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Background and Motivation

• Definition: Conservation Voltage Reduction (CVR) is an energy
efficiency measure that reduces energy consumption through
feeder-level voltage reduction.

• Motivation: A major benefit of CVR is its non-intrusive nature, i.e.,
energy consumption at the customer end reduces automatically
without negatively impacting equipment operation or customer
comfort.

• Measure: The CVR impacts can be measured by CVR factor
(𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓) for energy, which is defined as

𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 =
∆𝐸𝐸 (%)
∆𝐶𝐶 %
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Methodology
Comparison-Based Methods
There are two basic approaches of comparison-
based methods for measuring CVR effects. 
• Select two similar feeders in the same

performance period (similar configurations,
topologies, loading conditions). Voltage
reduction is applied to only one feeder.

• Perform a CVR test on a feeder and apply
normal voltage to the same feeder but during
another time period with similar loading
conditions.

Fig. 1. Demonstration of comparison-
based method for evaluating CVR factor.
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Methodology
Regression-Based Methods
• In regression-based methods, loads are 

modeled as a function of some impact 
factors, e.g., temperature. 

• Models for the normal-voltage load 
process are identified using linear 
regression, and their outputs are 
compared with the measured reduced-
voltage load to calculate the CVR factor. 

Impact factors

Fig. 2. Demonstration of regeression-
based method for evaluating CVR factor.

Load
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Methodology
Load Modeling-Based Methods
• The nature of CVR is that load is sensitive to

voltage. Whether voltage reduction is
applied or not, loads are always sensitive to
voltage and the sensitivities vary with time
due to the ever-changing load compositions.

• In the load modeling-based method, a
function of voltages and other exogenous
factors is established to represent the load
consumption. This function can be used to
capture the load-to-voltage sensitivities by
identifying the model parameters in real
time.

Fig. 3. Flowchart of load modeling-based
method for evaluating CVR factor.

Fig. 4. Demonstration of moving time window.
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Methodology
Load Modeling-Based Methods
Step 1: Select a mathematical representation of the load model, e.g., the ZIP load model

𝑃𝑃𝑍𝑍𝑍𝑍𝑍𝑍
𝑃𝑃0

= 𝛼𝛼𝑍𝑍
𝐶𝐶
𝐶𝐶0

2

+ 𝛽𝛽𝑍𝑍
𝐶𝐶
𝐶𝐶0

+ 𝛾𝛾𝑍𝑍

where 𝑃𝑃𝑍𝑍𝑍𝑍𝑍𝑍 (Watt) is the active power of the load of ZIP model; 𝑃𝑃0 (Watt) is the nominal
power of the feeder/bus of the load; 𝛼𝛼𝑍𝑍 is the active power-related coefficient of the load’s
constant impedance component; 𝐶𝐶 (Volt) is the voltage magnitude measurement; 𝐶𝐶0 (Volt)
is the nominal voltage; 𝛽𝛽𝑍𝑍 is the active power-related coefficient of the load’s constant
voltage component; 𝛾𝛾𝑍𝑍 is the active power-related coefficient of the load’s constant power
component.

We choose the ZIP load model because the voltage-insensitive components can be
reflected into the constant power term.
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Methodology
Load Modeling-Based Methods
Step 2: In real-world engineering, the load composition, customer behavior and operation 
condition are changing over time. To identify the time-varying load model parameters 𝛼𝛼𝑍𝑍,𝑖𝑖, 
𝛽𝛽𝑍𝑍,𝑖𝑖, and 𝛾𝛾𝑍𝑍,𝑖𝑖, a general optimization problem is formulated as follows.

min
𝛼𝛼𝑃𝑃,𝑖𝑖,𝛽𝛽𝑃𝑃,𝑖𝑖,𝛾𝛾𝑃𝑃,𝑖𝑖

𝐽𝐽 = ∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑍𝑍,𝑖𝑖
𝑉𝑉𝑖𝑖
𝑉𝑉0

2
+ 𝛽𝛽𝑍𝑍,𝑖𝑖

𝑉𝑉𝑖𝑖
𝑉𝑉0

+ 𝛾𝛾𝑍𝑍,𝑖𝑖 −
𝑍𝑍𝑖𝑖
𝑍𝑍0

2

s.t.,    𝛼𝛼𝑍𝑍,𝑖𝑖 + 𝛽𝛽𝑍𝑍,𝑖𝑖 + 𝛾𝛾𝑍𝑍,𝑖𝑖 = 1
0 < 𝛼𝛼𝑍𝑍,𝑖𝑖 , 𝛽𝛽𝑍𝑍,𝑖𝑖, 𝛾𝛾𝑍𝑍,𝑖𝑖 < 1

where 𝐽𝐽 is the accumulative squared error, i is the ith time interval, and n is the total
number of time intervals. The lengths of time intervals depend on the time resolution of
the measurement data. 𝐶𝐶𝑖𝑖 and 𝑃𝑃𝑖𝑖 are field voltage and power measurements.
This optimization problem can be solved by various kinds of methods, such as least-square-
type algorithms.
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Methodology
Load Modeling-Based Methods
Step 3: Compute estimated voltage reduction ∆𝐶𝐶 % for the 
ith time interval from the measurement data:

