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Presentation Overview 
• Introduction to PMU Data 

• Deep Graph Learning for Real-Time Event Identification  

– Existing Work and Challenges 

– Graph Structure Parameterization  

– Multi-Scale Data Feature Extraction 

• Conclusion and Future Work 

 



• This work is supported by the U.S. Department of Energy Office of Electricity under 
DEOD0000910. It focuses mainly on the use of real PMU data to develop real-time 
event identification using machine learning techniques.  
 

• The available PMU data is obtained from 440 PMUs installed across three U.S. 
transmission interconnections that include Texas, Western, and Eastern 
interconnection. Most data segment is archived at 30 frames/s and the remaining is 
archived at 60 frames/s. The total size of the dataset is more than 20 TB in Parquet 
form.  
 

• A total of 6767 event labels recorded by utilities are utilized to provide the ground 
truths.  

Background 



Introduction to Real-world PMU Data 
  Interconnection A Interconnection B Interconnection C 

Number of PMUs 212 43 188 

PMU Reporting Rate 
(Samples/sec) 

30 30, 60 30 

Data Size 3 TB 5 TB 12 TB 

Record Period 1 Year 2 Years 2 Years 

No. of Data Files 2576 4365 10496 

Total Number of Events 29 4854 1884 

% of Good Data 66% 
 70% (30 samples/sec) 
 75% (60 samples/sec) 

67% 



Event period 

Introduction to Real-world PMU Data 



Challenges: 
 Event identification based on a single PMU’s data may be inaccurate and unreliable. 

 
 How to take full advantage of all PMUs’ data to improve the accuracy of event 

identification? 
 

 The event identification model may suffer the curse of dimensionality if all PMUs’ 
data is used. 
 

 Feature reconstruction may be challenging if multiple PMUs’ data is used. As the 
number of PMUs increases, the computational complexity of the feature 
reconstruction grows significantly, which impacts the real-time performance of the 
event identification model. 

Challenges of Data-driven Event Identification 



Solutions 
Previous Solution: 
 The graph learning task and event identification 

task are separated (suboptimal). 
 The graphs are not event type-specific. 
 Generating a single statistical graph for entire 

dataset (ignore the uncertainty of event locations). 

Our Solution: 
 Joint learning of the latent interaction and the event 

identification model. 
 The graphs are event type-specific. 
 Generating one interaction graph for each single event.   



Graphical PMU-based Event Identification 
Encoder: Graph 
Inference 

Encoder: Graph 
Sampling 

Decoder: Data 
feature extraction 

Decoder: Event 
identification  

• The overall model follows an 
auto-encoder structure. 
 

• Encoder: inferring the 
interaction graph given PMU 
data streams. 
 

• Decoder: performing the event 
classifier by combining the 
features and the constructed 
graph 



• Node: PMU 

• Edge: The interdependence between two PMUs. 

• Node/Edge Embedding: Using a vector to 
represent a node/edge.  

• We have utilized the Bernoulli distribution to 
represent the graph structure.  

• We have utilized the deep relational network for 
inferencing the latent relationship between 
different nodes. 

Edge 
embedding 

Node 
embedding 

Edge 
embedding 

Node 
embedding 

Concatenation 
operation 

Aggregation 
operation 

Graphical PMU-based Event Identification 



Graph Structure Parameterization (Encoder)  
Learned Bernoulli Distribution  

• For each event, one interaction graph is sampled 
from the learned Bernoulli distribution, which 
can handle the uncertainty of event locations. 
 

• We have tested three different graphing sampling 
methods: 
• Stochastic Sampling (unweighted graph) 
• Deterministic Thresholding (unweighted 

graph)    
• Continuous Sampling (weighted graph) 



Graph Structure Parameterization – Graph Sampling   
Since Bernoulli distribution-based parameterization imposes a challenge on 
differentiability back-propagation process, we have utilized the Gumbel 
reparameterization technique: 
 

 
 
 

where, 𝑔𝑚 is independent and identically distributed (i.i.d) sample drawn from 
Gumbel distribution with 0 location and 1 scale parameters, τ is a smooth 
coefficient and is assigned as 0.5 in this work.  



Multi-Scale Data Feature Extraction (Decoder) 
Our Solution: 
 Using inception-based model to capture multi-scale 

data features. 
 Using dilated convolution layer to replace standard 

convolution layer for reducing the complexity of the 
model. 

Standard Feature Extractor  Inception-based Model 

Previous Solution: 
 Wavelet transform-based multi-resolution 

analysis (high computation burden). 
 MTF-based feature reconstruction (high 

computation burden). 
 Standard CNN-based feature extractor (only 

capture single-scale feature). 

Wavelet Transform 

 Convolutions with 
multiple kernel 

sizes (high model 
complexity) 



• The main idea of dilated convolution is to insert 
zeros between two consecutive features in the 
convolutional kernels, which significantly 
increases the receptive filed. 
 

• Based on the figure, it is clear a dilated 3×3 
convolutional kernel with d = 2 has a similar 
receptive field with a standard 5×5  
convolutional kernel. 
 

• d is a dilation rate that defines a spacing between 
the values in a convolutional kernel. 

Same kernel size but 
larger receptive field  

Standard 
Convolution Layer 

d-2 Dilated 
Convolution Layer 

Multi-Scale Data Feature Extraction (Decoder) 



Hyperparameter Tuning 
• Hyperparameter: Adjustable parameter whose value is used to control the learning 

process.  

• Hyperparameters are tuned via a grid search strategy: the number of hidden neurons, 
the threshold of graph sampling, the smooth coefficient of Gumbel-Max technique, 
dilated rate, the number of graph-layer.  

• The proposed method is verified using the data of one interconnection. The event logs 
are utilized as the ground truths (around 9600 data samples: 4800 event samples + 
4800 normal operation samples).  

• We perform a temporal 70/15/15 split for training, validation, and testing, respectively. 



Numerical Results 
• We compare three different event identification methods: 

Our proposed method: graph neural network-based method with interaction graphs. 

Non-deep learning method without interaction graphs: support vector machine 
(SVM).  

Deep learning method without interaction graphs: CNN-based method.  

• All methods are evaluated using the mean absolute percentage error (MAPE). 

• The average online computation time for performing the proposed method is around 
0.0156 s (using a standard PC with an Intel(R) Xeon(R) CPU running at 4.10GHZ and 
with64.0GB of RAM and an Nvidia Geforce GTX 1080ti 11.0GB GPU). 



• In this case, the deterministic thresholding method shows a slightly better performance than 
two other sampling methods. 

• The difference between the training and testing accuracy indicates the overfitting problem. 

Comparison of Three Graph Sampling Methods 



• Based on different overfitting strategies,  the training accuracy decreases from around 84% to 
around 82%; the testing accuracy increases from 68% to around 78%.  
 

Comparison of Three Methods to Prevent Overfitting 



• This table summarizes the event classification testing accuracy of the proposed model and 
existing two methods. 
 

• Based on testing accuracy, the proposed method has a better performance (78%) than other 
methods ({60%,63%}) in this case, indicating that data-driven inference of interaction graphs 
is effective. 

Comparison of Three Event Identification Methods 



Conclusion and Future Work 

• PMUs provide high-granularity and synchronized measurements, including voltage and 
current phasor, frequency, and frequency variation, which enables capturing most 
dynamics of power systems. 
 

• We demonstrated how to use multiple PMU data streams together with deep learning 
for identifying system events. 
 

• In the future, this work will be extended by integration with semi-supervised learning 
and federated learning techniques and to deal with the event mismatch and data privacy 
problems prevalent in real-world grids. 



Thank you! 
Q&A 
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