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Motivation

• Severe power outages caused by extreme weather events

‒ Hurricane Irene (2011): 6.69 million customers 

‒ Hurricane Sandy (2012): : 8.66 million customers 

‒ Hurricane Irma (2017): 15 million customers 

‒ Cost of weather-related outages: $25 to $70 billion 
annually in U.S. 

• Current restoration practices used by utilities 

‒ Rely on customer calls for outage detection

‒ Lack of situational awareness 

‒ Experience-based crew scheduling

‒ Recovery operation and crew scheduling are 
separated

‒ DERs and automatic switches are not fully utilitzed

‒ Inefficient and sub optimal
Irene

SandyIrma
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Extreme Weather and The Grid

• Extreme weather events constantly threaten and damage the electrical system

• Overhead distribution systems are vulnerable to severe weather events such as hurricanes, wind, rain, 
lightning, ice, freezing rain, and snow

• Recent years have seen an increase of weather events and outages

4

320k customers were without power due 

to high winds and thunderstorms. 
Over 1.54 Million power outages 

from Hurricane Michael. 

Source: https://poweroutage.us/

Source: accuweather.com
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Utility Practices (1/2)
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Utility Practices (2/2)
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• Preparation

• Crews and staff on alert

• Request assistance

• Pre-storm allocation of crews and resources

• Outage Management System

• Data from customer calls, SCADA, AMI, etc are collected

• Determines the likely location of the trouble

• Damage assessment process

• Damage assessors navigate to the outage locations

• Record damage data

• Estimate repair times

• Prioritizing restoration activities

• Hazards → critical customers (e.g., hospitals) → prioritize by 
number of customers

• Crew Scheduling

• Schedule in sequence of priority

Crisis Center – Westar Energy



Iowa State University

Resilient Distribution System (1/2)
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• Disaster response

‒ Fault isolation and service restoration

‒ Damage assessment and repair time estimation

‒ Co-optimization of crew scheduling and network 
operation

• Planning

‒ Hardening infrastructure

‒ Optimal locations of DERs and switches

‒ Pre-storm preparation

‒ Resource allocation

• Resilience: The ability to prepare for and adapt to changing

conditions and withstand and recover rapidly from disruptions

• Develop tools, methods, and algorithms to design a resilient

power distribution system
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Resilient Distribution System (2/2)

Event End Event Restoration Initiated End of Restoration

• An efficient coordination of resources can lead

to faster restoration times.

Minimize
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Problem Statement (1/2)

9

What is missing?

• A preparation strategy before repair and restoration to ensure a fast response

• Estimating the repair time efficiently

• A co-optimization method that jointly optimizes crew routing and distribution 

system operation

• Modeling the connectivity status of different types of solar PV systems

• Modeling fault isolation and tree/obstacle removal before repairing damages
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Problem Statement (2/2)

Objectives:

1. Proactive response: develop a mathematical model to pre-stage and prepare human

resources and equipment before extreme weather events

2. Use machine learning to predict repair times of damaged components

3. Design solution algorithms and develop mathematical models to co-optimize repair

scheduling and recovery operation of distribution systems

4. Develop models for coordinating interconnected microgrids

10

Outage scenario generation

• Weather forecast

• Fragility model

Pre-storm planning

• Choose staging locations

• Mobilize available crews and request assistance 

if necessary 

• Obtain and allocate resources and equipment

Post-storm repair and restoration

• Estimate the repair time

• Coordinate tree and line crews

• Manage Equipment

• Isolate damaged components

• Operate the distribution system
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Research Achievement

• A two-stage stochastic mixed integer linear program (SMIP) is developed to acquire and pre-stage

crews and equipment before an extreme event

• Effectively used Deep Learning to predict repair times of damaged components

• A novel mixed integer linear program (MILP) for jointly optimizing the repair crew routing and

distribution network operation is developed. The model can improve utilities’ response to extreme

events. Our research group is the first to develop a single mathematical model for co-optimizing crew

routing and power restoration

• A mathematical formulation is developed for fault isolation and service restoration. Isolation has been

neglected in existing distribution system restoration studies that use mathematical programming

• Development of efficient algorithms for solving the co-optimization problem

• 4 journal and 6 conference papers have been published, and 2 journal papers are under review

11
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Disaster Preparation
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Pre-Disaster Resource Allocation

• To achieve a faster and more organized emergency response, 

utilities can devise a plan beforehand to ensure a proactive 

response

• The first step is to forecast the event and predict its impact

• Historical data

• Fragility model and weather forecast

• Estimate the number of equipment required

• Estimate the repair times

• Pre-event preparation:

• Select staging areas (depots)

• Order equipment

• Request external crews

• Allocate the equipment and crews to the depots

13
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Review – Disaster Preparation

• Pre-disaster planning enables efficient post-disaster recovery by ensuring there are enough equipment and crews to 

quickly conduct the repairs

• Utilities must provide water, food, and shelter and communicate differences in work practices to visiting crews

• Few studies focused on disaster preparation in the context of power system and its infrastructure

• The previous work approached the preparation stage by dividing the electric network into different areas, with each 

area having a specific demand, which neglects the individual components within each area and the distances between 

these components and the depots

Ref. Application Method

Mete 2010 Identify the amount of medical supplies and storage location for the supplies SMIP

Verma 2015 Select facility location for storing emergency supplies before a disaster SMIP

Rodriguez-Espindola 2018 Select the location of emergency facilities and allocate relief resources MILP

Ni 2018 Select the location of emergency facilities and allocate relief resources Robust Optimization

Wang 2004 Find optimal number of depots and their locations around the power network MILP

Coffrin 2011 Determine the number of resources to stockpile before a disaster n order to repair the power network SMIP

14
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Review – Stochastic Programming

• Mathematical program in which some of the data are not known with certainty

• Decision variables

• Objective function

• Constraints

• Two-stage Stochastic Program

Given: A large number of potential scenarios

• Stage I: Make some advance decisions (plan ahead)