∆𝐶𝐶 % =
𝐶𝐶average
𝑜𝑜𝑓𝑓𝑓𝑓 − 𝐶𝐶average𝑜𝑜𝑛𝑛

𝐶𝐶average
𝑜𝑜𝑓𝑓𝑓𝑓 × 100%

𝐶𝐶average
𝑜𝑜𝑓𝑓𝑓𝑓 =

∑𝑖𝑖=1
𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝑖𝑖

𝑜𝑜𝑓𝑓𝑓𝑓

𝑛𝑛𝑜𝑜𝑓𝑓𝑓𝑓
, 𝐶𝐶average

𝑜𝑜𝑓𝑓𝑓𝑓 =
∑𝑖𝑖=1
𝑛𝑛𝑜𝑜𝑜𝑜 𝐶𝐶𝑖𝑖𝑜𝑜𝑛𝑛

𝑛𝑛𝑜𝑜𝑛𝑛

where 𝐶𝐶average
𝑜𝑜𝑓𝑓𝑓𝑓 and 𝐶𝐶average𝑜𝑜𝑛𝑛 are averaged voltages when CVR is 

on and off, respectively; 𝐶𝐶𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓 and 𝐶𝐶𝑖𝑖𝑜𝑜𝑛𝑛 are voltages for CVR-off 

and CVR-on respectively; 𝑛𝑛𝑜𝑜𝑛𝑛 and 𝑛𝑛𝑜𝑜𝑓𝑓𝑓𝑓 are the total numbers 
of measurements for CVR is on and CVR is off, respectively.

Fig. 5. Demonstration of average
voltages and voltage reduction.
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Methodology
Load Modeling-Based Methods
Step 4: By substituting the obtained load model into the definition of CVR factor, the time-
varying CVR factor can be explicitly derived as a function of load model parameters, 
estimated voltage reduction and normalized voltage measurement:

𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑖𝑖 =
∆𝐸𝐸𝑖𝑖 %
∆𝐶𝐶𝑖𝑖 % =

𝑒𝑒𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓 − 𝑒𝑒𝑖𝑖𝑜𝑜𝑛𝑛

𝑒𝑒𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓

𝐶𝐶𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓 − 𝐶𝐶𝑖𝑖𝑜𝑜𝑛𝑛

𝐶𝐶𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓

=

𝑃𝑃𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓 − 𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛

𝑃𝑃𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓

𝐶𝐶𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓 − 𝐶𝐶𝑖𝑖𝑜𝑜𝑛𝑛

𝐶𝐶𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓

=
2𝛼𝛼𝑍𝑍,𝑖𝑖 − 𝛼𝛼𝑍𝑍,𝑖𝑖∆𝐶𝐶𝑖𝑖 % �𝐶𝐶𝑖𝑖𝑜𝑜𝑛𝑛 2 + 𝛽𝛽𝑍𝑍,𝑖𝑖 �𝐶𝐶𝑖𝑖𝑜𝑜𝑛𝑛(1 − ∆𝐶𝐶𝑖𝑖 % )

𝛼𝛼𝑍𝑍,𝑖𝑖 �𝐶𝐶𝑖𝑖𝑜𝑜𝑛𝑛
2 + 𝛽𝛽𝑍𝑍,𝑖𝑖 �𝐶𝐶𝑖𝑖𝑜𝑜𝑛𝑛(1 − ∆𝐶𝐶𝑖𝑖 % ) + 𝛾𝛾𝑍𝑍,𝑖𝑖(1 − ∆𝐶𝐶𝑖𝑖 % )2

where �𝐶𝐶𝑖𝑖𝑜𝑜𝑛𝑛 = 𝐶𝐶𝑖𝑖𝑜𝑜𝑛𝑛/𝐶𝐶0 is the normalized voltage when CVR is off; ∆𝐶𝐶𝑖𝑖 % can be 
approximated by ∆𝐶𝐶 % . 

Note that this 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑖𝑖 is the CVR factor at the ith time interval, i.e., the load-modeling-
based methods can identify instantaneous CVR factors.
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Methodology
Load Modeling-Based Methods
Step 5: At a time period that CVR is on, we can use time-varying CVR factor, estimated
voltage reduction and measurement data 𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛 to estimate the power consumption if CVR
was off during the same period, 𝑃𝑃𝑖𝑖,estimate

𝑜𝑜𝑓𝑓𝑓𝑓 :

𝑃𝑃𝑖𝑖,estimate
𝑜𝑜𝑓𝑓𝑓𝑓 ≈

𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛

1 − ∆𝐶𝐶 % × 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑖𝑖
The energy baseline 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 is the total energy consumed if CVR was off:

𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 = 𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 + 𝐸𝐸𝑜𝑜𝑓𝑓𝑓𝑓,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 = �
𝑖𝑖=1

𝑛𝑛𝑜𝑜𝑜𝑜

𝑃𝑃𝑖𝑖,estimate
𝑜𝑜𝑓𝑓𝑓𝑓 ∆𝑡𝑡 + �

𝑗𝑗=1

𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜

𝑃𝑃𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓∆𝑡𝑡

where 𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 and 𝐸𝐸𝑜𝑜𝑓𝑓𝑓𝑓,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 are energy baselines for the CVR-on and CVR-off
periods, respectively.
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Methodology
Load Modeling-Based Methods
Step 6: The energy savings during the periods when CVR is on can be 
computed as

𝐸𝐸𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 = 𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 − 𝐸𝐸𝑜𝑜𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛𝑜𝑜𝑜𝑜

𝑃𝑃𝑖𝑖,estimate
𝑜𝑜𝑓𝑓𝑓𝑓 − 𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛 ∆𝑡𝑡

where 𝐸𝐸𝑜𝑜𝑛𝑛 is the energy consumed during the CVR-on period.
Step 7: Calculate the estimated energy reduction ∆𝐸𝐸 (%) by

∆𝐸𝐸 % =
𝐸𝐸𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 × 100%

Step 8: The CVR factors computed in Step 4 are a series of “instantaneous” values at different time 
intervals. To integrate this series of CVR factors into one single value, the overall scalar-valued CVR 
factor can be computed as

𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 =
∆𝐸𝐸 (%)
∆𝐶𝐶 %

Fig. 6. Relationship among variables.

