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Background

» This work is supported by the U.S. Department of Energy Office of Electricity under
DEODO0000910. It focuses mainly on the use of real PMU data to develop real-time
event identification using machine learning techniques.

» The available PMU data is obtained from 440 PMUs installed across three U.S.
transmission interconnections that include Texas, Western, and Eastern
interconnection. Most data segment is archived at 30 frames/s and the remaining is
archived at 60 frames/s. The total size of the dataset is more than 20 TB in Parquet
form.

« Atotal of 6767 event labels recorded by utilities are utilized to provide the ground
truths.
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Introduction to Real-world PMU Data
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Data Size 3TB 5TB 12TB
Record Period 1 Year 2 Years 2 Years
No. of Data Files 2576 4365 10496
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Introduction to Real-world PMU Data
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Challenges of Data-driven Event Identification

Challenges:
» Event identification based on a single PMU'’s data may be inaccurate and unreliable.

» How to take full advantage of all PMUs’ data to improve the accuracy of event
identification?

» The event identification model may suffer the curse of dimensionality if all PMUS’
data is used.

> Feature reconstruction may be challenging if multiple PMUs’ data is used. As the
number of PMUs increases, the computational complexity of the feature
reconstruction grows significantly, which impacts the real-time performance of the
event identification model.
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Previous Solution:

v' The graph learning task and event identification

Solutions

task are separated (suboptimal).

v
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The graphs are not event type-specific.
Generating a single statistical graph for entire
dataset (ignore the uncertainty of event locations).
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Our Solution:

v" Joint learning of the latent interaction and the event
identification model.

v' The graphs are event type-specific.

v' Generating one interaction graph for each single event.
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Graphical PMU-based Event Identification

Encoder: Graph
e The overall model follows an Inference

auto-encoder structure.

* Encoder: inferring the Encoder: Graph
interaction graph given PMU Sampling
data streams.
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Graphical PMU-based Event Identification

—— N
. Node _., ef ek
Node: PMU embedding L:l] ‘ I
« Edge: The interdependence between two PMUs. T/~ || .
[ O Conca?enatlon
« Node/Edge Embedding: Using a vector to Edge  —ly ok S operation
represent a node/edge. embedding| = L EJ | | \
y o Ol
» We have utilized the Bernoulli distribution to == /
represent the graph structure. (#) Node to Bdge
. . Edge _{ 3{{_2 3{{_3 B]I_(_q_ \
» \We have utilized the deep relational network for  embedding i ———— I
| . i | OO0 O O,
inferencing the latent relationship between —— == | |
different nodes. o <DL Abgregation
E?_;‘ _ fju ([Pf E;-"', 517(1‘,,;{)]} J operation
- — I |
kl 1 Node ke [ |
= fx(1)_ efigy 7)) ecding— < ]! Y

1EN;
( e i (b) Edge to Node IEEE
S . @



Graph Structure Parameterization (Encoder)

Learned Bernoulli Distribution

» For each event, one interaction graph is sampled
from the learned Bernoulli distribution, which | =0m. °°° ‘ 0 I

can handle the uncertainty of event locations.

* \We have tested three different graphing sampling Graph Samphng Method
methods: l
« Stochastic Sampling (unweighted graph) AT
« Deterministic Thresholding (unweighted 4 "}
graph) . ’
e Continuous Sampling (weighted graph) ' ;‘
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Graph Structure Parameterization — Graph Sampling

Since Bernoulli distribution-based parameterization imposes a challenge on
differentiability back-propagation process, we have utilized the Gumbel
reparameterization technique:

exp((log(e7y) + gm)/7)
s exp((Log(el’) + )/ 7)

Zr o =
./-'-I‘_jj

where, g,, is independent and identically distributed (i.i.d) sample drawn from
Gumbel distribution with 0 location and 1 scale parameters, T i1s a smooth
coefficient and is assigned as 0.5 in this work.
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Multi-Scale Data Feature Extraction (Decoder)

Previous Solution: Our Solution:
v" Wavelet transform-based multi-resolution v" Using inception-based model to capture multi-scale
analysis (high computation burden). data features.
v' MTF-based feature reconstruction (high v’ Using dilated convolution layer to replace standard
computation burden). convolution layer for reducing the complexity of the
v Standard CNN-based feature extractor (only model.
capture single-scale feature). ouye | CONVOlUtiONS With
Output § multiple kernel
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Multi-Scale Data Feature Extraction (Decoder)

Same kernel size but
e The main idea of dilated convolution is to insert larger receptive field

zeros between two consecutive features in the
convolutional kernels, which significantly
increases the receptive filed.

» Based on the figure, it is clear a dilated 3x3
convolutional kernel with d = 2 has a similar
receptive field with a standard 5x5
convolutional kernel.

» dis adilation rate that defines a spacing between
the values in a convolutional kernel. Standard d-2 Dilated
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Hyperparameter Tuning

» Hyperparameter: Adjustable parameter whose value is used to control the learning
process.

» Hyperparameters are tuned via a grid search strategy: the number of hidden neurons,
the threshold of graph sampling, the smooth coefficient of Gumbel-Max technique,
dilated rate, the number of graph-layer.

« The proposed method is verified using the data of one interconnection. The event logs
are utilized as the ground truths (around 9600 data samples: 4800 event samples +
4800 normal operation samples).

» We perform a temporal 70/15/15 split for training, validation, and testing, respectively.
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Numerical Results

» We compare three different event identification methods:
v Our proposed method: graph neural network-based method with interaction graphs.

v Non-deep learning method without interaction graphs: support vector machine
(SVM).

v" Deep learning method without interaction graphs: CNN-based method.
» All methods are evaluated using the mean absolute percentage error (MAPE).

» The average online computation time for performing the proposed method is around
0.0156 s (using a standard PC with an Intel(R) Xeon(R) CPU running at 4.10GHZ and
with64.0GB of RAM and an Nvidia Geforce GTX 1080ti 11.0GB GPU).
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Comparlson of Three Graph Sampling Methods
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* In this case, the deterministic thresholding method shows a slightly better performance than
two other sampling methods.

F The difference between the training and testing accuracy indicates the overfitting problem.
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Comparison of Three Methods to Prevent Overfitting
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Based on different overfitting strategies, the training accuracy decreases from around 84% to
f. around 82%; the testing accuracy increases from 68% to around 78%.
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Comparison of Three Event Identification Methods

Method Testing accuracy
Proposed method 78%
CNN-based method 60%
Support vector machine (SVM) 63%

« This table summarizes the event classification testing accuracy of the proposed model and
existing two methods.

» Based on testing accuracy, the proposed method has a better performance (78%) than other

methods ({60%,63%}) in this case, indicating that data-driven inference of interaction graphs
is effective.
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Conclusion and Future Work

* PMUs provide high-granularity and synchronized measurements, including voltage and
current phasor, frequency, and frequency variation, which enables capturing most
dynamics of power systems.

» \We demonstrated how to use multiple PMU data streams together with deep learning
for identifying system events.

 In the future, this work will be extended by integration with semi-supervised learning
and federated learning techniques and to deal with the event mismatch and data privacy
problems prevalent in real-world grids.
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