Observe the actual input scenario

• Stage II: Take recourse actions in response to the realization of the random 

variables and the first stage decisions

Objectvie: min 𝑐𝑇𝑥 +
1

𝑁
σ𝑠=1
𝑁 𝑄(𝑥, 𝜉𝑠)

Subject to 𝐴 𝑥 = 𝑏
𝑥 ≥ 0

15
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Framework

1. The forecasted weather and fragility models of the 

components are used to generate damage scenarios

2. For each scenario, we solve a power flow (PF) 

problem to identify critical components that must 

be repaired to restore service for high-priority 

customers

3. The stochastic crew and resource allocation 

problem (SCRAP) model is then solved to select 

depot locations and allocate the crews and 

equipment

4. After the event, the distribution system repair and 

restoration problem (DSRRP) model can be solved 

to schedule the repairs and operate the network

16
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Scenario Generation (1/2)

• Generate wind speeds according to forecasted data

• Example: Hurricane category 3 - lognormal distribution with 𝜇 = 4.638 and 𝜎 = 0.039 (Javanbakht 2018)

• Use hurricane decay model to calculate the maximum wind speed on the area (Kaplan 1995) 

• Use fragility models to (Ouyang 2014):

• Calculate the probability of failure of each pole:   𝑝𝑧
𝑝𝑜𝑙𝑒

𝑤 = min 𝑎 𝑒𝑏 𝑤, 1

• Calculate probability of failure of each conductor

• Probability of wind induced damage: 𝑝𝑙
𝑤𝑖𝑛𝑑 𝑤 = min

𝑤𝑖𝑛𝑑 𝑙𝑜𝑎𝑑𝑖𝑛𝑔

𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝑒𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒
, 1

• Probability  of damage due to fallen trees 𝑝𝑙
𝑡𝑟𝑒𝑒(𝑤) (Canham 2001) 

• Using Bernoulli distribution to find the damage state of each pole and conductor in every scenario

• Bernoulli(p) = 1 (damaged) with probability p, and 0 (functional) with probability 1-p

17
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Scenario Generation (2/2)
• Calculate required equipment

• Types of equipment:

• Type 1: Poles for 3-phase lines

• Type 2: Poles for 1- and 2-phase lines

• Type 3: 3-phase transformers 

• Type 4: 1-phase transformers

• Type 5: Conductors

• Estimate the repair times

• Each damaged distribution pole: normal distribution (5,2.5)

• Each damaged distribution conductor: normal distribution (4,2)

• Identify critical components

• Solve a MILP to identify minimum number of lines to repair

• Status of the line: 𝑢𝑘
• Status of the load: 𝑦𝑖
• Set of damaged lines for each scenario (Ω𝐷𝐿(𝑠))

• Set of critical loads (Ω𝐶𝐷)

18
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SCRAP Model - Summary

• Uncertainty

• Damage to the grid

• Equipment required

• Repair times

• Objective: 

• Minimize preparation costs and penalty over 

unmet demand and late repairs

• First-stage constraints

• Depot selection

• Crew and equipment allocation

• Second-stage constraints

• Assign crews to damaged components

• Working hours

• Assign equipment to crews

19
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Objective

• First-stage objective: minimize the costs of equipment transportation, ordering equipment 

and external crews, and staging depots

• Second-stage objective: 

• Minimize the costs associated with the crews. The costs of crews include labor, food, 

and accommodation

• Minimize penalty costs of unmet equipment demand and time it takes to repair all 

components

20
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First-Stage Constraints

• The number of selected depots is limited to 𝑣𝑚𝑎𝑥

• Each depot, if selected, can contain a limited amount of 

equipment

• Limit the number of crews in the depots

• Determine the number of equipment/line crews/ tree crews 

at each depot

• Resources in depot 𝑑 = resources initially in 𝑑 + resources 

transferred to 𝑑 + newly resources - resources transferred to 

other depots

• Internal crews must be in one of the depots

• External crews can be either located in one depot, or not 

used

21
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Symmetry-Breaking Constraints

• The presented problem allow a large number of feasible symmetric solutions with equal objective 

value 

• We add symmetry breaking constraints to keep at least one solution and remove all other symmetric 

solutions

• Example:

• Allocate the crew with the lowest index first 

• Allocate the crews starting from the depots with the 

lowest index and skip depots that are not staged

• Apply constraints for both line and tree crews

Crew
D

ep
o

t

22
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Second-Stage Constraints (1/2)

• The second-stage constraints are dependent on the realization 

of the uncertainty

• Crew assignment

• Each damaged component is assigned to a crew

• Only crews that are present are used

• Crews are assigned to damaged components within a 

reasonable distance from their locations

• Working hours

• Equals the sum of the estimated repair times of the 

assigned components

• Time when last component is repaired = largest working 

hour

23



Iowa State University

Second-Stage Constraints (2/2)

• The number of equipment available must be enough for 

repairing all critical lines before the extreme event 

occurs

• The total equipment that the utility have must be equal 

or greater than the required equipment to repair the 

damaged components

• ℰ𝑑,𝜏,𝑠 identifies the additional number of equipment 

(unmet equipment demand) that must be ordered in each 

scenario to finish the repairs

• Each crew can obtain equipment from the depot they are 

positioned at

• The number of resources the crew have should be 

enough to repair the assigned damaged components

24
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Solution Algorithm

• Progressive hedging makes a scenario-decomposition and then obtains a solution by 

penalizing the scenario-problems

• Solve each scenario independently and update penalty term until convergence

• Algorithm:

1. Solve each scenario without penalty terms

2. Find the average first-stage solution ҧ𝑥 = σ∀𝑠 Pr 𝑠 𝑥𝑠
3. Calculate penalty factor 𝜂𝑠 = 𝜌 𝑥𝑠 − ҧ𝑥𝑠
4. Augment the penalty factor to the stochastic model and solve

5. If σ∀𝑠 Pr 𝑠 | 𝑥𝑠 − ҧ𝑥𝑠 | > 𝜖 go to 2

• The algorithm terminates once all first-stage decisions 𝑥𝑠 converge to a common ҧ𝑥

• The PH algorithm may experience slow convergence

• A detailed analysis of PH showed that individual first-stage variables frequently converge 

to specific values across all scenario subproblems [32].

