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Motivation

 Severe power outages caused by extreme weather events
— Hurricane Irene (2011): 6.69 million customers
— Hurricane Sandy (2012): : 8.66 million customers
— Hurricane Irma (2017): 15 million customers
— Cost of weather-related outages: $25 to $70 billion
annually in U.S.
 Current restoration practices used by utilities
— Rely on customer calls for outage detection
— Lack of situational awareness
— Experience-based crew scheduling

— Recovery operation and crew scheduling are
separated

— DERs and automatic switches are not fully utilitzed
— Inefficient and sub optimal




Extreme Weather and The Grid

« Extreme weather events constantly threaten and damage the electrical system

Overhead distribution systems are vulnerable to severe weather events such as hurricanes, wind, rain,
lightning, ice, freezing rain, and snow

« Recent years have seen an increase of weather events and outages
Source: accuweather.com
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Utility Practices (1/2)

PREPARATION EVENT OUTAGE DAMAGE FAULT
MANAGEMENT ASSESSMENT ISOLATION
SYSTEM
ASSIGN DISPATCH SERVICE

PRIORITIES CREWS RESTORATION




Utility Practices (2/2)

Preparation
» Crews and staff on alert
* Request assistance
* Pre-storm allocation of crews and resources |

Outage Management System O OO0 OO0 O

 Data from customer calls, SCADA, AMI, etc are collected T T
« Determines the likely location of the trouble T

Crew Comfort
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Damage assessment process
« Damage assessors navigate to the outage locations
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 Estimate repair times @ @
* Prioritizing restoration activities o /I_l\:::m;s: /"
« Hazards — critical customers (e.g., hospitals) — prioritize by — 7 C— il
number of customers Crisis Center — Westar Energy
« Crew Scheduling

 Schedule in sequence of priority
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Resilient Distribution System (1/2)

* Resilience: The ability to prepare for and adapt to changing
conditions and withstand and recover rapidly from disruptions

« Develop tools, methods, and algorithms to design a resilient
power distribution system

Resilient
Design

 Planning
— Hardening infrastructure eI prediogion
— Optimal locations of DERs and switches
— Pre-storm preparation Resilience

— Resource allocation
Repair
Crew
Scheduling

Preparation

Disaster response
— Fault isolation and service restoration
— Damage assessment and repair time estimation

— Co-optimization of crew scheduling and network
operation

Damage
Assessment




% Load Served

Resilient Distribution System (2/2)
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to faster restoration times.




Problem Statement (1/2)

What Is missing?

« A preparation strategy before repair and restoration to ensure a fast response
 Estimating the repair time efficiently

« A co-optimization method that jointly optimizes crew routing and distribution
system operation

« Modeling the connectivity status of different types of solar PV systems
« Modeling fault isolation and tree/obstacle removal before repairing damages




Problem Statement (2/2)

Objectives:

1. Proactive response: develop a mathematical model to pre-stage and prepare human
resources and equipment before extreme weather events

2. Use machine learning to predict repair times of damaged components

3. Design solution algorithms and develop mathematical models to co-optimize repair
scheduling and recovery operation of distribution systems

4. Develop models for coordinating interconnected microgrids

. . |

i'I);e' ;t:);r;l- -le:n-n-n; """""""""""" 1 | Post-storm repair and restoration !

T T T T : planning . I |+ Estimate the repair time I
| Outage scenario generation i1+ Choose staging locations o : . !
: W ol e . . 1 1 * Coordinate tree and line crews !
P eather forecast —1 ¢ Mobilize available crews and request assistance . |
I - 1o : * Manage Equipment :
, *  Fragility model . if necessary i
e o o o o o o o e e e e e |
i

| |
|

i e Isolate damaged components
|
|

I « (Obtain and allocate resources and equipment AR
y aup Operate the distribution system




Research Achievement

A two-stage stochastic mixed integer linear program (SMIP) is developed to acquire and pre-stage
crews and equipment before an extreme event

 Effectively used Deep Learning to predict repair times of damaged components
* A novel mixed integer linear program (MILP) for jointly optimizing the repair crew routing and

distribution network operation is developed. The model can improve utilities’ response to extreme
events. Our research group is the first to develop a single mathematical model for co-optimizing crew

routing and power restoration

* A mathematical formulation 1s developed for fault 1solation and service restoration. Isolation has been
neglected in existing distribution system restoration studies that use mathematical programming

* Development of efficient algorithms for solving the co-optimization problem

* 4 journal and 6 conference papers have been published, and 2 journal papers are under review
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Disaster Preparation
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Pre-Disaster Resource Allocation

« To achieve a faster and more organized emergency response,

utilities can devise a plan beforehand to ensure a proactive } I s 4 s s
response I . L TR
Oeeennnn — — 25 447._4’5'16 1?3112 11|0 109 Loe
 The first step Is to forecast the event and predict its impact - S DA S P
. . > 104" o 101 102 103 104
 Historical data O T @@ ; o
» Fragility model and weather forecast I T e A EIVECYS
. . . O---._..14 0—0—-—0—?
« Estimate the number of equipment required P Y8 IJ 67 68 69 70 71
«  Estimate the repair times T B N T T S B SR
. R B VRN e
* Pre-event preparation: T I N Wap ow igo gj
» Select staging areas (depots) T 7YYL A
* Order eqUIpment O DG Depot —/— Switch ~ ------- Expected Damaged Lines

* Request external crews
 Allocate the equipment and crews to the depots
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Review — Disaster Preparation

» Pre-disaster planning enables efficient post-disaster recovery by ensuring there are enough equipment and crews to
quickly conduct the repairs

 Utilities must provide water, food, and shelter and communicate differences in work practices to visiting crews
« Few studies focused on disaster preparation in the context of power system and its infrastructure

» The previous work approached the preparation stage by dividing the electric network into different areas, with each
area having a specific demand, which neglects the individual components within each area and the distances between
these components and the depots

Ref. Application Method
Mete 2010 Identify the amount of medical supplies and storage location for the supplies SMIP
Verma 2015 Select facility location for storing emergency supplies before a disaster SMIP
Rodriguez-Espindola 2018 Select the location of emergency facilities and allocate relief resources MILP
Ni 2018 Select the location of emergency facilities and allocate relief resources Robust Optimization
Wang 2004 Find optimal number of depots and their locations around the power network MILP
Coffrin 2011 Determine the number of resources to stockpile before a disaster n order to repair the power network SMIP




Review — Stochastic Programming

« Mathematical program in which some of the data are not known with certainty

Decision variables
Objective function
Constraints

« Two-stage Stochastic Program
Given: A large number of potential scenarios
Stage I: Make some advance decisions (plan ahead)
Observe the actual input scenario

Objectvie: mincTx + %Zévzl Q(x,¢s)
Subject to Ax=Db
x=0

Stage Il: Take recourse actions in response to the realization of the random
variables and the first stage decisions




