of the GAN. 

[9] P. S. S. Thomas, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised anomaly detection with generative 
adversarial networks to guide marker discovery,” IPMI, 2017.



Step IV: GAN-Based Anomaly Score
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 A high anomaly score implies outage somewhere in the zone.



Step V: GAN-Based Zone Coordination
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• Problem: Multiple zones can contain the faulted branch. How to efficiently 
select the zone that contains the maximum information on the outage event?

• Solution: Using the topological ordering and multiple anomaly scores. 

• Zone coordination follows a bottom-up fashion until no outage-related zone 
exits.



Theoretical Features of the Proposed 
Framework
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1) Maximum Outage Location Information Extraction

• The proposed algorithm is able to obtain the optimal zone set as it 
maximizes the amount of information on the location of outage events in 
partially observable systems.

2) Robustness Against Bad Data Samples

• The proposed algorithm introduces robustness against bad data samples by 
taking advantage of existing redundancy of the zones (It is highly unlikely 
to have bad data problem for all zones simultaneously.)



Numerical Results: 164-node Feeder Topology
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• Six observable nodes are 
assumed in this feeder (Node 
1, 22, 31, 83, 109, 158).

• Five zones are defined based 
on these nodes Ψ𝑜 ≻ Ψ𝑜 ≻
Ψ3 ≻ Ψ4 ≻ Ψ5.

• Three outage events are 
simulated with different 
outage magnitudes (case 1: 20 
customers are disconnected; 
case 2: 50 customers are 
disconnected; case 3: 80 
customers are disconnected.)



Numerical Results: Accuracy Analysis
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 The previous method uses the last gasp signal 
from smart meters as the input of SVM to 
identify event location. 

 The previous method requires a much higher 
level of observability (i.e., around 10 times) to 
achieve similar accuracy with our method. 

[1] Z. S. Hosseini, M. Mahoor, and A. Khodaei, “AMI-enabled distribution network line outage identification via multi-label SVM,” 
IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 5470–5472, Sep. 2018.

Outage Detection 
Accuracy

Case 1 80.34%
Case 2 93.64%
Case 3 94.63%

 For three cases, we have tested if our 
method can detect outages in zone 5. 
The table shows the results for three 
cases.

 We have conducted numerical 
comparisons with a previous method.



Numerical Results: Sensitivity of Outage 
Detection Accuracy 
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 The performance of our model can reach acceptable detection 
accuracy with a small training set (around 3 days of data, hourly 
smart meter data).



Numerical Results: Method Adaption
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 Our method can adapt to changes in system conditions (i.e., 
capacitor switching) with a relatively short time (around 1 day). 



Conclusion
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• We have presented a new data-driven method to detect and locate 
outage events in partially observable distribution systems using 
only smart meter data.

• Our method performs zone-based outage detection rather than 
branch-based outage detection to handle the poor observability of 
systems.

• Our method follows an unsupervised learning fashion, thus solving 
the data imbalanced problem caused by outage data scarcity.

• Out method has been tested using a real distribution feeder and the 
corresponding smart meter data. 



Recent Works Using Smart Meter Data
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Distribution System Load Modeling:
• F. Bu, K. Dehghanpour, Z. Wang, and Y. Yuan, "A Data-Driven Framework for Assessing Cold Load Pick-up Demand in Service 

Restoration," IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4739-4750, November 2019. 
• C. Wang, Z. Wang, J. Wang, and D. Zhao, "Robust Time-Varying Parameter Identification for Composite Load Modeling," IEEE 

Transactions on Smart Grid, vol. 10, no. 1, pp. 967-979, January 2019.
• C. Wang, Z. Wang, J. Wang, and D. Zhao, "SVM-Based Parameter Identification for Composite ZIP and Electronic Load 

Modeling," IEEE Transactions on Power Systems, vol. 34, no. 1, pp. 182-193, January 2019.

Distribution System Decision Making: 
• Q. Zhang, K. Dehghanpour, Z. Wang, and Q. Huang, "A Learning-based Power Management Method for Networked Microgrids 

Under Incomplete Information," IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1193-1204, March 2020.
• T. Lu, Z. Wang, J. Wang, Q. Ai, and C. Wang, "A Data-Driven Stackelberg Market Strategy for Demand Response-Enabled 

Distribution Systems," IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 2345-2357, May 2019.