• We fix some of the first-stage variables (depot selection and crew allocation) if they 

converge to the same values after some number of iterations.

• 5 iterations for depots

• 20 iterations for crews
25
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Test Case

• Modified IEEE 123-bus distribution feeder

• The network is modified by including:

• 3 × dispatchable DGs

• 18 × new switches

• 5 × PVs

• 2 × BESSs. 

• 100 damage scenarios are generated

• Reduced to 30 using GAMS’s SCENRED2 tool

• 5 potential depots

• Maximum of 10 line crews

• Maximum of 10 Tree crews

• Depot 1 has: 5 line crews, 3 tree crews, 25 poles (10 for 3-phase lines and 15 for 1- and 2-phase lines), 

4 km of conductor, 8 single-phase transformers, and 3 three-phase transformers

26
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Results (1/2)

• SCRAP is compared with deterministic 

allocation (DA) and a robust stochastic 

optimization method (RSO)

• The staging sites and the number of crews are 

found to be the same for all methods

• The deterministic solution is biased towards a 

single scenario and did not consider some of 

the extreme cases

• RSO favors a solution that would perform 

better with worst-case scenarios, which can 

lead to over-preparation and over-investment

27
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Results (2/2)

• SCRAP is solved using the extensive form (EF) and PH

• The performance is evaluated  by comparing the solutions with the wait-and-see (WS) solution and calculating the 

expected value of perfect information (EVPI)

• ED is the expected value of the deterministic solution

• The difference between PH and ED is $163,017, which is around 80% of the difference between ED and WS

• This indicates that the stochastic model leads to a better preparation strategy by acquiring and positioning enough 

equipment

• PH achieved a solution only 0.36% less than EF with a considerably lower computation time

• RSO achieved a solution that outperforms the deterministic one, however, the EVPI for RSO is $95,513 and $38,415 

for SCRAP-PH

28
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Stability Analysis

• We test the sensitivity of the solution to the number of scenarios (Kaut 2007)

• If the variation of the objective value is limited, then the solution is stable

29
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Restoration Phase

• To assess the devised preparation plan, we solve the repair and restoration problem 

with and without preparation

• A new random damage scenario is generated on the IEEE 123-bus system

• In the generated scenario, 13 three-phase poles, 18 single-phase poles, 2 single-phase 

transformers, and 4343.4 meter of conductor are damaged

30
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Conclusions

• A two-stage stochastic mathematical model is developed to select staging locations,

and allocate crews and equipment

• SCRAP is able to consider the variability of the extreme event outcome compared to

the deterministic solution

• Solving the two-stage stochastic problem is more beneficial than solving a

deterministic problem

• Robust optimization may lead to over-preparation

• By using an effective preparation procedure, we can ensure that enough equipment is

present for repairing the damaged components in the network and facilitate a faster

restoration process

31
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Repair Time Prediction



Iowa State University

Objectives

33

• Estimate the repair time

• An efficient repair schedule can be obtained if the
estimated time is close to the actual time required
by the crews

• A better schedule can lead to a faster disaster
response

• Estimate the restoration time

• Provide customers with estimated restoration times

• What is the difference between restoration and repair 
times?

Outage Crew starts to repair the damage Service restored

Restoration time
Repair time

Two different repair schedules
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Outage Data Overview

34

• Outages from 2011-2016

• 32,291 power outages

• 253 circuits

• 2 hurricanes and several storm events

• Data provides

• Repair time

• Restoration time

• Customers interrupted

• Location

• Cause

• Weather events are collected from National 

Oceanic and Atmospheric Administration 

(NOAA)
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Outage Data Overview (Cont.)

35

• Besides the causes and weather events, the number of customers interrupted has a significant 

impact on restoration and repair time

• With a larger number of affected customers, both the restoration and repair times tend to be shorter  



Iowa State University

Outage Causes

36
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Outages and Weather Events

37



Iowa State University

Outages and Weather Events (Cont.)

38
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Deep Neural Network

39

• In the prediction model for both repair and restoration times,

we consider 353 inputs, where 2 are continuous and 351 are

categorical (binary)

• Continuous inputs:

• Number of customers interrupted

• Number of damages to repair

• Categorical inputs:

• Cause of outage

• Circuit number

• Weather events (e.g., flash flood, hail, heavy snow, rain,

storm surge/tide, etc)
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Deep Neural Network (Cont.)

40

• R with Keras and Tensorflow packages is used to
model the DNN

• DNN has 4 hidden layers: 512, 256, 128, and 64
nodes

• Dropout regularization technique for reducing
overfitting

• Activation function: Rectified Linear Unit (Relu)

• Optimizer: Adam optimization algorithm

• The cost function used in the proposed model is the
mean absolute error
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Repair Time Prediction

41

• Outages from 2011-2015 used as training data

• Outages on 2016 used as testing data

• 80% of the predicted repair time is within 30 minutes of the actual time

• 5% of the predicted repair time is 120 minutes longer the actual time
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Restoration Time Prediction

42

• Outages from 2011-2015 used as training data

• Outages on 2016 used as testing data

• 27% of the predicted restoration times are within 30 minutes from the actual time

• 72% of the predicted restoration times are within 120 minutes from the actual time
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Results Summary

43

• The predictive model for the repair time outperforms the restoration time

• The MAE in both the training and testing set is around 2 hours for the restoration

time model, which is about 90 minutes higher than the repair time DNN model
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Conclusion

• We can conclude that predicting the repair time is easier than predicting the restoration time. 