Framework

1. The forecasted weather and fragility models of the
) i Pre-cvent phase '
components are used to generate damage scenarlos '

2. For each scenario, we solve a power flow (PF)

Weather Forecast

problem to identify critical components that must Y _
be repaired to restore service for high-priority N Damage Scenario Generation
customers 5
. ] by =1 s=2 5=3 s=19|

3. The stochastic crew and resource allocation R Y v v
problem (SCRAP) model is then solved to select R PF T I — PF
depot locations and allocate the crews and 1}
equipment Stochastic Crew and Resource Allocation

4. After the event, the distribution system repairand ~ ~TTTTTT T
restoration problem (DSRRP) model can be solved i Post-event phase !

to schedule the repairs and operate the network Distribution System Repair and Restoration




Scenario Generation (1/2)

» Generate wind speeds according to forecasted data
«  Example: Hurricane category 3 - lognormal distribution with yu = 4.638 and o = 0.039 (Javanbakht 2018)
« Use hurricane decay model to calculate the maximum wind speed on the area (Kaplan 1995)

« Use fragility models to (Ouyang 2014):

» Calculate the probability of failure of each pole: p?°*(w) = min{a e? ¥, 1}

 Calculate probability of failure of each conductor

i ind i J : ind loadin
» Probability of wind induced damage: p}*"*(w) = mm{ wi ing '1}
conductor endurance

* Probability of damage due to fallen trees p;"¢¢ (w) (Canham 2001)

» Using Bernoulli distribution to find the damage state of each pole and conductor in every scenario
« Bernoulli(p) = 1 (damaged) with probability p, and 0 (functional) with probability 1-p

lowa State Universit




Scenario Generation (2/2)

« Calculate required equipment

» Types of equipment: »
*  Type 1: Poles for 3-phase lines 5 o L6
»  Type 2: Poles for 1- and 2-phase lines
e  Type 3: 3-phase transformers Cj”i‘f” | Distribution bus (pole)
Type 4: 1-phase transformers H E | | % -
*  Type5: Conductors Distribution line

«  Estimate the repair times T phmelite ===1phaeline X Damagedpole ¢ Damaged conductor
« Each damaged distribution pole: normal distribution (5,2.5)
« Each damaged distribution conductor: normal distribution (4,2)

 ldentify critical components

» Solve a MILP to identify minimum number of lines to repair min Z .
k
« Status of the line: u; kEQ D ()
« Status of the load: y; subject to y; = 1,Vi € Qcp

» Set of damaged lines for each scenario (Qp(s)) subject to power operation constraints

 Set of critical loads (Q¢p)

lowa State Universit




SCRAP Model - Summary

« Uncertainty

« Damage to the grid

« Equipment required Equipment (] % @ © % ® @

» Repair times owoment
. Objective: allocated to depots | T | _!_“

- Minimize preparation costs and penalty over — oepors N L

unmet demand and late repairs l '[Equipment assigned to creWS{l I} Crew allocated to depots

 First-stage constraints Line Crews 2;""4&"'2&"'2&""2&'5 ‘zg“ [;AA A

« Depot selection Tree Crews A“ ‘: “4 AA‘ C‘

» Crew and equipment allocation AN DY\ essienmen
- Second-stage constraints Ej;fﬁiﬁjm@ 0 0 <> 0 ‘ <> 0 0 <> 00

 Assign crews to damaged components O Damaged Line @ Damaged by atree {7} Depot not selected

« Working hours
 Assign equipment to crews




Objective

 First-stage objective: minimize the costs of equipment transportation, ordering equipment
and external crews, and staging depots

mmz Pa. ETEd er + Z PEET, T+Z 2 (L1qg+Tl1a) + 'Pd yd)

Yd.e,T Yd, T

« Second-stage objective:
 Minimize the costs associated with the crews. The costs of crews include labor, food,

and accommodation
« Minimize penalty costs of unmet equipment demand and time it takes to repair all
components

Vd,

min ZPI‘(S) Z PIrH,. .+ Z P, + PRl + £hy)




First-Stage Constraints

« The number of selected depots is limited to v"4*

» Each depot, if selected, can contain a limited amount of
equipment

* Limit the number of crews in the depots

» Determine the number of equipment/line crews/ tree crews
at each depot

» Resources in depot d = resources initially in d + resources
transferred to d + newly resources - resources transferred to
other depots

 Internal crews must be in one of the depots

« External crews can be either located in one depot, or not
used

lowa State Universit
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Symmetry-Breaking Constraints

« The presented problem allow a large number of feasible symmetric solutions with equal objective

value
» We add symmetry breaking constraints to keep at least one solution and remove all other symmetric
solutions Crew
*  Example: 1100 1010 0101 0011\ o
dq.c = | 0000 | = [ 0000 ) = [ 0000 | = [ 0000 %g
0011 0101 1010 1100/ ~
« Allocate the crew with the lowest index first %:5“"""“ - %"M‘ SCheslen
* Allocate the crews starting from the depots with the S (19p = d)bacir > Y (19p]—d)dac, Ve € CF e < |CF|

lowest index and skip depots that are not staged

. . Sder1 > Y dqcYeeCl c<|CT
«  Apply constraints for both line and tree crews ; e % e <

> (19| =d)dacer = Y _(|Qp|—d)dac,Vee CT e < |CT]
vd Vd




Second-Stage Constraints (1/2)

D Ales =Uis Vh,s

» The second-stage constraints are dependent on the realization veeCL
of the uncertainty Z Al o=ul Yk s
« Crew assignment veeCT
» Each damaged component is assigned to a crew ; Aben <M ; u.c, Ve € C¥,s

* Only crews that are present are used Z AT < MZ Suo Ve e O s
» Crews are assigned to damaged components within a vk vd
reasonable distance from their locations D> Day(bge+ Ay .o —1),Vd k,c€ C".s
D>Day(dac+ Apes—1),¥d k,ceC's
« Working hours
» Equals the sum of the estimated repair times of the

T

s = Y (BT AR o) Ve e CF s

. Yk
assigned components
. : : : Heo =Y (BT Aj..).Vee s
« Time when last component is repaired = largest working — e

hour
LE > H.o  NVee CF s

el >H. . veeCl s

lowa State Universit




Second-Stage Constraints (2/2)

* The number of equipment available must be enough for

repairing all critical lines before the extreme event D> _Eir= ) RersVrs
occurs vd YkEQCL (5)

« The total equipment that the utility have must be equal Y (Bir+Eirs) 2 ) Rirs,Vrs
or greater than the required equipment to repair the v i
damaged components > Efare < Mdae,Vd,ceCl s

« &4 Identifies the additional number of equipment i
(unmet equipment demand) that must be ordered in each > Elars < Bl +&iraVd T
scenario to finish the repairs veeCL

- Each crew can obtain equipment from the depot they are Y £l > > Ap . Ri-. Vee Cl s
positioned at vd vk

* The number of resources the crew have should be
enough to repair the assigned damaged components




Solution Algorithm

» Progressive hedging makes a scenario-decomposition and then obtains a solution by
penalizing the scenario-problems [ ]

» Solve each scenario independently and update penalty term until convergence

« Algorithm: [ ]
1. Solve each scenario without penalty terms

Find the average first-stage solution ¥ = Yy Pr(s) x, ( )

Calculate penalty factor ng, = p(x; — X;) v

Augment the penalty factor to the stochastic model and solve [ ]

If Y Pr(s) ||xs — x5|| > € goto 2 [ ]

« The algorithm terminates once all first-stage decisions x, converge to a common x

« The PH algorithm may experience slow convergence

« Adetailed analysis of PH showed that individual first-stage variables frequently converge

ARl

to specific values across all scenario subproblems [32]. ves

* We fix some of the first-stage variables (depot selection and crew allocation) if they
converge to the same values after some number of iterations.