14



Methodology
Load Modeling-Based Methods
Step 9: In case of missing data, scaling coefficients are needed to calculate baseline energy 
and energy savings:

𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 = 𝛼𝛼𝑜𝑜𝑛𝑛�
𝑖𝑖=1

𝑛𝑛𝑜𝑜𝑜𝑜

𝑃𝑃𝑖𝑖,estimate
𝑜𝑜𝑓𝑓𝑓𝑓 ∆𝑡𝑡

𝐸𝐸𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 = 𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 − 𝛼𝛼𝑜𝑜𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛 = 𝛼𝛼𝑜𝑜𝑛𝑛�
𝑖𝑖=1

𝑛𝑛𝑜𝑜𝑜𝑜

𝑃𝑃𝑖𝑖,estimate
𝑜𝑜𝑓𝑓𝑓𝑓 − 𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛 ∆𝑡𝑡

The baseline energy, 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏, can accordingly be calculated as follows:
𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 = 𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 + 𝛼𝛼𝑜𝑜𝑓𝑓𝑓𝑓𝐸𝐸𝑜𝑜𝑓𝑓𝑓𝑓 = 𝛼𝛼𝑜𝑜𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛 + 𝛼𝛼𝑜𝑜𝑓𝑓𝑓𝑓𝐸𝐸𝑜𝑜𝑓𝑓𝑓𝑓 + 𝐸𝐸𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

where 𝛼𝛼𝑜𝑜𝑛𝑛 and 𝛼𝛼𝑜𝑜𝑓𝑓𝑓𝑓 are scaling coefficients to take the missing data in CVR-on and CVR-
off periods into account, respectively.

𝛼𝛼𝑜𝑜𝑛𝑛/𝑜𝑜𝑓𝑓𝑓𝑓 =
# 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑛𝑛/𝑜𝑜𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑛𝑛𝑡𝑡𝑑𝑑

# 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑛𝑛/𝑜𝑜𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑛𝑛𝑡𝑡𝑑𝑑 − # 𝑜𝑜𝑜𝑜 𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑚𝑚 𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑛𝑛/𝑜𝑜𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑛𝑛𝑡𝑡𝑑𝑑
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Methodology
Pros and Cons of the three methods
Types Pros Cons
Comparison-based 
methods

1) It is the most simple and 
straightforward method to 
understand.

1) A good control group may not exist.
2) It is vulnerable to noises (such as weather 

impacts, and natural load variation).
Regression-based 
methods

1) It is easy to implement.
2) It has a clear physical meaning easy to 

understand.
3) It is capable of forecasting the CVR 

effects. 

1) It is subject to regression error.
2) It typically assumes a linear relationship between 

the load and the factors, which may not be valid.
3) It needs to collect a sufficient amount of data for 

accurate regression analysis.
Load modeling-
based methods

1) It can estimate time-varying CVR 
factors.

2) It is robust to outliers and 
disturbances in raw data.

3) It can provide the energy saving 
potential of a feeder without running 
voltage reduction experiments.

1) Appropriate selection of the load model (e.g., 
exponential model, ZIP model or others) is desired 
for a practical feeder.

2) It needs empirical voltage reduction which may 
not be always exact due to several operational 
issues.
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Review of CVR factor Range
A comprehensive study was conducted to review the values of reported CVR factors in utilities.

Utility Value of CVR Factor Methodology
Clark Public Utilities 0.3
Douglas PUD 2.07-2.17
Snohomish County Public Utility 0.74 Comparison-

based
New York State Electric & Gas 0.6
Central Florida Electric
Cooperative

0.5-0.75

Clay Electric Cooperative 1.0
Progress Energy-Florida 1.0
Georgia Power 0.5-1.7
Cobb EMC 0.75
Progress Energy 0.4
Kansas City Power and Light 0.7 Comparison-

based
Clatskanie PUD 1.4
Inland power & light 0.93
Seattle city light 0.13
BC Hydro 0.6-0.77 Regression-based
Hydro-Québec 0.06-0.97
Bonneville Power Administration 0.41-0.99
AEP 0.35-0.89 Regression-based
Korea Electric Power Corporation 0.681-0.939
San Diego Gas & Electric 0.08-1.14
City-of-Lethbridge-Electric-Utility 0.83-0.9

Utility Value of CVR Factor Methodology
Central Lincoln People’s Utility
District

