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• Power outages have significant impacts on production, 
transportation, communication, and health supply 
service, resulting in significant economic losses.

• In recent years, customers experienced longer outages. 
In 2018, each customer lost power for around 5.8 hours.

• In February 2021, the state of Texas suffered a major 
power crisis, more than 4.5 million homes and 
businesses were affected.

• From the customer’s perspective, the most important 
and concerned information is timely and accurate outage 
recovery time prediction, which will greatly help them 
plan for subsequent arrangements in advance.

Source: https://www.eia.gov/   https://poweroutage.us 

Motivation of Data-Driven Outage Time Prediction



Existing Work and Challenges

Reference Data Source Approach Case Study Cons

[1] Severe weather records
Accelerated failure time 

model
Estimate duration of historical outages Data distribution assumption,

uses only weather data as variables, 
limited data source[2] Radar observations data

Bayesian prediction 
algorithm

Provide an estimation of outage duration

[3]
Historical outage data
with severe weather 

records
Deep neural network

Predict repair and restoration time with 
respect to severe weather events

Single global model, each outage 
recovery is treated as an isolated 

process

 Challenges:
 Outages occurring together in a time period can impact restoration time; previous studies ignored the 

correlation among overlapped outages.

 Outages may have different scales (i.e., a couple of minutes to several hours) and unbalanced 
distributions (i.e., some scales are rare); previous studies trained a single model for the entire dataset, 
which may cause an overfitting problem.



Real-World Outage Dataset - Overview 
• The available outage reports are recorded by a utility provider located in the U.S., including over 

16,000 outage records over a six-year period (2011 ~ 2016).
• The initial outage data features include:

• Start and end time (accurate to seconds resolution)
• Outage locations (latitude, longitude)
• Numbers of customers interrupted 
• Repair and Restoration time (accurate to seconds resolution)
• Causes (i.e., animal, tree, connector failure)

Start Time End Time Customers 
Interrupted Latitude Longitude Duration(mi

ns) Pole Number Cause Key Sub Cause 
Key

Dec 1, 2012 
3:21:00 AM

Dec 1, 2012 
11:31:00 PM 126 xxx xxx 2,010 B 0001 Connector

Tree/Limb In 
Clearance 

Zone

Dec 1, 2012 
3:39:00 AM

Dec 1, 2012 
6:56:00 AM 55 xxx xxx 317 N  0006 System 

Failure

Animal, 
Squirrel

Dataset visualization with sample entries



• Outages mostly occur during summer and fall.
• There are 63 causes, categorized as vegetation-related, animal-related, and equipment-related.
• The collected severe weather report has transferred to 8 discrete codes.

Real-World Outage Dataset - Analysis



• Outages can have overlapped time periods. We considered 
a new training feature: cumulative number of coinciding 
outages (i.e., the quantity of outages presented at a certain 
time period that has not yet been resolved).

Example of the cumulative number of coinciding outages

𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑜𝑜𝑖𝑖 = 𝑐𝑐𝑜𝑜

𝑜𝑜𝑖𝑖 − 𝑐𝑐𝑟𝑟
𝑜𝑜𝑖𝑖

where is the 𝑐𝑐𝑜𝑜
𝑜𝑜𝑖𝑖 cumulative total outages at time 𝑡𝑡𝑖𝑖, 𝑐𝑐𝑟𝑟

𝑜𝑜𝑖𝑖 is the 
cumulative total restorations at time 𝑡𝑡𝑖𝑖, and 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑜𝑜𝑖𝑖 is the 
number of coinciding outages at time 𝑡𝑡𝑖𝑖.

• The cumulative number of customers interrupted is also 
considered as a new feature.

(1)

Real-World Outage Dataset - Analysis 



Proposed Outage Restoration Time Prediction 
Methodology
We propose a multi-stage framework to estimate the 
restoration time in a cluster-wise manner:

• Dataset clustering to deal with the data 
imbalanced distribution problem.

• Find the optimal subset with the highest average 
similarity with other subsets to train an initial 
ANN model.

• Update hyperparameters and similarity index 
based on the trained model. Use the trained 
model as a source for the next training session.

• Each of the other outage subsets is assigned with 
an ANN to predict restoration time.



• The sparse dictionary-based ensemble spectral clustering (SDESC) is leveraged to cluster the dataset.

• Unlike k-means, spectral clustering can better handle high-dimensional data and is robust against data 
noise.

• In SDESC, the sparse coding technique greatly decreases the complexity and cost of practical 
implementation.

• Algorithm summary: 

Step I: The high-dimensional dataset is factorized into a low-dimensional dictionary matrix and a 
representation matrix.

Step II: The similarity between different data points is used to distinguish data partitions in a graphical 
manner.