Distribution System Situational Awareness: 
• K. Dehghanpour, Y. Yuan, Z. Wang, and F. Bu, "A Game-Theoretic Data-Driven Approach for Pseudo-Measurement Generation in 

Distribution System State Estimation," IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 5942-5951, November 2019.
• H. Sun, Z. Wang, J.Wang, Z.Huang, N. Carrington, and J. Liao, "Data-Driven Power Outage Detection by Social Sensors," IEEE 

Transactions on Smart Grid, vol. 7, no. 5, pp. 2516-2524, September 2016.
• Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "Outage Detection in Partially Observable Distribution Systems using Smart Meters 

and Generative Adversarial Networks, " IEEE Transactions on Smart Grid, accepted for publication.
• Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, "A Data-Driven Customer Segmentation Strategy Based on Contribution to System 

Peak Demand," IEEE Transactions on Power Systems, accepted for publication. 



Thank You!
Q & A

Zhaoyu Wang
http://wzy.ece.iastate.edu
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What is Data Imbalanced Problem?
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Step II: Breath First Search-Based Zone 
Selection - Algorithm
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• Step I: Consider a partially observable distribution system, g, with a total number of M branches, 𝐵𝐵𝑔𝑔 =
𝑏𝑏𝑜, … , 𝑏𝑏𝑀𝑀 , and a set of O + 1 observable nodes, 𝑆𝑆𝑔𝑔 = {𝑆𝑆𝑟𝑟, 𝑆𝑆𝑜, … , 𝑆𝑆𝑂𝑂},  where 𝑆𝑆𝑟𝑟 represents the network’s 

root node (i.e. main substation).

• Step II: Define and initialize the zone set and the neighboring node set for g, as Ψ𝑔𝑔 and 𝑁𝑁 𝑔𝑔 = 𝜙𝜙 . Note 
that the set Ψ𝑔𝑔 is an ordered set, where new elements are added to the right side of the current elements in 
the set. Initialize the set of candidate observable nodes as 𝑆𝑆𝐵𝐵 = {𝑆𝑆𝑟𝑟}, and the zone counter k ← 1.

• Step III: If 𝑁𝑁 𝑔𝑔 = 𝜙𝜙 , randomly select and then remove a node,𝑆𝑆𝑜𝑜𝑜, from 𝑆𝑆𝐵𝐵. Else if 𝑁𝑁 𝑔𝑔 ≠ 𝜙𝜙 , 
randomly select and remove a node, 𝑆𝑆𝑜𝑜𝑜, from 𝑁𝑁 𝑔𝑔 .

• Step IV: Find all the immediate observable nodes downstream of 𝑆𝑆𝑜𝑜𝑜, and randomly select a node from this 
set, which is denoted as 𝑆𝑆𝑜𝑜𝑜. If 𝑁𝑁 𝑔𝑔 = 𝜙𝜙 , add all the immediate observable nodes downstream of 𝑆𝑆𝑜𝑜𝑜 to 
𝑁𝑁 𝑔𝑔 ; otherwise, add them to 𝑆𝑆𝐵𝐵.

• Step V: Select a new zone Ψ𝑘𝑘, with 𝑆𝑆𝑜𝑜𝑜 and 𝑆𝑆𝑜𝑜𝑜, and include all the branches downstream of 𝑆𝑆𝑜𝑜𝑜 into 
𝑍𝑍Ψ𝑘𝑘 . Add Ψ𝑘𝑘 to the right side of the current zones in Ψ𝑔𝑔.

• Step VI: k ← k + 1. Go back to Step III until 𝑁𝑁 𝑔𝑔 is empty for all the nodes in 𝑆𝑆𝐵𝐵.

• Step VII: Output the ordered set of all network zones, Ψ𝑔𝑔 = Ψ𝑜, … ,Ψ𝑤𝑤 with w denoting the number of 
selected zones.



Step II: Breath First Search-Based Zone 
Selection – An Example
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1) In this exemplary system, 𝐵𝐵𝑔𝑔 =
𝑏𝑏𝑜, … , 𝑏𝑏36 and 𝑆𝑆𝑔𝑔 = 𝑆𝑆𝑟𝑟 , 𝑆𝑆𝑜, … , 𝑆𝑆8 .

2) 𝑘𝑘 = 1, Ψ𝑔𝑔 and 𝑁𝑁 𝑔𝑔 are both empty. 𝑆𝑆𝑟𝑟
is selected to be the first observable 
node, 𝑆𝑆𝐵𝐵 = 𝑆𝑆𝑟𝑟 .