0.43- 1.05 Comparison-based

Ameren Illinois 0.148 - 1.48 Regression-based
ComEd 0.8 Regression-

based/Constant
CVR factor

Idaho Power Company 0.41-5.75 Constant CVR factor/
Comparison-based

West Penn Power Company 0.86 Regression-based
Indianapolis Power & Light 0.75 Comparison-based
PECO Energy 1.08 Regression-based
Duke Energy Ohio 0.50-0.79 Constant CVR factor
Xcel Energy 0.8 Simulation-based

method/Statistical
analysis

PG&E 0.6-0.8 Regression-based
Southern California Edison 1.56 Regression-based
Puget Sound Energy 0.475 Regression-based
Dominion Energy 0.92 Comparison-based
Indiana Michigan Power -0.43-4.48 Regression-based
NRECA 1.04 Comparison-based
NEEA 0.17-1.12 Comparison-based
Avista Corp 0.84 Regression-

based/Simulation
based
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Case Studies

Field measurement validation
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Case Studies
Description of Data Set
• The case studies are conducted on two data sets (named as D2_2016 and D3_2016) from

two different sources during 01/01/2016~12/31/2016.
• The data sets have five different time resolutions (5, 10, 15, 30, 60 min).
• Both data sets contain CVR-on and CVR-off tests. In D2, the CVR is applied during

08/30/2016 ~ 09/06/2016 and 09/27/2016 ~ 10/04/2016. In D3, the CVR is applied every
other day during 05/28/2016 ~ 08/14/2016.

Simulation Setup
Three case studies are carried out.
• Case 0 (Base case): Clean data is prepared by averaging raw values over 30-min intervals.
• Case 1 (Analyzing resolution impact): Clean data is prepared by averaging raw values from

over 5, 10, 15 and 60-min intervals.
• Case 2 (Analyzing outlier impact): 30-min frequency data with 5%, 10%, 20%, 30% and 50%

outliers included.
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Case Studies
Case 0: Simulations based on no data anomalies

Comparison-Based
Name Ebaseline (MWh) Estimated Voltage 

Reduction (%)
Estimated Energy 

Reduction (%)
Esavings (MWh) CVR Factor

D2_2016 178,314.14 2.70 -0.90 -58.38 -0.33
D3_2016 202,501.17 4.83 4.73 1,050.97 0.98

Regression-Based
Name Ebaseline (MWh) Estimated Voltage 

Reduction (%) 
Estimated Energy

Reduction (%) 
Esavings (MWh) CVR Factor 

D2_2016 178,160.16 2.83 -3.36 -212.36 -1.19
D3_2016 202,320.66 4.85 3.95 870.45 0.81

Load-Modeling-Based
Name Ebaseline (MWh) Estimated Voltage 

Reduction (%)
Estimated Energy 

Reduction (%)
Esavings (MWh) CVR Factor

D2_2016 181335.39 2.78 2.21 136.92 0.79
D3_2016 203989.32 4.85 3.96 845.47 0.82
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Case Studies
Case 1: Simulations based on data resolution (D2_2016)

Comparison-Based
Resolution Ebaseline (MWh) Estimated Voltage Reduction (%) Estimated Energy Reduction (%) Esavings (MWh) CVR Factor

5 min 180,309.13 2.76 -0.27 -17.90 -0.10
10 min 179,575.50 2.70 -2.41 -153.92 -0.89
15 min 179,461.11 2.75 2.41 161.55 0.88
60 min 177,677.06 2.77 1.11 73.59 0.40

Regression-Based
Resolution Ebaseline (MWh) Estimated Voltage Reduction (%) Estimated Energy Reduction (%) Esavings (MWh) CVR Factor

5 min 180,119.32 2.87 -3.29 -207.71 -1.14
10 min 179,521.45 2.85 -3.29 -207.97 -1.15
15 min 179,512.00 2.76 3.15 212.44 1.14
60 min 177,388.95 2.82 -3.40 -214.52 -1.20

Load-Modeling-Based

Resolution Ebaseline (MWh) Estimated Voltage Reduction (%) Estimated Energy Reduction (%) Esavings (MWh) CVR Factor
5 min 185003.03 2.81 1.72 98.23 0.61

10 min 183733.89 2.79 1.82 108.05 0.65
15 min 182879.53 2.79 2.00 121.02 0.72
60 min 179922.31 2.78 2.28 141.61 0.82
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Case Studies
Case 1: Simulations based on data resolution (D3_2016)

Comparison-Based
Resolution Ebaseline (MWh) Estimated Voltage Reduction (%) Estimated Energy Reduction (%) Esavings (MWh) CVR Factor

5 min 204,484.61 4.85 4.47 1,001.76 0.92
10 min 203,770.01 4.86 4.28 954.72 0.88
15 min 203,191.69 4.85 3.75 828.95 0.77
60 min 201,867.62 4.83 4.33 956.15 0.90

Regression-Based
Resolution Ebaseline (MWh) Estimated Voltage Reduction (%) Estimated Energy Reduction (%) Esavings (MWh) CVR Factor

5 min 204,344.16 4.85 3.87 861.31 0.80
10 min 203,679.13 4.85 3.89 863.84 0.80
15 min 203,164.22 4.85 3.63 801.49 0.75
60 min 201,781.88 4.85 3.96 870.41 0.82

Load-Modeling-Based

Resolution Ebaseline (MWh) Estimated Voltage Reduction (%) Estimated Energy Reduction (%) Esavings (MWh) CVR Factor
5 min 211604.87 4.85 3.55 673.35 0.73

10 min 208659.75 4.85 3.55 709.09 0.73
15 min 206744.77 4.85 3.72 763.99 0.77
60 min 202459.54 4.84 3.83 831.58 0.79
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Case Studies
Case 2: Simulations based on additional missing data (D2_2016)