« 5 iterations for depots
e 20 iterations for crews




Test Case

* Modified IEEE 123-bus distribution feeder
e The network is modified by including: SIMULATION DATA FOR SCRAP ON THE IEEE 123-BUS FEEDER

: Parameter Value
© 3 dlspatchable DGs Depot supply capacity (unit) C&E = {600,400,400,250,250}
« 18 x new switches Depot crew capacity (crew) Cc‘? = {8,7.7.5,5}
e §5xPVs Capacity required (unit) Cf ={10,8,5.4,6}
Staging areas costs ($) ’I—"C? = {0,170K,170K,90K,90K}
* 2 xBESSs. Equipment costs ($/unit*) | PET = {2K.1.2K.2.5K,1.2K,3.3K}
e 100 damage scenarios are generated Hourly cost ($/crew) Line crew: 225, Tree crew: 120
e Reduced to 30 using GAMS’s SCENRED?2 tool Tmnsgmamn. costs ,(S“km) 0.098
‘ontracting costs $4285/crew
* 5 pOtentiEﬂ dGDOtS *For the conductor, 1km = 1 unit.

e  Maximum of 10 line crews
e  Maximum of 10 Tree crews

* Depot 1 has: 5 line crews, 3 tree crews, 25 poles (10 for 3-phase lines and 15 for 1- and 2-phase lines),
4 km of conductor, 8 single-phase transformers, and 3 three-phase transformers

lowa State Universit




Results (1/2)

« SCRAP is compared with deterministic

PRE-EVENT PREPARATION RESULTS

aIIo_ca_tlon_ (DA) and a robust stochastic SCRAP - o
optimization method (RSO) Staged Depots| 1 | 4 1 2 | 1| 4
. . Line Crews 6 4 6 4 6 4
* The staging sites and the number of crews are e T T > —
found to be the same for all methods 1l 10 | 6 10 0 | 15| 8
. - . . . . 2 16 13 13 6 26 15
 The deterministic solution is biased towards a Equipmant [ 3 | 3 0 3 0 3 | 0
single scenario and did not consider some of 4] 6 | 2 / 1 ] 6 |3
SI38km|(2km| 25km |1.5km |5 km|3 km
the extreme cases Costs $146.766 S$117.443 $183.371

« RSO favors a solution that would perform
better with worst-case scenarios, which can
lead to over-preparation and over-investment

lowa State Universit



Results (2/2)

» SCRAP is solved using the extensive form (EF) and PH

» The performance is evaluated by comparing the solutions with the wait-and-see (WS) solution and calculating the
expected value of perfect information (EVPI)

« ED is the expected value of the deterministic solution
* The difference between PH and ED is $163,017, which is around 80% of the difference between ED and WS

« This indicates that the stochastic model leads to a better preparation strategy by acquiring and positioning enough
equipment
» PH achieved a solution only 0.36% less than EF with a considerably lower computation time

« RSO achieved a solution that outperforms the deterministic one, however, the EVPI for RSO is $95,513 and $38,415
for SCRAP-PH

PERFORMANCE OF THE STOCHASTIC PROGRAM
Method  Objective Value Computation Time  EVPI

WS $513,170 N/A N/A
SCRAP-EF $549,554 300 min 36,384
SCRAP-PH $3551,585 106 min 538,415

RSO $608,683 335 min 595,513

ED $714.602 2 min $201.432




Stability Analysis

* \We test the sensitivity of the solution to the number of scenarios (Kaut 2007)
« If the variation of the objective value is limited, then the solution is stable

$600.000
$590.000
$580.000
$570,000
$560.000
$550,000 T T —— —e— —e —— —
$540.000
$530.000
$520.000
$510.000
$500.000

Objective Value

30 40 50 60 70 80 90 100
Number of Scenarios




Restoration Phase

« To assess the devised preparation plan, we solve the repair and restoration problem
with and without preparation

« A new random damage scenario is generated on the IEEE 123-bus system

* In the generated scenario, 13 three-phase poles, 18 single-phase poles, 2 single-phase
transformers, and 4343.4 meter of conductor are damaged

100
—— SCRAP/RSO
REPAIR AND RESTORATION PERFORMANCE AFTER THE EVENT gol — Deterministic
Preparation Equipment Load served (kWh) 5 —— W/O Preparation
SCRAP {+3,411,43,46,40.32 km} 80,136 kWh % 60
RSO {+10,423,+3,+7,43.7 km} 80,136 kWh 2
DA {-3,41,43,46.-0.34 km} 77,448 kKWh § 40
W/O Preparation  {-3,-3,4+3,+6,-0.34 km} 46,667 KkWh °
“-7: shortage; “+7: surplus; the load served is for the first 48 hours 20
Equipment: {Poles for 3-phase lines, Poles for single-phase lines,
3-phase transformers, single-phase transformers, conductor} 0
1 6 11 16 21 26 31 36 41 46

Time (hours)




Conclusions

« A two-stage stochastic mathematical model is developed to select staging locations,
and allocate crews and equipment

« SCRAP is able to consider the variability of the extreme event outcome compared to
the deterministic solution

« Solving the two-stage stochastic problem is more beneficial than solving a
deterministic problem

« Robust optimization may lead to over-preparation

« By using an effective preparation procedure, we can ensure that enough equipment is
present for repairing the damaged components in the network and facilitate a faster
restoration process

lowa State Universit




Repair Time Prediction
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Objectives

 Estimate the repair time

 An efficient repair schedule can be obtained if the 120%
estimated time is close to the actual time required 100% —1
by the crews - "
» A better schedule can lead to a faster disaster 5 | ﬁ |
response E o |
o 40%
* Estimate the restoration time 0%
» Provide customers with estimated restoration times »
« What is the difference between restoration and repair r3y s 7 9 131517
t| mes? Time (hrs)
Two different repair schedules
Outage Crew starts to repair the damage Service restored
‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘_'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'

N E s

Restoration time L
Repair time
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Outage Data Overview

2011

« Qutages from 2011-2016

« 32,291 power outages

« 253 circuits

2 hurricanes and several storm events

 Data provides

Repair time

Restoration time g N W RIS

Customers interrupted bl ¢ Y oo LS R e

Location e e 5
« Cause

« \Weather events are collected from National

Oceanic and Atmospheric Administration WA
(NOAA) | Y
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Outage Data Overview (Cont.)