This result is not surprising because of the high variability of the restoration time. In addition, 

the restoration time includes another uncertain variable, which is the travel time of the repair 

crews 

• Machine learning can be used to improve situational awareness by predicting the repair time

• After predicting the repair times, the utility can schedule the crews more efficiently

• Once the repair time and the crew schedule is obtained, a more reliable estimation of the 

restoration time can be obtained
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Distribution System Repair and Restoration
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Problem Overview

46
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Problem Statement

47

Challenges

• Distribution systems are becoming more complex with new devices. DERs and automatic switches

can greatly accelerate restoration if being operated effectively

• Managing crews, equipment, and the operation of the network is a demanding task. After an extreme

event, a sudden influx of crews can overwhelm operators and storm planners

• The recovery operation problem and repair scheduling are interdependent

• Currently, crews are scheduled based on a priority list. If the priorities are not well defined, the

schedule will be inefficient

Improvements

• Development of advanced optimization methods to jointly optimize the recovery operation and

logistic problems. An optimization process can help the operator in making critical and more

informed decisions after outages

• Design solution algorithms for the co-optimization problem to obtain a quick and efficient solution
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Distribution System Restoration

Method

Model/Algorithm

MILP Stochastic/Robust Agent-based Heuristic

Reconfiguration Butler 2018 Lee 2015 Solanki 2007 Kumar 2008

Reconfiguration+DGs López 2018 Chen 2016 Zidan 2012 Drayer 2018

Networked Microgrids Wang 2016 Wang 2015 Zhao 2018 Hu 2017

Microgrid Formation Chen 2016 Sharma 2018 Sharma 2015 Kumar 2014

Repair Scheduling Golla 2017 Xu 2007 Johns 1994

48

Reconfiguration: optimal reconfiguration of the distribution network with the objective of maximizing the served loads

Reconfiguration and DG dispatch: optimal reconfiguration of the distribution network and DER operation

Networked Microgrids: optimal operation of interconnected individual microgrids with defined boundaries

Microgrid formation: optimal operation of microgrids with dynamic boundaries

Repair Scheduling: repair scheduling of distribution systems’ assets without considering network operations

MILP: Mixed integer linear Program
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Review: Repair and Restoration (1/3)

49

Assumptions

• Neglect travel time

• Crews are immediately present at the 
damaged components

• No specific crew assignments

Model

• Transmission system operation

• Repair schedule

Repair status

Line 1 1 1 1 0 0 0 0

Line 2 1 1 1 1 0 0 0

Line 3 0 0 0 1 1 0 0

Line 4 0 0 0 0 1 1 0

MILP for transmission system repair 
and restoration (Arab 2015)

Operation status

Line 1 0 0 0 1 1 1 1

Line 2 0 0 0 0 1 1 1

Line 3 0 0 0 0 0 1 1

Line 4 0 0 0 0 0 0 1

Limited by number of crews 
Repair time
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Review: Repair and Restoration (2/3)

50

 A project by Los Alamos National Lab and National ICT Australia (NICTA), Australian National University

 2-Step approach for transmission systems (Pascal Van Hentenryck and Carlton Coffrin 2015): 

1. Restoration Ordering Problem: assume only one component can be repaired at each time step

 Solved using MILP

2. Routing: solve a routing problem with precedence constraints 

 Solved using Constraint Programming

 Precedence constraint

Repair 
N1

Repair 
N2

Repair 
N5

Repair 
N4

Repair 
N10

Time 

step

Repair 
N1

Repair 
N2

Repair 
N5

Repair 
N4

Repair 
N10

Start
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Review: Repair and Restoration (3/3)

Yushi Tan and Daniel S. Kirschen , University of Washington, 2017 (preprint)

• Assumptions

• Network is radial without switches

• Power only from substation

• Travel time is neglected

• Power operation constraints are neglected

• Method

• Solve scheduling problem (LP) to minimize the total weighted completion 
time under with “outtree” precedence constraint 

→ obtain priority list

• Whenever a crew is free, select among the remaining candidate lines the one 
with the highest priority

51
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Method 1: Deterministic MILP

Objective

• Minimize cost of shedding loads and switching operation

52

• Crew routing

 Path-flow constraints

 Start/end location

 A damaged line is repaired by one crew

 Arrival (repair start) time 

 Tree removal before line repair

 Equipment constraints

Constraints

• Distribution system operations

 Power flow

 Voltage constraints

 Reconfiguration and fault isolation constraints

 PV systems

 Battery storage

Distribution system repair and restoration problem (DSRRP)

status of the load

load shedding cost

load on bus 𝑖, phase 𝜑, and time 𝑡

𝛾 = 1 if switch 𝑘 operatesswitching cost



Iowa State University

Distribution System

1. Generator/substation power limits

2. Line limits

3. Node balance

4. Kirchhoff voltage law (Gan 2014)

• Losses are neglected

53

3-phase line 1-phase line

1 2 3 4

5 6

DG

Transmission

System 

Substation

Power flow

Limited power

𝑽𝟑 𝑽𝟒

𝑽𝟒 = 𝑽𝟑 − 𝒁𝟑𝟒 𝑰𝟑𝟒

status of the line: 𝑢 = 0 → line is damaged or open

𝒑𝑘: for line 𝑘 with phases 𝑎, 𝑐, 𝒑𝑘 = [1,0,1]

𝑈 = 𝑉2
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Cold-Load Pickup

54

• Cold load pickup (CLPU) is the well-known problem defined as excessive inrush current drawn by loads when the

distribution circuits are re-energized after extended outages

• The typical behaviour of CLPU can be represented using a delayed exponentially decaying function

• We use two blocks to provide a conservative approach and guarantee the supply-load balance (Liu, PSERC 2009)

• 𝜆: number of time steps required for the load to return to

normal condition

• If a load goes from a de-energized state y = 0, to an energized

state y =1, it will go back to normal condition after 𝜆
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Fault Isolation and Reconfiguration