Comparison-Based
Outlier Ebaseline (MWh) Estimated Voltage Reduction (%) Estimated Energy Reduction (%) Esavings (MWh) CVR Factor

5% 178,384.99 2.63 -0.66 -43.10 -0.25
10% 178,194.29 2.62 -2.65 -168.75 -1.01
20% 178,703.04 2.74 1.00 65.60 0.36
30% 178,707.13 2.59 0.20 13.01 0.08

Regression-Based
Outlier Ebaseline (MWh) Estimated Voltage Reduction (%) Estimated Energy Reduction (%) Esavings (MWh) CVR Factor

5% 178,201.16 2.82 -3.59 -226.94 -1.27
10% 178,155.16 2.81 -3.28 -207.88 -1.17
20% 178,440.51 2.81 -3.11 -196.94 -1.11
30% 178,506.81 2.83 -2.97 -187.30 -1.05

Load-Modeling-Based

Outlier Ebaseline (MWh) Estimated Voltage Reduction (%) Estimated Energy Reduction (%) Esavings (MWh) CVR Factor
5% 181394.49 2.77 2.21 130.51 0.80

10% 181357.72 2.77 2.21 121.09 0.80
20% 181566.75 2.76 2.20 109.29 0.80
30% 181807.29 2.78 2.21 95.76 0.79
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Case Studies
Case 2: Simulations based on additional missing data (D3_2016)

Comparison-Based
Outlier Ebaseline (MWh) Estimated Voltage Reduction (%) Estimated Energy Reduction (%) Esavings (MWh) CVR Factor

5% 202,271.96 4.86 4.37 966.51 0.90
10% 202,715.66 4.86 4.86 1081.35 1.00
20% 202,777.20 4.87 4.38 966.38 0.90
30% 202,701.06 4.85 4.57 1017.19 0.94

Regression-Based
Outlier Ebaseline (MWh) Estimated Voltage Reduction (%) Estimated Energy Reduction (%) Esavings (MWh) CVR Factor

5% 202,191.88 4.85 4.02 886.43 0.83
10% 202,503.18 4.85 3.94 868.88 0.81
20% 202,670.72 4.85 3.92 859.90 0.81
30% 202,511.22 4.85 3.75 827.34 0.77

Load-Modeling-Based

Outlier Ebaseline (MWh) Estimated Voltage Reduction (%) Estimated Energy Reduction (%) Esavings (MWh) CVR Factor
5% 203779.76 4.84 3.96 808.64 0.82

10% 204180.31 4.85 3.95 780.15 0.81
20% 204392.96 4.85 3.99 702.53 0.82
30% 204252.29 4.85 3.85 628.77 0.79
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Conclusions
• There can be differences in the results of different methods, sometimes even when the

same data is used. This is because methods may have different mechanisms and consider
different factors.

• Different methods require different data. For example, the comparison-based methods
require the CVR-on and CVR-off data of the similar days/hours at similar weather.
Appropriate methods must be adopted based on the availability of data.

• Resolution of data may be an impact factor for the methods. Usually, the high-resolution
data leads to better accuracy.

• The noise can influence the accuracy of different methods as well. For the comparison-
based methods, the accuracy may be greatly impacted by the noise in the measurement
data. The regression-based methods and load-modeling-based methods may be more
robust to the measurement noises.
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Methodology
Comparison-Based Methods
Using the second approach as an example, the typical steps to calculate the 
CVR factor are explained as follows:
Step 1: Calculate the CVR factor for each time interval by dividing the percentage of energy 
reduction by percentage of voltage reduction:

𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑖𝑖 =
∆𝐸𝐸𝑖𝑖 %
∆𝐶𝐶𝑖𝑖 %

,

∆𝐸𝐸𝑖𝑖 % =
𝑒𝑒𝑗𝑗
𝑜𝑜𝑓𝑓𝑓𝑓 − 𝑒𝑒𝑖𝑖𝑜𝑜𝑛𝑛

𝑒𝑒𝑗𝑗
𝑜𝑜𝑓𝑓𝑓𝑓 × 100,∆𝐶𝐶𝑖𝑖 % =

𝐶𝐶𝑗𝑗
𝑜𝑜𝑓𝑓𝑓𝑓 − 𝐶𝐶𝑖𝑖𝑜𝑜𝑛𝑛

𝐶𝐶𝑗𝑗
𝑜𝑜𝑓𝑓𝑓𝑓 × 100

where ei
on and ej

off refer to the measured energy of paired 𝑑𝑑𝑡𝑡ℎ CVR-on and 𝑗𝑗𝑡𝑡ℎ CVR-off time 
intervals, Vi

on and Vj
off refer to the measured voltage of paired 𝑑𝑑𝑡𝑡ℎ CVR-on and 𝑗𝑗𝑡𝑡ℎ CVR-off 

time intervals



Methodology
Comparison-Based Methods
Step 2: Calculate the feeder’s CVR factor and voltage reduction by averaging over all time 
interval specific values:

𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 = 𝐴𝐴𝐴𝐴𝑚𝑚(𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑖𝑖),∆𝐶𝐶 = 𝐴𝐴𝐴𝐴𝑚𝑚(∆𝐶𝐶𝑖𝑖)
Step 3: Calculate the feeder energy savings and baseline energy:

𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 =
𝐸𝐸𝑜𝑜𝑛𝑛

1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 × ∆𝐶𝐶

𝐸𝐸𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 = 𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 − 𝐸𝐸𝑜𝑜𝑛𝑛 = 𝐸𝐸𝑜𝑜𝑛𝑛
𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 × ∆𝐶𝐶

1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 × ∆𝐶𝐶

where 𝐸𝐸𝑜𝑜𝑛𝑛 is the total energy in CVR-on time periods. 𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 is the total energy in 
CVR-on periods before CVR was applied. The baseline energy, 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏, can accordingly be 
calculated as follows:

𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 = 𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 + 𝐸𝐸𝑜𝑜𝑓𝑓𝑓𝑓 = 𝐸𝐸𝑜𝑜𝑛𝑛 + 𝐸𝐸𝑜𝑜𝑓𝑓𝑓𝑓 + 𝐸𝐸𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏
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Methodology
Comparison-Based Methods
Step 4: In case of missing data, scaling coefficients are needed to calculate baseline energy 
and energy savings:

𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 = 𝛼𝛼𝑜𝑜𝑛𝑛
𝐸𝐸𝑜𝑜𝑛𝑛

1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 × ∆𝐶𝐶

𝐸𝐸𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 = 𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 − 𝛼𝛼𝑜𝑜𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛 = 𝛼𝛼𝑜𝑜𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛
𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 × ∆𝐶𝐶

1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 × ∆𝐶𝐶
The baseline energy, 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏, can accordingly be calculated as follows:

𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 = 𝐸𝐸𝑜𝑜𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 + 𝛼𝛼𝑜𝑜𝑓𝑓𝑓𝑓𝐸𝐸𝑜𝑜𝑓𝑓𝑓𝑓 = 𝛼𝛼𝑜𝑜𝑛𝑛𝐸𝐸𝑜𝑜𝑛𝑛 + 𝛼𝛼𝑜𝑜𝑓𝑓𝑓𝑓𝐸𝐸𝑜𝑜𝑓𝑓𝑓𝑓 + 𝐸𝐸𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏

where 𝛼𝛼𝑜𝑜𝑛𝑛 and 𝛼𝛼𝑜𝑜𝑓𝑓𝑓𝑓 are scaling coefficients to take the missing data in CVR-on and CVR-
off periods into account, respectively.

𝛼𝛼𝑜𝑜𝑛𝑛/𝑜𝑜𝑓𝑓𝑓𝑓 =
# 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑛𝑛/𝑜𝑜𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑛𝑛𝑡𝑡𝑑𝑑

# 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑛𝑛/𝑜𝑜𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑛𝑛𝑡𝑡𝑑𝑑 − # 𝑜𝑜𝑜𝑜 𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑚𝑚 𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑛𝑛/𝑜𝑜𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑛𝑛𝑡𝑡𝑑𝑑
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Methodology
Regression-Based Methods
Step 1: Model parameters estimation

𝐄𝐄 = 𝛽𝛽0𝟏𝟏 + 𝛽𝛽1 𝑇𝑇𝑓𝑓ℎ𝟏𝟏 − 𝐓𝐓 + 𝛽𝛽2 𝑇𝑇𝑓𝑓𝑓𝑓𝟏𝟏 − 𝐓𝐓 + 𝜺𝜺

• 𝐄𝐄 and 𝐓𝐓 are training data for the model, 𝐄𝐄 represents the vector of measured normal-
voltage load data, T is the vector of recorded ambient temperature, the resolution of 𝐄𝐄
and 𝐓𝐓 depends on measurement devices and user preferences.

• 𝑇𝑇𝑓𝑓ℎ is the heating reference temperature, 𝑇𝑇𝑓𝑓𝑓𝑓 is the cooling reference temperature (e.g., 
in [1], 𝑇𝑇𝑓𝑓ℎ and , 𝑇𝑇𝑓𝑓𝑓𝑓 are set to be 60F and 70F, respectively).

• 𝛽𝛽0, 𝛽𝛽1and 𝛽𝛽2 are parameters that need to be calculated using linear regression, 𝜺𝜺
represents the errors.

[1] Z. Wang and J. Wang, “Review on Implementation and Assessment of Conservation Voltage Reduction,” IEEE Trans. on Power Systems,
vol. 29, no. 3, pp. 1306-1315, May 2014.



Methodology
Regression-Based Methods
Step 2: The parameters 𝛽𝛽0, 𝛽𝛽1and 𝛽𝛽2 can be estimated by minimizing the errors. For an ordinary 
least squares method, the parameters can be calculated as follows:

�𝜷𝜷 = (𝐗𝐗T𝐗𝐗)−1𝐗𝐗T𝐄𝐄
𝐗𝐗 = [𝟏𝟏 𝑇𝑇𝑓𝑓ℎ𝟏𝟏 − 𝐓𝐓 𝑇𝑇𝑓𝑓𝑓𝑓𝟏𝟏 − 𝐓𝐓]

where �𝜷𝜷 = [�̂�𝛽0 �̂�𝛽1 �̂�𝛽2]𝑇𝑇 represents the estimated parameters, and 𝑋𝑋 represents the vector of 
problem variables in the regression model.