3) 𝑆𝑆𝑜𝑜𝑜 ← 𝑆𝑆𝑟𝑟 ,𝑆𝑆𝐵𝐵 ← {∅}

4) 𝑆𝑆𝑜𝑜𝑜 is selected randomly from the 
immediate observable downstream node 
of 𝑆𝑆𝑟𝑟, 𝑆𝑆𝑜𝑜𝑜 ← 𝑆𝑆𝑜.

5) Ψ𝑜 = 𝑆𝑆𝑟𝑟 , 𝑆𝑆𝑜,𝑍𝑍Ψ1 ,Ψg = {Ψ𝑜}

6) 𝑘𝑘 ← 𝑘𝑘 + 1

simple



Step III: Zone-Based Data Distribution Learning
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• GAN relies on two interconnected 
DNNs, which are simultaneously trained 
via an adversarial process [8]:

 Discriminator D: maximizing the 
probability of assigning the correct label 
to both training examples and generated 
samples from G.

 Generator G: generating artificial 
samples that maximize the probability of 
the discriminator D mislabeling.

• After training, G can recover the 
underlying distribution of the training 
data and the D cannot distinguish the true 
samples from the artificially generated 
samples



Step IV: Zone-Based Outage Detection
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• Basic Idea: Detecting the outage 
by utilizing the learned data 
distribution in normal operations.

• Methodology: Quantifying 
deviations between the learned 
distribution and real-time 
measurements by combining two 
error metrics: the residual 𝛿𝛿𝑅𝑅, and 
the discriminator error 𝛿𝛿𝐷𝐷.

• Outcome: GAN-based anomaly 
score, 𝜍𝜍Ψ𝑖𝑖 � , for each zone. 

GAN-based Anomaly Score [9]:

𝜍𝜍Ψ𝑖𝑖 𝑥𝑥𝑛𝑛𝑛𝑛𝑤𝑤
𝑡𝑡 = 1 − 𝜆𝜆 ⋅ 𝛿𝛿𝑅𝑅 𝑥𝑥𝑛𝑛𝑛𝑛𝑤𝑤𝑡𝑡

+𝜆𝜆 ⋅ 𝛿𝛿𝐷𝐷 𝑥𝑥𝑛𝑛𝑛𝑛𝑤𝑤𝑡𝑡



Step V: GAN-Based Zone Coordination -
Algorithm
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• Stage I: Assign a GAN to each zone, Ψ𝑖𝑖 ∈ Ψ𝑔𝑔 and use the historical seasonal data of the 
two observable nodes of each zone to learn the joint distribution of the measurement data. 

• Stage II: After training for each zone, Ψ𝑖𝑖 , obtain the anomaly score for training samples in 
the zone; determine the anomaly score sample mean and sample variance, denoted as 𝜇𝜇Ψ𝑖𝑖
and 𝜎𝜎Ψ𝑖𝑖 , respectively. 

• Stage III: At time T, observe the anomaly scores of all the zones in the set Ψ𝑔𝑔 based on the 
latest real-time measurements. 

• Stage IV: Select the first zone from the right side of the set Ψ𝑔𝑔 that has an abnormal 
anomaly score value and denote it as Ψ𝑎𝑎. 

• Stage V: Output the set of candidate branches that are potential locations of outage event 
as 𝐵𝐵𝑎𝑎 = 𝑍𝑍Ψ𝑎𝑎 ∖ {𝑍𝑍Ψ𝑎𝑎+1 ∪ 𝑍𝑍Ψ𝑎𝑎+2 ∪ ⋯∪ 𝑍𝑍Ψ𝑤𝑤}, where 𝐴𝐴 ∖ 𝐵𝐵 represents the elements of set A
that are not in set B.



Step V: GAN-Based Zone Coordination
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Valid Topological Ordering of the Zones

• Ψ𝑖𝑖 ≻ Ψ𝑗𝑗: Ψ𝑖𝑖 has a higher topological order than Ψ𝑗𝑗, thus 𝑍𝑍Ψ𝑖𝑖 ⊄ 𝑍𝑍Ψ𝑗𝑗

(either all branches in Ψ𝑗𝑗 are located downstream of the branches of Ψ𝑖𝑖
or the branches of Ψ𝑖𝑖 and Ψ𝑗𝑗 do not share any common path)

• The outcome of our zone selection algorithm follows a valid 
topological order, meaning that Ψ𝑜 ≻ ⋯ ≻ Ψ𝑤𝑤.

• This property eliminates the need for a burdensome comprehensive 
search process in zone coordination process (only need to check one 
zone).