• Fault Isolation

• Force the voltage to be zero on damaged lines

• Voltage should be between 0.95 and 1.05 p.u. for energized 

buses

• The voltage propagates through KVL until a switch stops the 

propagation

• Radiality constraints (for radial networks)

• Find the loops in the network (offline process) (Borghetti 2012)

• At least one switch must be open in the loop

• Count switching operations

• 𝑢𝑘,𝑡 = 0 & 𝑢𝑘,𝑡−1 = 1 → 𝛾𝑘,𝑡 = 1

• 𝑢𝑘,𝑡 = 1 & 𝑢𝑘,𝑡−1 = 0 → 𝛾𝑘,𝑡 = 1

55

𝜒: outage status of bus

Ω𝐾(𝑙): set of lines in loop 𝑙

Ω𝐷𝐾: set of damaged lines

1 2 3 4

5 6 7

0 0 𝜒 = 0

1 1 1 1
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Voltage Regulator

56

• Voltage regulator with variable tap setting

• Voltage on the secondary side = 𝑎 × voltage on the primary

• 𝑎 = 1 + 0.00625 × 𝑇𝑎𝑝 → 𝑈𝑗 = 1 + 0.00625 × 𝑇𝑎𝑝 2 𝑈𝑖
• Tap = -16, -15, …., 16

• Size(Tap) = 33

• Define variable 𝝉 ∈ 0,1 33

• 𝒓 = 𝑎2 = [0.8100,0.8213,…,1.2100]

• Nonlinear constraints

𝑈𝑗 = 𝑈𝑖 × σ𝑘=1
33 𝑟𝑘 𝜏𝑘

σ𝑘=1
33 𝜏𝑘 = 1

• Linear constraints

𝑈𝑚𝑖𝑛 1 − 𝜏𝑘 + 𝑟𝑘𝑈𝑖 ≤ 𝑈𝑗 ≤ 𝑟𝑘𝑈𝑖 + 𝑈𝑚𝑎𝑥 1 − 𝜏𝑘 , ∀𝑉𝑅, 𝑘 ∈ {1. . 33}

• Simplified

0.81 𝑈𝑖 ≤ 𝑈𝑗 ≤ 1.21 𝑈𝑖
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PV and Battery Systems

Types of PV systems considered:

• On-grid (grid-tied) system (Ω𝑃𝑉
𝐺 )

• Hybrid on/off-grid → PV with battery (Ω𝑃𝑉
𝐻 )

• PV + battery with grid forming capabilities (Ω𝑃𝑉
𝐶 )

PV power constraints: Active and reactive power constraints

57

Power ratingSolar irradiance
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PV System Connectivity

58

Virtual Network 

1 2 3 4

567

8 9 10

PV + BESS 
(Type 2)

PV (Type 1) PV+BESS 
(Type 3)

LoadIsland A

Island D
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Battery Energy Storage Systems

• Battery energy storage constraints (for mobile and fixed storage)

1. Charging and discharging limits

2. State of energy 

59

1
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Crew Routing (1/2)

60

Vehicle routing problem (VRP)

1. Starting and ending locations

2. Path-flow constraint

3. A damaged component is visited only once by a line crew and a tree crew (if required)

Damaged component Depot

Valid route

𝑥: binary var equals 1 if crew 
travels the path
𝜙0/1: start/return location time

𝑁: set of nodes

Ω𝐷𝑇: set of lines damaged by trees

𝐶𝐿/𝑇: set of line/tree crews
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Crew Routing (2/2)

61

1. Calculate arrival time

𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑛= 𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑚+𝑇𝑟𝑎𝑣𝑒𝑙𝑚𝑛+𝑅𝑒𝑝𝑎𝑖𝑟𝑚
2. Tree crews must finish before the line crews start repairing 

3. Set arrival time = 0 (empty) if a crew does not visit a component 

𝛼: arrival time

𝑇: repair time

𝑡𝑟: travel time

𝑅𝑒𝑠𝐶: number of resources a crew takes from a depot

𝑅𝑒𝑠𝐷: number of resources in the depot

𝐶𝑎𝑝𝑟: capacity required to carry an equipment

𝐶𝑎𝑝𝐶 : capacity of the crew

𝐸: number of resources a crew has at location

𝑅: required resources to repair a damaged component

4. Crews must have enough equipment to repair the components

5. Each crew has a capacity

6. Equipment are used/picked up as the crews travel between 

components

Equipment on hand = equipment at previous location –

equipment used

7. The equipment is taken from the depot/warehouse

1

2

3

4

5

6

7
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Connecting Operation and Routing

62

• When can we operate the component?

1. Define binary variable 𝑓 which equals 1 once the line is repaired

2. Calculate the restoration time   (Arrival time + Repair time)

3. Set the status of the line (𝑢𝑘,𝑡) to 1 once the line is repaired 
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Challenges

63

• VRP is NP-hard, obtaining the optimal solution for large cases 

is very challenging

• VRP is commonly solved using heuristic methods

• Combining VRP with distribution system operation highly 

increases the complexity

• Large number of damages:

 Routing becomes extremely difficult

E.g. 30 damaged components and 10 crews:

𝑥𝑚,𝑛,𝑐 → 30 × 30 × 10 = 

 9000 integer variables for routing only

• Computation time is critical!
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Proposed Solution Algorithms

• Direct method

• Use commercial solvers (e.g., CPLEX, GUROBI) to solve the mathematical model

• Priority-based

• Cluster-based (C-DSRRP)

• Assignment-based (A-DSRRP)

• A-DSRRP → Neighborhood Search

64
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Priority-based

• The goal of this method is to mimic the approach used in practice

• Define the priority of the lines

1.Repair lines connected to high-priority customers Weight factor 𝑊1 = 10

2.Repair 3-phase lines Weight factor 𝑊2 = 5

3.Repair single phase lines and individual customers Weight factor 𝑊3 = 1

• Identify the lines that must be repaired to restore high-priority customers

• min{(lines to repair)| s.t. operation constraints, high-priority customers must be served}