Step 3: Calculate the estimated load consumption for the CVR-on days if CVR is not implemented. 
With a new vector of temperature 𝐓𝐓∗ on those CVR-on days, the load consumption if without CVR 
on those days can be calculated as follows:

𝐄𝐄𝑜𝑜𝑓𝑓𝑓𝑓,∗ = �̂�𝛽0𝟏𝟏 + �̂�𝛽1 𝑇𝑇𝑓𝑓ℎ𝟏𝟏 − 𝐓𝐓∗ + �̂�𝛽2 𝑇𝑇𝑓𝑓𝑓𝑓𝟏𝟏 − 𝐓𝐓∗

where 𝐄𝐄𝑜𝑜𝑓𝑓𝑓𝑓,∗ is the estimated load if CVR is not implemented.



Methodology
Regression-Based Methods
Step 4: Calculate the CVR factor for each time interval. With the measured load on test 
days with CVR on, denoted as 𝐄𝐄𝑜𝑜𝑛𝑛, and the 𝐄𝐄𝑜𝑜𝑓𝑓𝑓𝑓,∗ calculated from step 3, the Energy and 
voltage reductions are first determined as below. In these equations, ei

on and ei
off refer to 

the 𝑑𝑑𝑡𝑡ℎ time interval elements of 𝐄𝐄𝑜𝑜𝑛𝑛 and 𝐄𝐄𝑜𝑜𝑓𝑓𝑓𝑓,∗, respectively. Similar fashion is applied to 
the voltage terms.

∆𝐸𝐸𝑖𝑖 % =
𝑒𝑒𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓 − 𝑒𝑒𝑖𝑖𝑜𝑜𝑛𝑛

𝑒𝑒𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓 × 100

∆𝐶𝐶𝑖𝑖 % =
𝐶𝐶𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓 − 𝐶𝐶𝑖𝑖𝑜𝑜𝑛𝑛

𝐶𝐶𝑖𝑖
𝑜𝑜𝑓𝑓𝑓𝑓 × 100

The remaining procedure follows the same steps (Step 1 to 4) as in the comparison-based
method.
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Backup slides
Soft-constrained gradient 

analysis method
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Problem formulation of load 
modeling
To identify the time-varying load model parameters 𝛼𝛼𝑍𝑍,𝑖𝑖, 𝛽𝛽𝑍𝑍,𝑖𝑖, and 𝛾𝛾𝑍𝑍,𝑖𝑖, a general optimization 
problem is formulated as follows.

min
𝛼𝛼𝑃𝑃,𝑖𝑖,𝛽𝛽𝑃𝑃,𝑖𝑖,𝛾𝛾𝑃𝑃,𝑖𝑖

𝐽𝐽 = ∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑍𝑍,𝑖𝑖
𝑉𝑉𝑖𝑖
𝑉𝑉0

2
+ 𝛽𝛽𝑍𝑍,𝑖𝑖

𝑉𝑉𝑖𝑖
𝑉𝑉0

+ 𝛾𝛾𝑍𝑍,𝑖𝑖 −
𝑍𝑍𝑖𝑖
𝑍𝑍0

2

s.t., 0 < 𝛼𝛼𝑍𝑍,𝑖𝑖, 𝛽𝛽𝑍𝑍,𝑖𝑖, 𝛾𝛾𝑍𝑍,𝑖𝑖 < 1

where 𝐽𝐽 is the accumulative squared error, i is the ith time interval, and n is the total number
of time intervals, 𝐶𝐶𝑖𝑖 and 𝑃𝑃𝑖𝑖 are field voltage and power measurements.

Note that we delete the constraint 𝛼𝛼𝑍𝑍,𝑖𝑖 + 𝛽𝛽𝑍𝑍,𝑖𝑖 + 𝛾𝛾𝑍𝑍,𝑖𝑖 = 1, because it can lead to negative
load model parameters, thus resulting in negative CVR factors.
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Time-Varying Load Parameter 
Identification
Since the above objective function is convex with respect to coefficients, without considering 
the constraints, the optimum can be calculated by letting the first-order gradient with 
respect to each of the coefficients 𝛼𝛼𝑍𝑍,𝑡𝑡, 𝛽𝛽𝑍𝑍,𝑡𝑡, 𝛾𝛾𝑍𝑍,𝑡𝑡 be zero:

𝜕𝜕𝐽𝐽
𝜕𝜕𝛼𝛼𝑍𝑍,𝑖𝑖

= �
𝑖𝑖=1

𝐿𝐿

2 𝐶𝐶𝑖𝑖′ 2 𝛼𝛼𝑍𝑍,𝑖𝑖 𝐶𝐶𝑖𝑖′ 2 + 𝛽𝛽𝑍𝑍,𝑖𝑖𝐶𝐶𝑖𝑖′ + 𝛾𝛾𝑍𝑍,𝑖𝑖 − 𝑃𝑃𝑖𝑖′ = 0

𝜕𝜕𝐽𝐽
𝜕𝜕𝛽𝛽𝑍𝑍,𝑖𝑖

= �
𝑖𝑖=1

𝐿𝐿

2𝐶𝐶𝑖𝑖′ 𝛼𝛼𝑍𝑍,𝑖𝑖 𝐶𝐶𝑖𝑖′ 2 + 𝛽𝛽𝑍𝑍,𝑖𝑖𝐶𝐶𝑖𝑖′ + 𝛾𝛾𝑍𝑍,𝑖𝑖 − 𝑃𝑃𝑖𝑖′ = 0

𝜕𝜕𝐽𝐽
𝜕𝜕𝛾𝛾𝑍𝑍,𝑖𝑖

= �
𝑖𝑖=1

𝐿𝐿

2 𝛼𝛼𝑍𝑍,𝑖𝑖 𝐶𝐶𝑖𝑖′ 2 + 𝛽𝛽𝑍𝑍,𝑖𝑖𝐶𝐶𝑖𝑖′ + 𝛾𝛾𝑍𝑍,𝑖𝑖 − 𝑃𝑃𝑖𝑖′ = 0

where we denote 𝑉𝑉𝑖𝑖
𝑉𝑉0

= 𝐶𝐶𝑖𝑖′ and 𝑍𝑍𝑖𝑖
𝑍𝑍0

= 𝑃𝑃𝑖𝑖′ for conciseness.
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Time-Varying Parameter Identification
• The above problem is not solvable because it has nine variables but only three equations. 
• A sliding window approach is applied to calculate the time-varying parameters 𝛼𝛼𝑍𝑍,𝑖𝑖, 𝛽𝛽𝑍𝑍,𝑖𝑖 and 𝛾𝛾𝑍𝑍,𝑖𝑖, as 

depicted in the right figure. 
• For a set of data in a time window, it is assumed that the time-varying parameters are constant in 

each time window with length long at a time with overlaps.  
• The calculated parameters within each window are considered as the result of the last sample point 

of the window.
• Then, denoting 𝑑𝑑′ = 𝑑𝑑 − 𝑛𝑛 + 1, the above equations can be expressed in a matrix form as 

�
𝑖𝑖=𝑡𝑡′

𝑛𝑛

𝐶𝐶𝑖𝑖′
4 �

𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′
3 �

𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′
2

�
𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′
3 �

𝑡𝑡=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′
2 �

𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′

�
𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′
2 �

𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′ 𝑛𝑛

×
𝛼𝛼𝑍𝑍,𝑖𝑖
𝛽𝛽𝑍𝑍,𝑖𝑖
𝛾𝛾𝑍𝑍,𝑖𝑖

=

�
𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝑃𝑃𝑖𝑖′𝐶𝐶𝑖𝑖′
2

�
𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝑃𝑃𝑖𝑖′𝐶𝐶𝑖𝑖′

�
𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝑃𝑃𝑖𝑖′
Fig. 4. Demonstration of moving time window.
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Time-Varying Parameter Identification
To deal with the constraint, improve the robustness and capture the temporal correlation of loads, we 
propose a method using over-determinant least squares optimization with soft constraints as follows

�
𝑖𝑖=𝑡𝑡′

𝑛𝑛

𝐶𝐶𝑖𝑖′
4 �

𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′
3 �

𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′
2

�
𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′
3 �

𝑡𝑡=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′
2 �

𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′

�
𝑡𝑡=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′
2 �

𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝐶𝐶𝑖𝑖′ 𝑛𝑛

𝜀𝜀1 + 𝜀𝜀2 0 0
0 𝜀𝜀1 + 𝜀𝜀2 0
0 0 𝜀𝜀1 + 𝜀𝜀2

×
𝛼𝛼𝑍𝑍,𝑖𝑖
𝛽𝛽𝑍𝑍,𝑖𝑖
𝛾𝛾𝑍𝑍,𝑖𝑖

=

�
𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝑃𝑃𝑖𝑖′𝐶𝐶𝑖𝑖′
2

�
𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝑃𝑃𝑖𝑖′𝐶𝐶𝑖𝑖′

�
𝑖𝑖=𝑖𝑖′

𝑛𝑛

𝑃𝑃𝑖𝑖′

𝜀𝜀1𝛼𝛼𝑍𝑍,𝑖𝑖
𝑜𝑜 + 𝜀𝜀2𝛼𝛼𝑍𝑍,𝑖𝑖−1

𝜀𝜀1𝛽𝛽𝑍𝑍,𝑖𝑖
𝑜𝑜 + 𝜀𝜀2𝛽𝛽𝑍𝑍,𝑖𝑖−1

𝜀𝜀1𝛾𝛾𝑍𝑍,𝑖𝑖
𝑜𝑜 + 𝜀𝜀2𝛾𝛾𝑍𝑍,𝑖𝑖−1

• The lower three rows in over-determinant problem softly constrain the values of 𝛼𝛼𝑍𝑍,𝑖𝑖, 𝛽𝛽𝑍𝑍,𝑖𝑖 and 𝛾𝛾𝑍𝑍,𝑖𝑖
by guiding them towards a near optimal initial estimation that is in the normal range. 

• The initial estimation is a weighted average of two components: 1) solution of current time window 
𝛼𝛼𝑍𝑍,𝑖𝑖
𝑜𝑜 , 𝛽𝛽𝑍𝑍,𝑖𝑖

𝑜𝑜 and 𝛾𝛾𝑍𝑍,𝑖𝑖
𝑜𝑜 obtained by solving the original optimization problem with interior point method; 

2) the solution from the last time window, 𝛼𝛼𝑍𝑍,𝑖𝑖−1, 𝛽𝛽𝑍𝑍,𝑖𝑖−1 and 𝛾𝛾𝑍𝑍,𝑖𝑖−1. 
• To ensure meaningful CVR factor, 𝛼𝛼𝑍𝑍,0, 𝛽𝛽𝑍𝑍,0 and 𝛾𝛾𝑍𝑍,0 must be selected within the normal range. 

Solved by least 
square method
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