* Besides the causes and weather events, the number of customers interrupted has a significant
impact on restoration and repair time
* With a larger number of affected customers, both the restoration and repair times tend to be shorter

100- 100-
E 75' 75,
< 0
0 <
= g
-5 50- E 50- )
© 8 i
2 %
i iz b
e 25 25 g,
0- a2 ey L e . e o . 0- MM—‘!M%JI;-A« el .
0 1000 2000 3000 0 1000 2000 3000
Number of Customers Interrupted Number of Customers Interrupted
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Outage Causes

M Animal M indeterminable [l other B Trees [ wWind

Cause . Broken/Faulty Equipment . Lightning . Snow . Vehicle

Vehicle- . C Restoration Time (hrs) Repair Time (hrs)
ause mean | standard deviation | mean | standard deviation
. Animal 1.79 1.76 0.41 0.63
rees-

Broken/Faulty Equipment | 4.43 5.07 1.58 2.38
Indeterminable 3.32 422 0.67 1.29
Snow - - Lightning 5.26 5.46 0.82 2.04
Other 341 13.11 1.46 13.26

@
% Olher- Snow 37.37 29.04 0.89 4.87
O Trees 10.48 17.59 0.97 2.07
Vehicle 2.82 2.50 1.91 6.11
Lightning - Wind 25.65 24.73 0.84 3.78

Fauny EQUiDment_ _

5000 10000
Number of Outages

o -
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Outages and Weather Events

M Fiood M Heat M Lightning [ Tropical Storm
. Frost/Freeze . Heavy Snow . Storm Surge/Tide .Winler Storm

. Winter Weather

™ cold/wind Chil
. Excessive Heat
Storm Event g e treme Cold/Wind Chill JJll Funnel Cloud [l High Wind [ Strong Wind

[ Flash Flood B Hail lce Storm [ Thunderstorm Wind

Winter Weather -
Winter Storm -
Tropical Storm -
Thunderstorm Wind -
Strong Wind -

Storm Surge/Tide -
Lightning -

Ice Storm-

High Wind -

Heavy Snow -

Heat -

Storm Event

Hail-

Funnel Cloud -
Frost/Freeze -

Flood -

Flash Flood -

Extreme Cold/Wind Chill-
Excessive Heat-
Cold/Wind Chill-

500 1000 1500 2000
Number of Qutages

= -
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Restoration Time (hrs)

Repair Time (hrs)

Weather Event mean | standard deviation | mean | standard deviation
Cold/Wind Chill 2.73 1.79 1.09 1.39
Excessive Heat 6.80 5.84 1.25 1.32
Extreme Cold/Wind Chill | 2.73 2.07 1.74 231
Flash Flood 26.07 28.68 0.76 3.07
Flood 30.55 25.63 0.91 4.46
Frost/Freeze 2.07 1.55 0.67 1.14
Funnel Cloud 9.23 6.58 0.82 0.77
Hail 8.14 7.60 0.95 1.65
Heat 3.65 2.96 1.18 1.45
Heavy Snow 32.34 27.75 0.59 221
High Wind 26.46 26.35 0.78 4.34
Ice Storm 50.29 18.89 1.22 434
Lightning 4.57 4.07 1.12 1.35
Storm Surge/Tide 38.03 28.45 1.03 5.19
Strong Wind 6.08 6.26 1.41 2.37
Thunderstorm Wind 7.39 7.15 1.02 1.89
Tropical Storm 35.50 22.37 1.73 5.52
Winter Storm 37.55 29.83 0.79 4.63
Winter Weather 4.47 5.12 1.17 1.42




Outages and Weather Events (Cont.)
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Deep Neural Network

512 Nodes
256 Nodes
.o . . . ‘ 128 Nod
* In the prediction model for both repair and restoration times, 353 Inputs //4'&\\{// .
d 353 . h 2 . d 351 Number of interrupted 43 4’/[/ \‘{v"i;
we consider inputs, where 2 are continuous an are S — \‘lll};’ AN
: : " {7 "\..'4‘. < ('
categorical (binary) Number o damages (@ %?tf"{{ ?,;WZ\ o 1 Output
. . : I X V’ % "' q W
« Continuous inputs: c ’ /""/'?{.7 %&%‘A"\\k -
o ause ‘ '
* Number of customers interrupted = Q“\' \W

* Number of damages to repair Circuit
* (Categorical inputs: Weather Event
* Cause of outage ST

/

e (Circuit number Input Nodes 0 //,i,/’

* Weather events (e.g., flash flood, hail, heavy snow, rain, Hidden Nodes () ; \
: Neuron |-

Output Nodes | J \\\ /

Function [}

storm surge/tide, etc)

-~ =

lowa State Universit



Deep Neural Network (Cont.)

R with Keras and Tensorflow packages is used to

model the DNN DNN-Restoration Time DNN-Repair Time
Cost Function MAE MAE
° i . Optimizer Adam Adam
DNN has 4 hidden layers: 512, 256, 128, and 64 Training Samples s o
nodes Epochs 4000 2400
; ; . . Batch Size 50 50
* Dropout regularization technique for reducing Total Iterations 2108000 1094400
overfitting
 Activation function: Rectified Linear Unit (Relu) — ,
Layer Nodes Activation Trainable Parameters Dropout Rate
« Optimizer: Adam optimization algorithm Input 353 N/A N/A N/A
Hidden 512  Relu 181248 20%
« The cost function used in the proposed model is the Hidden 256 Relu 131328 20%
Hidden 128  Relu 32896 N/A
mean absolute error Hidden 64  Relu 8256 N/A
Output 1 Relu 65 N/A
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Repair Time Prediction

Outages from 2011-2015 used as training data

Outages on 2016 used as testing data
80% of the predicted repair time is within 30 minutes of the actual time

5% of the predicted repair time is 120 minutes longer the actual time

»
é 10.0- . Actual
<) 0.81 m W Predicted
L] k; S g

. e 0) -
2 06- , £
(@] e e gk o i:
§ adlder . £ 5.0-
c 04- Q
] ; X 5.
E ] 1 1 1 1 1 -

0 500 1000 1500 2000 2400 I l
Epochs 0.0-

Outage




Restoration Time Prediction

Outages from 2011-2015 used as training data

Outages on 2016 used as testing data

27% of the predicted restoration times are within 30 minutes from the actual time
72% of the predicted restoration times are within 120 minutes from the actual time

" Actual

I Predicted

(@)
N
O

Y
1

Mean Absolute Error (hrs)
Restoration Time (hrs)