• Solve the crew routing problem

• min{(σ∀𝑝σ𝑘∈𝐿𝑝
σ𝑐∈𝐶𝐿𝑊𝑝 𝛼𝑐,𝑘)| s.t. routing constraints}

65

𝐿𝑝:set of lines to repair with priority p
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Cluster-based

• Cluster the damaged components to depots

• min {(distance between depots and components)| s.t. resource constraint}

• C-DSRRP

• Solve DSRRP with the crews routed based on the clusters

VRP problem → Multi-VRP subproblems

66
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Assignment-based

67

• Assign the damaged components to crews

• min {(distances between components that are assigned to the crews)| 

s.t. resource constraint and assignment constraints}

• A-DSRRP

• Solve DSRRP with the crews routed based on the assignments

VRP problem → Multi-TSP subproblems
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Reoptimization (A-DSRRP → Large Neighborhood Search)

68

1. Select 𝑠𝑠 nodes (damaged components)

2. Remove part of the route connected to the selected components

3. Set rest of the route to be constant

4. Solve the optimization problem DSRRP (with warm start and limit 120 s)

5. Repeat until we reach the stopping criteria (increase 𝑠𝑠 after 𝑐𝑜𝑢𝑛𝑡
iterations without change)

6. Update the route once new information is obtained
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Test Case

• Modified IEEE 123-bus distribution feeder.

• 9 controllable DGs (e.g., diesel generators) and 
23 switches

• 3 depots, 6 line crews, and 4 tree crews.

• 14 damaged lines

• 1 hour time-step

• The model and algorithm are implemented in 
AMPL, with CPLEX solver

69



Iowa State University

Results: Reoptimization

• Objective value: $199,210

• Iterations: 21

• Computation time: 694 seconds
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Results: Solution Comparison

71

• Optimal solution is obtained by using the Reoptimization solution to warm-start CPLEX and solve

the complete method
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Method 2: Two-Stage Stochastic MILP

72

• Uncertainty

• Repair time

• Demand

• Solar irradiance

• Objective

Minimize cost of shedding loads and switching operation

• First-stage constraints

• Dispatch repair crews

• Equipment constraints

• Second-stage constraints

• Distribution system operation

• Arrival time constraints

• Connect crews routing and power operation
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Uncertainty

73

• Repair time: lognormal distribution (Zhu 2012)

• Demand: truncated normal forecast error 
distribution (Lu 2013)

• Solar irradiance: cloud coverage level and normal 
distribution (Torquato 2014)

Damage Scenario 1 Scenario 2Scenario 3 … Scenario S

Line 1 2.71 3.61 1.97 … 3.11

Line 2 4.01 2.36 3.85 … 5.11

Line 3 1.24 3.21 1.06 … 4.62

Line 4 1.5 1.87 2.88 … 3.45

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Line D 1.68 1.84 4.69 … 2.46

Repair time
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Algorithm

• Use assignment-based approach

• Subproblem I:

• Assign the damaged components to the crews

• Consider uncertainty of the repair times

• Solve using the extensive-form

• Subproblem II

• Solve stochastic DSRRP with the crews dispatched to the assigned damaged
components

• Use Progressive Hedging to solve the stochastic DSRRP model
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Stochastic vs Deterministic

• Decomposed stochastic DSRRP (DS-DSRRP)

• Static-Reoptimization: routing solution is not updated

• Dynamic-Reoptimization: routing solution is updated once the actual repair time is known

• Dynamic approach achieved the best solutions
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Conclusions

• Co-optimizing repair and recovery operation leads to better results compared to

solving the two problems separately

• Efficient repair schedule along with DGs and controllable switches can limit the

outage size and recue the restoration time

• Fault isolation must be modeled in order to obtain an applicable solution

• Advanced solution algorithms are required for solving the co-optimization problem

due to its complexity

• It is important to consider the uncertainty of the repair times. However, methods such

as stochastic programming may require large computation times

• A dynamic approach where the deterministic solution is periodically updated can

achieve better solutions
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Networked Microgrids
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Introduction

• Microgrids (MGs) are localized group of electricity generators and loads that are 

connected to the distribution grid but can be disconnected from the main grid and 

maintain operation

• The microgrids may not always be networked, but become networked after closing 

normally open switches, which may be associated with an outage or physical damage 

to the distribution grid

• There is a need to develop a method for coordinating the microgrids after outages to 

maximize the amount of loads to be served
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Mathematical Formulation

Uncertainty: load and solar power

Objectives: maximize the served load

First-stage constraints :

• Switching operation

• Microgrids power exchange constraints 

• A linear decision-making function is developed to model the 

coordinated power exchange among MGs

• The linear decision-making process is represented by a type 1 

special ordered set (SOS1) 

• SOS1 is a set that contains non-negative variables, of which 

only one can take a strictly positive value, all others are zeros 

Second-stage constraints: Power operation constraints
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Simulation Results (1/2)

- The problem is modeled as a two-stage stochastic mixed-integer 

linear programming problem

- The proposed method has been examined on a modified IEEE 

123-bus distribution system

- A centralized method and a decentralized method are compared

- In the decentralized method, each microgrid decides on whether 

to connect to the grid or not on its own

80

DN: demand not served; Objective: weighted-kWh 
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Simulation Results (2/2)

- The results show that the interactions among MGs play an important

role in facilitating the system restoration

- The centralized approach emphasizes the cooperation of the MGs and

the distribution to obtain a better overall result

- The results confirm that the proposed networked MG-aided approach

can improve the service restoration capability of a distribution grid
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Research Conclusions

• Extreme weather-induced outages have very different characteristics than regular outages

• Effective preparation procedures can ensure that enough equipment is present for repairing the

damaged components in the network and facilitate a faster restoration process

• Machine learning can be used to improve situational awareness and ensure efficient repair

scheduling by predicting the repair times

• A MILP and SMIP formulations are proposed to solve the joint optimization of damage repair and

recovery operation

• Co-optimizing repair and recovery operation leads to better results compared to solving the two

problems separately

• Sectionalizing a distribution grid into multiple microgrids in emergency and coordinating them

could enhance the system resilience



Iowa State University 83

Publications
Journal Papers

1. A. Arif, Z. Wang, C. Chen, B. Chen, “, A stochastic multi-commodity logistic model for disaster preparation in distribution systems,” IEEE Trans. Smart Grid, Under Review.