Theoretical Properties of the Proposed 
Framework

30

Property – Maximum Outage Location Information Extraction

• To mathematically prove this property, we first define a set of undetectable 
branch sets 𝑈𝑈 Ψ𝑔𝑔 = {𝑢𝑢𝑜, … ,𝑢𝑢𝑉𝑉}, where 𝑢𝑢𝑘𝑘 =
𝑏𝑏𝑘𝑘1 , … , 𝑏𝑏𝑘𝑘𝑛𝑛:∀𝑏𝑏𝑘𝑘𝑖𝑖 ,𝑏𝑏𝑘𝑘𝑗𝑗 , 𝛾𝛾

𝑔𝑔 𝑏𝑏𝑘𝑘𝑖𝑖 = 𝛾𝛾𝑔𝑔 𝑏𝑏𝑘𝑘𝑗𝑗 , 𝛾𝛾𝑔𝑔 𝑏𝑏𝑘𝑘𝑖𝑖 = {∀Ψ𝑖𝑖:𝑏𝑏𝑘𝑘𝑖𝑖 ∈
𝑍𝑍Ψ𝑖𝑖 ,Ψ𝑖𝑖 ∈ Ψ

𝑔𝑔}.

• Leverage the concept of entropy to quantify the amount of outage location 
information in Ψ𝑔𝑔 [10]:

𝐻𝐻(𝑈𝑈(Ψ𝑔𝑔))=-∑𝑖𝑖=𝑜𝑉𝑉 𝑢𝑢𝑖𝑖
𝑀𝑀
𝑙𝑙𝑐𝑐𝑔𝑔 𝑢𝑢𝑖𝑖

𝑀𝑀

Where, 𝑢𝑢𝑖𝑖 is the cardinality of the set 𝑢𝑢𝑖𝑖 and M is the total number of 
branches.
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Property – Maximum Outage Location Information Extraction
Theorem 1. For any partially observable network, the proposed BFS-based zone 
selection algorithm maximizes the outage detection entropy.

Proof. We prove the local optimality of the selected zone set, Ψ𝑔𝑔, by showing that 
any deviation from Ψ𝑔𝑔 in a decline in outage detection information entropy.

The case of removing an arbitrary zone 𝜳𝜳𝒋𝒋 ∈ 𝜳𝜳𝒈𝒈: mathematically, this leads to 

a decrease in 𝐻𝐻(𝑈𝑈(Ψ𝑔𝑔)); the decline equals 𝑜
𝑀𝑀
𝑙𝑙𝑐𝑐𝑔𝑔 𝑢𝑢𝑙𝑙−1 + 𝑢𝑢𝑙𝑙 𝑢𝑢𝑙𝑙−1 +|𝑢𝑢𝑙𝑙|

𝑢𝑢𝑙𝑙−1 𝑢𝑢𝑙𝑙−1 ⋅ 𝑢𝑢𝑙𝑙 𝑢𝑢𝑙𝑙
.

The case of adding a zone to 𝜳𝜳𝒈𝒈: since the proposed algorithm has already 
utilized all the observable nodes to build zone, any additional zone is duplicated. 
𝑈𝑈 Ψ𝑔𝑔 will not change and the entropy remains unchanged.
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Property – Robustness Against Bad Data Samples

• Bad AMI data samples could generate high anomaly scores, thus leading to 
misclassification. 

• The proposed method has integrated a bad data mechanism by taking 
advantage of existing redundancy of the zones in Ψ𝑔𝑔.

• In the zone coordination process, a set of redundant zones Ψ𝑅𝑅 is selected that 
consists of the zones with lower topological order than Ψ𝑎𝑎.

• If the probability of receiving an anomaly due to bad data for each zone is 𝜂𝜂, 
then the probability of misclassifying a case of bad data as outage decreases 
with 𝜂𝜂 Ψ𝑅𝑅 .
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TP: True positive (correctly predict 
the outage class)
TN: True negative (correctly predict 
the normal class)
FP: False positive (incorrectly predict 
the outage class)
FN: False negative (incorrectly predict 
the normal class)
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• We have conducted a test 
case with more observable 
nodes, and hence finer 
zones.

• 33 observable nodes are  
assumed in the feeder 
(node 1, 9, 12, 18, 21, 22, 
26, 29, 31, 35, 39, 41, 43, 
48, 53, 73,75, 83, 85, 90, 
93, 95, 99, 106, 108, 109, 
110, 114, 125, 129,134, 
141,  158),  where 19 
zones are defined based 
on these nodes. 
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