N

5-
0 500 1000 1500 2000 2500 3000 3500 4000
Epochs I

Outage




Results Summary

* The predictive model for the repair time outperforms the restoration time
 The MAE in both the training and testing set is around 2 hours for the restoration
time model, which 1s about 90 minutes higher than the repair time DNN model

Percentages of Prediction

| Predicted - Actual | Restoration Time Repair Time
Less than 30 min 27% 80%
Between 30 and 60 min 22% 11%
Between 60 and 90 min 15% 4%
Between 90 and 120 min 8% 1%
Between 120 and 150 min 6% 2%
Greater than 150 min 22% 2%

Mean Absolute Error 1.98 hrs 18.03 min
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Conclusion

« We can conclude that predicting the repair time is easier than predicting the restoration time.
This result is not surprising because of the high variability of the restoration time. In addition,
the restoration time includes another uncertain variable, which is the travel time of the repair
Crews

« Machine learning can be used to improve situational awareness by predicting the repair time
« After predicting the repair times, the utility can schedule the crews more efficiently

 Once the repair time and the crew schedule is obtained, a more reliable estimation of the
restoration time can be obtained
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Distribution System Repalr and Restoration
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Problem Overview

'

A=

B Closed switch O Open switch




Problem Statement

Challenges

 Distribution systems are becoming more complex with new devices. DERs and automatic switches

can greatly accelerate restoration if being operated effectively

* Managing crews, equipment, and the operation of the network i1s a demanding task. After an extreme
event, a sudden influx of crews can overwhelm operators and storm planners

* The recovery operation problem and repair scheduling are interdependent

* Currently, crews are scheduled based on a priority list. If the priorities are not well defined, the
schedule will be inefficient

Improvements

* Development of advanced optimization methods to jointly optimize the recovery operation and
logistic problems. An optimization process can help the operator in making critical and more
informed decisions after outages

* Design solution algorithms for the co-optimization problem to obtain a quick and efficient solution




Distribution System Restoration

» Reconfiguration: optimal reconfiguration of the distribution network with the objective of maximizing the served loads
» Reconfiguration and DG dispatch: optimal reconfiguration of the distribution network and DER operation
» Networked Microgrids: optimal operation of interconnected individual microgrids with defined boundaries

» Microgrid formation: optimal operation of microgrids with dynamic boundaries

» Repair Scheduling: repair scheduling of distribution systems’ assets without considering network operations

Model/Algorithm
Method _ .

MILP Stochastic/Robust | Agent-based Heuristic
Reconfiguration Butler 2018 Lee 2015 Solanki 2007 Kumar 2008
Reconfiguration+DGs Lopez 2018 Chen 2016 Zidan 2012 Drayer 2018

Networked Microgrids Wang 2016 Wang 2015 Zhao 2018 Hu 2017
Microgrid Formation Chen 2016| Sharma 2018 |[Sharma 2015 Kumar 2014
Repair Scheduling Golla 2017 Xu 2007 Johns 1994

MILP: Mixed integer linear Program




Review: Repalr and Restoration (1/3)

“*MILP for transmission system repair Repair time Limited bgmber of crews
and restoration (Arab 2015) :
( lRepaif_statu/

Assumptions line1l | 1 | 1,1 ‘04 o 0 0
* Neglect travel time line2 [ 1 | 1|/ 1 | i1l o 0 0
 Crews are immediately present at the Line3| 0 0 0O & | 1 0 0
damaged components Line4 | O 0 ( 0 |10 |1 1| o0

* No specific crew assignments A ;

wiratlon status

Model linell 0 | o | 0 i*1 1 1 1
* Transmission system operation Lne2 | 0 | o | o | 0| 1 1 1
* Repair schedule Line3 | 0 0 o [io | 0| 1 1
Lined | 0 0 0 o |{o | 0|l 1




Review: Repair and Restoration (2/3)

s A project by Los Alamos National Lab and National ICT Australia (NICTA), Australian National University
¢ 2-Step approach for transmission systems (Pascal VVan Hentenryck and Carlton Coffrin 2015):
1. Restoration Ordering Problem: assume only one component can be repaired at each time step

s Solved using MILP

Time
step

Repair

Repair
\Wi

Repair

N1 N5

2. Routing: solve a routing problem with precedence constraints
¢ Solved using Constraint Programming

< Precedence constraint
Repair Repair Repair Y Repair
N2 N5 N4 N10
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Review: Repalr and Restoration (3/3)

**Yushi Tan and Daniel S. Kirschen , University of Washington, 2017 (preprint)

822 846

* Assumptions 820 844
. . . . 864
* Network is radial without switches N $op
. 802 806 808 812 814 850 824 826 834 860 836
* Power only from substation 816
. . 832 ¢ 862
* Travel time 1s neglected 0 o E 88 890
838
* Power operation constraints are neglected pes2
e Method 28§30 834 836

* Solve scheduling problem (LP) to minimize the total weighted completion
time under with “outtree” precedence constraint

— obtain priority list

 Whenever a crew is free, select among the remaining candidate lines the one
with the highest priority




Method 1: Deterministic MILP

Distribution system repair and restoration problem (DSRRP)

Objective
« Minimize cost of shedding loads and switching operation

min > (3> (1= vid)p P + 07" D)

Vi VYo Vi keQaw
Constraints
« Distribution system operations « Crew routing
» Power flow » Path-flow constraints
» \oltage constraints » Start/end location
» Reconfiguration and fault isolation constraints » A damaged line is repaired by one crew
» PV systems » Arrival (repair start) time
» Battery storage » Tree removal before line repair

» Equipment constraints




Distribution System

Generator/substation power limits
Line limits
Node balance

Kirchhoff voltage law (Gan 2014)
«  Losses are neglected

el

O < PG < PGmaz

1,0,t Via@vt

Gma:ﬂ y
O<Q,4p, <Q7, ,VZ,(,O,t

Knaz S Pﬁf?:,c',t S uk:tpk,ppﬁf‘nmx

— Uy PP, , Vk, ot

K, K K
- Uk,tpk,;ka_ mer < Qkﬁg’t < uk;tpk,'\ka mar Yk, p,t

lowa State Universit

Limited power

Transmission 1 I

System Power flow
r —_— — Vs Va
I 1I 2 31 —— 4I
Substati -
ubstation | Vi =V — Zay Ins
e 3-phase liN€  emmm== 1-phase line
PV dcl K L h
ZPMH +P 1.t +Pi=w,t +szolt - Zpkmt +Pi,tp=t +P%c¢ t> Vis P
VEEK(..i) VkeK (i,.)
G C -
ZQk,ot+Qz,ot+Q3pt+Q1pt+uetQ P ZQR "t+Qz“t VT'?(?O?t
VkeK(..i) VkeK(i,.)