2. A. Arif, Z. Wang, J. Wang, and C. Chen, “Repair and resource scheduling in unbalanced distribution systems using neighborhood search,” IEEE Trans. Smart Grid, Under 

Review.

3. A. Arif, S. Ma, Z. Wang, J. Wang, S. M. Ryan and C. Chen, “Optimizing service restoration in distribution systems with uncertain repair time and demand,” IEEE Trans. 

Power Syst., vol. 33, no. 6, pp. 6828-6838, Nov. 2018.

4. A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, and D. Zhao, “Load modeling - a review,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 5986-5999, Nov. 2018. 

5. A. Arif, Z. Wang, J. Wang, and C. Chen, “Power distribution system outage management with co-optimization of repairs, reconfiguration, and DG dispatch,” IEEE Trans. 

Smart Grid, vol. 9, no. 5, pp. 4109-4118, Sept. 2018.

6. A. Arif and Z. Wang, “Networked microgrids for service restoration in resilient distribution systems,” IET Gener. Transm. Distrib., vol. 11, no. 14, pp. 3612-3619, Sep. 2017.

Conference Paper

1. S. Ma, S. Li, Z. Wang, A. Arif, K. Ma., “A novel MILP formulation for fault isolation and network reconfiguration in active distribution systems,” IEEE PES General Meeting, 

Portland, OR, 2018, pp. 1-5.

2. A. Arif, Z. Wang, “Distribution network outage data analysis and repair time prediction using deep learning,” IEEE Int Conf. Probabilistic Methods Appl. Power Syst., Boise, 

ID, 2018, pp. 1-6.

3. A. Arif, S. Ma, Z. Wang, “Dynamic reconfiguration and fault isolation for a selfhealing distribution system,” IEEE PES Transm. Distrib. Conf. Expo., Denver, CO, 2018, pp. 1-

5.73

4. A. Arif, S. Ma, Z. Wang, “Online decomposed optimal outage management after natural disasters,” IEEE PES General Meeting, Chicago, IL, 2017, pp. 1-5.

5. A. Arif, S. Ma, Z. Wang, “Optimization of transmission system repair and restoration with crew routing,” IEEE North Amer. Power Symp., 2016, Denver, CO, pp. 1-6.

6. A. Arif and Z. Wang, “Service restoration in resilient power distribution systems with networked microgrid,” IEEE PES General Meeting, Boston, MA, 2016, pp. 1-5.



Iowa State University 84

References
 H. O. Mete and Z. B. Zabinsky, “Stochastic optimization of medical supply location and distribution in disaster management,” Int. J. Prod. Econ., vol.

126, no. 1, pp. 76-84, 2010.

 A. Verma and G. M. Gaukler, “Pre-positioning disaster response facilities at safe locations: an evaluation of deterministic and stochastic modeling

approaches”, Comput. Oper. Res., vol. 62, pp. 197-209, Oct. 2015.

 O. Rodriguez-Espindola, P. Albores, C. Brewster, “Disaster preparedness in humanitarian logistics: a collaborative approach for resource management in

floods,” Eur. J. Oper. Res., vol. 264, no. 3, pp. 978-993, Feb. 2018.

 W. Ni, J. Shu, M. Song, “Location and emergency inventory prepositioning for disaster response operations: min-max robust model and a case study of

Yushu Earthquake,” Prod. Oper. Manage., vol. 27, no. 1, pp. 160-183, Jan. 2018.

 S. Wang, B. R. Sarker, L. Mann, Jr., and E. Triantaphyllou, “Resource planning and a depot location model for electric power restoration,” Eur. J. Oper.

Res., vol. 155, no. 1, pp. 22-43, May 2004.

 C. Coffrin, P. V. Hentenryck, and R. Bent, “Strategic stockpiling of power system supplies for disaster recovery,” in Proc. IEEE Power Eng. Soc. Gen.

Meeting, San Diego, CA, USA, 2011, pp. 1-8.

 P. Javanbakht, “Risk-based generation dispatch in the power grid for resilience against extreme weather events,” Ph.D dissertation, Elect. Eng. Comput.

Sci. Dept., Colorado School of Mines, Golden, CO, 2015. Accessed on: December 12, 2018.

 J. Kaplan and M. De Maria, “A simple empirical model for predicting the decay of tropical cyclone winds after landfall,” J. Appl. Meteorol., vol. 34, no.

11, pp. 2499-2512, Nov. 1995.

 M. Ouyang and L. Duenas-Osorio, “Multi-dimensional hurricane resilience assessment of electric power systems,” Struct. Safety, vol. 48, pp. 15-24, Feb.

2014.



Iowa State University 85

References
 C. D. Canham, M. J. Papaik, and E. F. Latty, “Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for

northern temperate tree species,” Can. J. Forest Res., vol. 31, no. 1, pp. 1-10, Jan. 2001.

 J.-P. Watson and D. L. Woodruff, “Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems,” Comput.

Manage. Sci., vol. 8, no. 4, pp. 355-370, Jul. 2010.

 M. Kaut and S. W. Wallace, “Evaluation of scenario-generation methods for stochastic programming,” Stochastic Program., vol. 3, no. 2, pp. 257-271,

May 2007.

 K. L. Butler, N. D. R. Sarma and V. Ragendra Prasad, “Network reconfiguration for service restoration in shipboard power distribution systems,” IEEE

Power Eng. R., vol. 21, no. 11, pp. 55-55, Nov. 2001.