Step III: Solve the graph partition problem according to the optimal value of clusters.

Step IV: The optimal value of clusters can be determined by various clustering evaluation metrics such 
Davies-Bouldin validation index (DBI).

Outage Pattern Discovery Using Cluster Ensembles



Outage Restoration Time Prediction Framework

• A transfer learning strategy discovers outage features and 
structures under different but related subsets.

• The transfer learning firstly gathers features and the 
output (i.e., actual restoration time) in the pre-trained 
model, and stores them as a source task.

• In this study, learning tasks are the training assignments 
of each outage subset, by exploiting the similarity
between the learning task and the source task, the 
learning parameters can be updated for training a new 
prediction model.

• The learned model can be utilized in a recursive manner 
when dealing with a new learning task.



CI: Customer interrupted RT: restoration time

• Using feature selection and clustering metrics
evaluation, the dataset consists of 10 features (i.e., 
customer interrupted, cumulative outages, cause,
and weather information) is clustered into 4 subsets 
using the SDESC algorithm.

• Collected high-precision weather-related data from 
the National Oceanic and Atmospheric 
Administration (NOAA) :

• Hourly temperature
• Hourly wind speed
• Hourly precipitation
• Severe weather reports

• Weather data aligned with each outage data record 
based on the start time.

Cluster Samples Avg. CI
Avg. RT 
(min)

𝐂𝐂𝟏𝟏 2379 170 740.5
𝐂𝐂𝟐𝟐 5302 21 288.4
𝐂𝐂𝟑𝟑 2884 16 144.5
𝐂𝐂𝟒𝟒 5872 22 82.2

• 𝐂𝐂𝟏𝟏 refers to severe outages with higher Avg. RT 
and Avg. CI, but relatively infrequent. 

• 𝐂𝐂𝟐𝟐 and 𝐂𝐂𝟒𝟒 represent intermediate and least 
serious outages, which are twice as frequent as 
severe outages. 

• 𝐂𝐂𝟒𝟒 represents a subset of minor outages, which 
occur frequently but can typically be resolved in a 
timely manner.

Source: https://www.ncei.noaa.gov/products/severe-weather  https://www.ncdc.noaa.gov/cdo-web 

Numerical Results – Clustering Summary



Numerical Results – Similarity Matrix

Similarity Index (%) Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 with… 17.7 18.6 26.2

Cluster 2 with… 17.7 49.8 58.7

Cluster 3 with… 18.6 49.8 52.3

Cluster 4 with… 26.2 58.7 52.3

• The similarity index (ranged 0-1) among different data subsets is calculated by a cross-validation 
principle with an unsupervised process.

• Average similarity with other subsets:
• Cluster 1: 20.83%
• Cluster 2: 42.06%
• Cluster 3: 40.23%
• Cluster 4: 45.73%

Similarity Index: 0 means no similarity between two samples, and 1 means two samples are the same.



Numerical Results – Clustering Visualization

• t-SNE [4] for high-dimensional data visualization and enhancing the overall interpretability of the framework.  

t-SNE plot of clustered data using the advanced k-means methodt-SNE plot of clustered data using the proposed SDESC method



 𝐂𝐂4 is chosen to be the source task based on the similarity evaluation.

 Other training tasks are utilizing the pre-trained model 𝐂𝐂4. 

 Only 3% of the total predicted time is more than 60 minutes of the 
actual restoration time.

Example Results between actual and predicted restoration time for the source task (𝐂𝐂4)

Example Results between actual and predicted restoration time for the learning tasks (𝐂𝐂1 , 𝐂𝐂2 , 𝐂𝐂3 )

Numerical Results – Time Estimation 



Prediction of restoration time with and w/o transfer learning approach
Comparison of prediction results with three existing methods

 We have conducted numerical comparisons with three existing 
works [5-7] (left figure) and global models without transfer 
learning and cluster-wise strategies (right figures).

 The proposed method can outperform the previous works. Also, 
the combination of transfer learning and cluster-wise strategies 
have proven to be valuable. The largest MAPE improvements are 
393.78% and 52.98% respectively for implementing clustering 
and transfer learning strategies.  

Restoration time comparison between cluster-wised model and global model

Numerical Results – Comparison



Conclusions
• Accurate outage restoration time predictions will greatly help customers and utilities plan for 

subsequent arrangements in advance.

• The proposed method estimates the restoration time in a cluster-wise manner to deal with the 
uncertainty caused by the heterogeneity of outage events. 

• The transfer learning embedded framework solves the data imbalance problem caused by the 
data scarcity of the specific outage patterns.

• The results show that the proposed method has improved performance compared to existing 
methods and overcome large-scale data challenges.
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Thank you!
Q&A
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