Ujt — Ut + Z,S; + Z; Sk < (2 — ug — pr)M,Vk,t

Ujr — Ui+ Z.S;+ Z; Sk > —(2 — upy — pp) M, Vk, t



Cold-Load Pickup

* Cold load pickup (CLPU) is the well-known problem defined as excessive inrush current drawn by loads when the
distribution circuits are re-energized after extended outages

* The typical behaviour of CLPU can be represented using a delayed exponentially decaying function

*  We use two blocks to provide a conservative approach and guarantee the supply-load balance (Liu, PSERC 2009)

L D I . A
Pt',:p,t = yi,tPi,;p,t + (yt',t - y-i,max(t—)x,{)))Pi,@,ta Vi, et
T . l
i-‘p,t = y-i._tQﬂp,f + (Yie _yz',ma,x(t.—,\,(l))Qz(':%t-. Vi, @, :
= Undiversified load PY
g |
= |
* A: number of time steps required for the load to return to z . i
normal condition A Inte;rrlrllptlon: Diversified load :PD
« Ifaload goes from a de-energized state y = 0, to an energized © [
state y =1, it will go back to normal condition after A ' Y >
[ Z, l, , Time




Fault Isolation and Reconfiguration

* Fault Isolation

_ 2ups > Xy + X, Ve € Qpi, t
» Force the voltage to be zero on damaged lines
- Xi.tUmin S Uz'.t g Xi.tUma:r ’ Vi:t
» \oltage should be between 0.95 and 1.05 p.u. for energized - ' '
buses

Xit = Yig, Vi, t
The voltage propagates through KVL until a switch stops the

: v = LVEk & {Qsw UQpr},t
propagation uke = 1,Vk & {Qsw U Qpk},

Radiality constraints (for radial networks)

<+ O

0

v

Find the loops in the network (offline process) (Borghetti 2012) °
At least one switch must be open in the loop

« Count switching operations H g. ‘e 2 3
* U =0&uUp g =12y =1

«—o™ <«

= —> < 4—1
e —

Ut = 1&Upe 1 =02y =1 '

x: outage status of bus
Qg ry: set of lines in loop [

Vit = Ukt — Uk t—1, VK € Qgw, T
Qpk: set of damaged lines

Z uke < Q)| — 1,V
Vet = Uk t—1 — Uk t, Vhk € Qgw, t REQK )
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\Voltage Regulator

» \oltage regulator with variable tap setting
» \oltage on the secondary side = a X voltage on the primary
* a=[140.00625 X Tap] — U; =[1+ 0.00625 X Tap]* U;
« Tap=-16,-15,....,16
« Size(Tap) = 33
 Define variable T € {0,1}33
e r =a?=1[0.8100,0.8213,...,1.2100]
» Nonlinear constraints
U] = Ui X 215;3:1 Tk Tk
YiliTk =1
 Linear constraints
Um™n(1—13,) + 1 U; < U; < nUp + U™ (1 —13,), VVR, k € {1..33}
« Simplified
081U; < U; <1.21U;
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PV and Battery Systems

Types of PV systems considered:

e On-grid (grid-tied) system (Q%;,)

* Hybrid on/off-grid — PV with battery (Q%},

e PV + battery with grid forming capabilities (Q% )

PV power constraints: Active and reactive power constraints

Solar irradiance Power rating
PV Ir;: PV . a PV | ~ SPVY)2 _ pPV 2 Vi eQ QG ¢
Pict = Gooow may L Vi € Qpv\2Pv, ot Qip,el < A/(S77)2 = (P7)%, Vi € QpvA\Qpv, o,
m
pPv N i v e QFY| < Xow \J(SFV)? = (BEYV)2,Vi € Oy, 0.t
i,0,t 2,t 1000W/m2) % 3 PV, ¥, ) I .
where Pl = ot P;

(1000W/m?)




PV System Connectivity

Island C

Virtual Network

, Virtual load

Island B

PV + BESS

(Type 2) > B.. ﬂ

R TN
I Sc - PN
8 9 10

[Cle=o@~

e
LLJ
MM

— ]
B
@:

B Closed switch
O Open switch Island A Load\ 9/ (Type 1) PV+BESS Virtual
£2 Damaged Line i‘ (Type 3) source
7
1t+ E ka_ '1t+ E ka V’Lf PV + BESS i i_E
kEK (i) kEK (i,.) frvee) \B
E ’Uﬁf — 01 V?: - QB\{Q%V U QG" U Qﬂub} Island D
, A PA
—uk.,zf‘fifﬁvfz,t < up M,VEk € Qg t 10
Island A PV (Type 1) :
Load PV+BESS
Ny B (Type 3)

Xit > Yie, Vi € Q\{Qg U ng U ng}at
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Battery Energy Storage Systems

 Battery energy storage constraints (for mobile and fixed storage)
1. Charging and discharging limits
2. State of energy

C —ch .
Oépi,}c;,t Euftspf y VZEQES:Q‘Oat

c —dch .
_ ngi‘f@?t < (l—uff)P%- ,Vi € Qgs, @, t

B S S ch ZV@ P':icofalt .
E?l,t = Ei,t—l ‘|‘At(77@ Z P’i, gt - ),VZ - QES,t
d
Ve

E? < ES, <E; Vi€ Qps,t




Crew Routing (1/2)

\ehicle routing problem (VRP)

1. Starting and ending locations

2. Path-flow constraint

3. A damaged component is visited only once by a line crew and a tree crew (if required)

Valid route
Z Tp0 me = 1, Ve
VYmeN ,
D Tmgte=1Ve ‘ v‘
Tm,n,c Tnm,c = U, VC, M € \ {qbca gbc} q ......... > '
vneN\{m}  VneN\{m} V e ‘
Z Z Tmme = 1,Yn € Qpg . g
x: binary var equals 1 if crew VeeCL YmeN\{n}
travels the path ol ‘
¢°/1: start/return location time Z Z Tmne =1,Vn € Qpr '
N: set of nodes VeeCT YmeN\{n}
Qpr: set of lines damaged by trees ‘ Damaged component & DepOt
CL/T: set of line/tree crews




Crew Routing (2/2)

1. Calculate arrival time . e+ Toncttrmn — (L= Zme) M < (e
Arrival,= Arrival,,+Travel,,,+Repair,, ¥m € N\{¢;},n € N\ {42, m} ¢
2. Tree crews must finish before the line crews start repairing 5 Z Ume > Y G+ Toe O Tmme, VM € Qpr
3. Setarrival time = 0 (empty) if a crew does not visit a component — ecCt eeC” vneN
_ _ 3 [ 0<ame <MY zume Ym e N\ {40, 61} ¢
4. Crews must have enough equipment to repair the components - neN