 C. Lee, C. Liu, S. Mehrotra and Z. Bie, “Robust distribution network reconfiguration,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 836-842, March 2015.

 J. M. Solanki, S. Khushalani, and N. N. Schulz, “A multi-agent solution to distribution systems restoration,” IEEE Trans. Power Syst., vol. 22, no. 3, pp.

1026-1034, Aug. 2007.

 Y. Kumar, B. Das, and J. Sharma, “Multiobjective, multiconstraint service restoration of electric power distribution system with priority customers,”

IEEE Trans. Power Del., vol. 23, no. 1, pp. 261–270, Jan. 2008.

 J. C. López, J. F. Franco, M. J. Rider and R. Romero, “Optimal restoration/maintenance switching sequence of unbalanced three-phase distribution

systems,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6058-6068, Nov. 2018

 X. Chen, W. Wu and B. Zhang, “Robust restoration method for active distribution networks,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 4005-4015,

Sept. 2016.

 A. Zidan and E. El-Saadany, “A cooperative multiagent framework for self-healing mechanisms in distribution systems,” IEEE Trans. Smart Grid, vol.

3, no. 3, pp. 1525–1539, Sep. 2012.



Iowa State University 86

References
 E. Drayer, N. Kechagia, J. Hegemann, M. Braun, M. Gabel and R. Caire, “Distributed self-healing for distribution grids with evolving search space,”

IEEE Trans. Power Del., vol. 33, no. 4, pp. 1755-1764, Aug. 2018.

 Z. Wang, B. Chen, J. Wang, and C. Chen, “Networked microgrids for self-healing power systems,” c, vol. 7, no. 1, pp. 310-319, January 2016.

 Z. Wang, B. Chen, J. Wang, M. Begovic, and C. Chen, “Coordinated energy management of networked microgrids in distribution systems,” IEEE

Trans. Smart Grid, vol. 6, no. 1, pp. 45-53, January 2015.

 T. Zhao and Z. Ding, “Distributed agent consensus-based optimal resource management for microgrids,” IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp.

443-452, Jan. 2018.

 X. Hu and T. Liu, “Co-optimisation for distribution networks with multimicrogrids based on a two-stage optimisation model with dynamic electricity

pricing,” IET Gener. Transm. Distrib., vol. 11, no. 9, pp. 2251-2259, July 2017.

 C. Chen, J. Wang, and F. Qiu, “Resilient distribution system by microgrids formation after natural disasters,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp.

958-966, March 2016.

 A. Sharma, D. Srinivasan and A. Trivedi, “A Decentralized multi-agent approach for service restoration in uncertain environment,” IEEE Trans. Smart

Grid, vol. 9, no. 4, pp. 3394-3405, July 2018.

 A. Sharma, D. Srinivasan, and A. Trivedi, “A decentralized multiagent system approach for service restoration using DG islanding,” IEEE Trans. Smart

Grid, vol. 6, no. 6, pp. 2784–2793, Nov. 2015.

 R. H. Kumar and S. Ushakumari, “Optimal management of islanded microgrid using binary particle swarm optimization,” Int. Conf. Advances Green

Energy, Thiruvananthapuram, 2014, pp. 251-257.

 B. Golla, “Routing line personnel for restoration of disrupted power distribution network,” M.S. thesis, University of North Carolina, Charlotte, 2017.



Iowa State University 87

References
 N. Xu, S. D. Guikema, R. A. Davidson, L. K. Nozick, Z. Cagnan, and K. Vaziri, “Optimizing scheduling of post-earthquake electric power restoration

tasks,” Earthquake Eng. Struct. Dyn., vol. 36, no. 2, pp. 265-284, Feb. 2007.

 S. Johns, “Heuristics to schedule service engineers within time windows,” J. Oper. Res. Soc., vol. 40, no. 3, pp. 339-346, June 1994.

 A. Arab, A. Khodaei, Z. Han, and S. K. Khator, “Proactive recovery of electric power assets for resiliency enhancement,” IEEE Access, vol. 3, pp. 99-

109, Feb. 2015.

 P. Van Hentenryck and C. Coffrin “Transmission system repair and restoration,” Math. Program., vol. 151, no. 1, pp. 347-373, Jun. 2015.

 Y. Tan, F. Qiu, A. K. Das, D. S. Kirchen, P. Arabshahi, J. Wang, “Scheduling post-disaster repairs in electricity distribution networks,”

arXiv:1702.08382 [math.OC], Feb. 2017.

 L. Gan and S. H. Low, “Convex relaxations and linear approximation for optimal power flow in multiphase radial networks,” in Proc. 2014 Power Syst.

Comput. Conf., Wroclaw, Poland, 2014, pp. 1–9.

 B. Chen, C. Chen, J. Wang, and K. L. Butler-Purry, “Sequential service restoration for unbalanced distribution systems and microgrids,” IEEE Trans.

Power Syst., vol. 33, no. 2, Mar. 2018.

 C. Liu, et al., “Development and evaluation of system restoration strategies from a blackout,” PSERC Publication 09-08, Sep. 2009.

 A. Borghetti, “A mixed-integer linear programming approach for the computation of the minimum-losses radial configuration of electrical distribution

networks,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1264-1273, Aug. 2012.

 Z. Zhu, J. Zhou, C. Yan and L. Chen, “Power system operation risk assessment based on a novel probability distribution of component repair time and

utility theory," in Proc., Asia-Pacific Power and Ener. Eng. Conf., Shanghai, 2012, pp. 1-6.

 N. Lu, R. Diao, R. P. Hafen, N. Samaan and Y. Makarov, “A comparison of forecast error generators for modeling wind and load uncertainty," IEEE

PES General Meeting, Vancouver, BC, 2013, pp. 1-5.

 R. Torquato, Q. Shi, W. Xu, et al., “A Monte Carlo simulation platform for studying low voltage residential networks," IEEE Trans. Smart Grid, vol. 5,

no. 6, pp. 2766- 2776, July 2014.