5. Each crew has a capacity R oep oy oL
6. Equipment are used/picked up as the crews travel between 4 [vzeNT” i = Bemn TILTEE

components |: ZCap,,, ema < CapC ¥m,c € C
Equipment on hand = equipment at previous location —

eqUIpment Used _ o ﬂf(l o xmenﬁ) = Ec'm:’” - Rmﬂ' - ECJL?‘ < Mf(l - -Tmm.C),-
7. The equipment is taken from the depot/warehouse vm € N\{¢},n € N\ {¢¢,m},ce Chr
1 1 — M1 —2yne) < Fewyr + Resfw_,n —Eenr <M1 —2yne),
a: arrival time 6 ; : v, s :
T repair time Vw,n € N\ {¢?, ¢, w},ce CF,r

tr: travel time
Res®: number of resources a crew takes from a depot _

Res?: number of resources in the depot 2| ResZ, > S ResCp,+ Y ResC,, Y,
Cap™: capacity required to carry an equipment  VeeCL gl=w VeeCL '
Cap®: capacity of the crew

E: number of resources a crew has at location

R: required resources to repair a damaged component

—M(1—z40,.) < ResCyo, = Eenp < M(1—240,.),Yn € N\ {2} ,ce C*,r




Connecting Operation and Routing

* When can we operate the component?
1. Define binary variable f which equals 1 once the line is repaired
2. Calculate the restoration time (Arrival time + Repair time) D thme> ;(am + e 2 Tmone), ¥m € Qp

Vi YneN

3. Set the status of the line (uy ) to 1 once the line is repaired s — i o ¥m e Qoo

T=1

Y fmi=1,VmeQp
Vi

Arrival Time

1 2 1 3 L 6 1 7 1 8
Traveling Time Repair Time

Restoration Time (},v, tf = 8)

t 1
Starting Point Component Repaired
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Challenges

* VRP is NP-hard, obtaining the optimal solution for large cases 250
- - 00 (yas 4 so st _
IS very challenging E O C I AN R
_ _ o P 261 _______ 25 aq, 4546 113112 | 109 [
* VRP is commonly solved using heuristic methods o 2 _ 4 42[;43 L0 e |
s 2 |, ol 41 114 1(5_'—|
L. . . . . . . ~ - 101 102 103 104
« Combining VRP with distribution system operation highly T ol
| | .
increases the complexity BT N R P R T
,.....11 1 : E.Ei _65 64 63 62 \ e |
* Large number of damages: 2 LB Y e 0 e @ n
9 | [ __7.3_'1‘.4_7’.5
- Routing becomes extremely difficult Mool s meslss® DU TR
149 | T : 5§4 | ‘
E.g. 30 damaged components and 10 crews: T SRR R P
4 6 | 17 : : I_
15 v 94¢ i TT | 82 g1 84
Xmpe = 30 X 30 %10 = ) S B S
—> 9000 integer variables for routing only {3 b6 —-- Damaged B9 oepot - Tie Line

«  Computation time is critical!
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Proposed Solution Algorithms

* Direct method
« Use commercial solvers (e.g., CPLEX, GUROBI) to solve the mathematical model

* Priority-based

* Cluster-based (C-DSRRP)
 Assignment-based (A-DSRRP)

* A-DSRRP — Neighborhood Search

lowa State Universit



Priority-based

The goal of this method is to mimic the approach used in practice

Define the priority of the lines

1.Repair lines connected to high-priority customers Weight factor /; = 10
2.Repair 3-phase lines Weight factor W, = 5
3.Repair single phase lines and individual customers Weight factor /; = 1

Identify the lines that must be repaired to restore high-priority customers
« min{(lines to repair)| s.t. operation constraints, high-priority customers must be served}

Solve the crew routing problem
* MIN{(Xvy ke L, Ycect Wy ac )| s.t. routing constraints}

L,:set of lines to repair with priority p
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Cluster-based

* Cluster the damaged components to depots
« min {(distance between depots and components)| s.t. resource constraint}

« C-DSRRP
e Solve DSRRP with the crews routed based on the clusters

»VRP problem — Multi-VRP subproblems




Assignment-based

 Assign the damaged components to crews
« min {(distances between components that are assigned to the crews)|
s.t. resource constraint and assignment constraints}

* A-DSRRP

« Solve DSRRP with the crews routed based on the assignments
»VRP problem — Multi-TSP subproblems




AN A

Reoptimization (A-DSRRP — Large Neighborhood Search)

Select ss nodes (damaged components)

Remove part of the route connected to the selected components

Set rest of the route to be constant

Solve the optimization problem DSRRP (with warm start and limit 120 s)

Repeat until we reach the stopping criteria (increase ss after count
iterations without change)

Update the route once new information is obtained
.
S &
S
Assignment —_— Initial route ———  Set part of the route as constant —_— Reoptimize
@ Damaged component O Selected node epot ~»Removed path

@ Assigned to crew 1 @ Assigned to crew 2 @  Assigned to crew 3

| Solve Crew Assignment Problem I

)
| Solve Assignment-DSRRP |

» Initialize count and s |

v
—  Set Part of the Route as Constant |
¥
| Solve DSRRP |
Store Solution |
Yes
No v
[ Updatess | [ Updatecount | | Update count |

No
Reached Stopping Criteria?

Update System Status and Parameters

Yes

New
Information?

All Components
are Repaired?




Test Case

» Modified IEEE 123-bus distribution feeder. 8% vepor3

. 0 pd . L . L 300
* 9 controllable DGs (e.g., diesel generators) and ; 0 T
I 45 46113112 08
23 switches 33:_2—1? VL S B -0
- 26
« 3 depots, 6 line crews, and 4 tree crews. ® w 1P e
T w4
« 14 damaged lines D§1 B o
. P 4 T g7] 98 99 100 45_90
* 1 hour time-step e
« The model and algorithm are implemented in =k St
AMPL, with CPLEX solver EETIN 152 5253 | 55 56 Depet 2

I | 149 54 166 27 78 79
= 80 b 161 16 76 :
Z 70 328 341 ul O
g 60 . 16 | v 96 92 90 s 8
E 50 o) 95 93 ol 167 89 87 sal 82 g1 84
en 40
% 30 O DG Qf Voltage Regulator —<— Open Switch —<&— Closed Switch % Depot
c.'% 20 Single Phase Two Phase Three Phase —¢:— Damaged Component
E lg #® FallenTree [ On-gridPv [ & Hybrid system [ #8 Grid-forming PV+BESS
1




Results: Reoptimization

Depot 3

 Objective value: $199,210
* |terations: 21

4y 300

108
30
(175
[ 105

« Computation time: 694 seconds

102 103 104

$214,000 o9 o8
$212,000 A
71, 3
3 $210,000 S — @
< $208,000 ﬁ\%} A
§ $206,000 Depot 2 @
§,$204,000 | 172 47 78 79
C $202,000 :
$200,000 92 90 88 80 g5
$198,000 ;__,,i N T T b T I
0 3 6 0 12 15 18 21 95 93 91 167 89 87 86= 82 g1 84

Iteration Number -
O DG 6 Voltage Regulator —>— Open Switch —o— Closed Switch Depot

—— Single Phase Two Phase

Three Phase —s3— Damaged Component

# Fallen Tree B On-grid PV -l & Hybrid system l Grid-forming PV+BESS
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Results: Solution Comparison

« Optimal solution is obtained by using the Reoptimization solution to warm-start CPLEX and solve
the complete method

100% s - I — —
90% -—t=I_f_I
Reoptimization Priority-based
Test | Damage Obj. | % Gap|Comp. Time| Obj. |% Gap | Comp. Time
1 |15 Lines|$158,023 | 0.00% 660 s $162,734| 2.98% 464 s
2 |20 Lines | $248,986 | 2.53% 762 s $279,197 | 14.97% 392 s
3 |25 Lines | $388,760 | 2.27% 782 s $467.278 | 22.93% 520 s
3U70 T=|—k
20%
1 3 5 7 9 11 13 15 17

Time (hrs)




Method 2: Two-Stage Stochastic MILP

 Uncertainty
 Repair time
e Demand
« Solar irradiance
* Objective
Minimize cost of shedding loads and switching operation
* First-stage constraints
* Dispatch repair crews
« Equipment constraints
 Second-stage constraints
« Distribution system operation
« Arrival time constraints
« Connect crews routing and power operation




Uncertainty

 Repair time: lognormal distribution (Zhu 2012)

+]_oad Forecast
©-Scenarios

 Demand: truncated normal forecast error
distribution (Lu 2013)

Active Power (kW)
N
()

« Solar irradiance: cloud coverage level and normal
distribution (Torquato 2014) 18
80

2 4 6 8 10 12 14 16 18 20 22 24

Repair time

900
Damage Scenario 1 Scenario 2 Scenario 3 Scenario S ~ 800
Line 1 2.71 3.61 1.97 3.11 E 700
Line 2 4.01 2.36 3.85 5.11 5 600
Line 3 1.24 3.21 1.06 4.62 5500
Line 4 1.5 1.87 2.88 3.45 g
Zzzoo
Z 100

. . . . . . N .

LineD  1.68 1.84 4.69 2.46 Loy s 7 e B Is 17 1 2 n

Time (hrs)




Algorithm

 Use assignment-based approach

 Subproblem I:
« Assign the damaged components to the crews
 Consider uncertainty of the repair times
 Solve using the extensive-form

 Subproblem 11

« Solve stochastic DSRRP with the crews dispatched to the assigned damaged
components

 Use Progressive Hedging to solve the stochastic DSRRP model




Stochastic vs Deterministic

Decomposed stochastic DSRRP (DS-DSRRP)
Static-Reoptimization: routing solution is not updated

Dynamic-Reoptimization: routing solution is updated once the actual repair time is known

Dynamic approach achieved the best solutions

The objective value for the IEEE 123-bus system (14 damaged lines) with con-
stant routing solutions and different scenario realizations

DS-DSRRP (PH)

Static-Reoptimization

Dynamic-Reoptimization

Case F(fgsa é.case) % Gap F(:b"Ra é.case) % Gap F(-sta é.case) % Gap Optimal
1 | $256,104.7 |10.84% | $241,661.9 | 4.59% | $232,728.8 0.72% $231,065.4
2 | $248,671.7 | 6.98% | $299,586.4 | 28.88% | $245,558.6 5.64% $232,447.7
3 | $269,505.5 | 6.85% | $291,036.7 | 15.38% | $259,189.3 2.76% $252,235.3
4 | $251,256.7 |13.27% | $268,590.5 | 21.08% | $236,415.2 6.58% $221,828.2
5 | $240,549.3 [15.22% | $246,431.5 | 18.04% | $221,790.7 6.24% $208,772.2




Conclusions

* Co-optimizing repair and recovery operation leads to better results compared to
solving the two problems separately

* Efficient repair schedule along with DGs and controllable switches can limit the
outage size and recue the restoration time

* Fault 1solation must be modeled in order to obtain an applicable solution

* Advanced solution algorithms are required for solving the co-optimization problem
due to 1ts complexity

* [t 1s important to consider the uncertainty of the repair times. However, methods such
as stochastic programming may require large computation times

* A dynamic approach where the deterministic solution is periodically updated can
achieve better solutions




Networked Microgrids
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Introduction

« Microgrids (MGs) are localized group of electricity generators and loads that are
connected to the distribution grid but can be disconnected from the main grid and

maintain operation

« The microgrids may not always be networked, but become networked after closing
normally open switches, which may be associated with an outage or physical damage
to the distribution grid

» There is a need to develop a method for coordinating the microgrids after outages to
maximize the amount of loads to be served




Mathematical Formulation

Uncertainty: load and solar power
Objectives: maximize the served load

First-stage constraints :

d SWItChIng Operatlon A,, = Z (PPGmax +Pf§h +PE':?'F —P,C?) _ Z (yi,rpft +P;CtL)~ Vn.t.s
« Microgrids power exchange constraints vie ' vien"
. . . . —DISE — est, + (PP + )5S, < A, Vnt.s
 Alinear decision-making function is developed to model the
coordinated power exchange among MGs Any < — €8y, + (P + )3, + P56, Vn.t.s
 The linear decision-making process is represented by a type 1 6168 1 oC =1, Yt
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Second-stage constraints: Power operation constraints




Simulation Results (1/2)

Substation

- The problem is modeled as a two-stage stochastic mixed-integer
linear programming problem

- The proposed method has been examined on a modified IEEE
123-bus distribution system

- A centralized method and a decentralized method are compared

- In the decentralized method, each microgrid decides on whether
to connect to the grid or not on its own

Centralised approach

PR 67 97 i 197 101 105| 108} -
et O—O—0O0—0i(m

objective 18845.21 : O—— E
solution time 32443 s {73 o 0 e 1095
load shed (bus number) MG 1 38, 45 g o Yo W% 850
MG 2 111 70k 100 5_2104 11§
{75 | |
MG 3 68, 70 ®w71 ..... 450 i....’f.‘.‘...’ .......... 1 4“3
MG 4 86 e ®
DN 19, 31, 32, 60 @wvr mapv  HESS @CL O Critical Load

Tie Line —<—Damaged Line

DN: demand not served; Objective: weighted-kWh
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Simulation Results (2/2)

- The results show that the interactions among MGs play an important
role In facilitating the system restoration

- The centralized approach emphasizes the cooperation of the MGs and
the distribution to obtain a better overall result

- The results confirm that the proposed networked MG-aided approach
can improve the service restoration capability of a distribution grid




Research Conclusions

» Extreme weather-induced outages have very different characteristics than regular outages

 Effective preparation procedures can ensure that enough equipment is present for repairing the
damaged components in the network and facilitate a faster restoration process

* Machine learning can be used to improve situational awareness and ensure efficient repair
scheduling by predicting the repair times

« A MILP and SMIP formulations are proposed to solve the joint optimization of damage repair and
recovery operation

« Co-optimizing repair and recovery operation leads to better results compared to solving the two
problems separately

 Sectionalizing a distribution grid into multiple microgrids in emergency and coordinating them
could enhance the system resilience
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