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The presentation is based on our work [1].
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1. Background 

A large-scale integration of distributed energy
resources (DERs), e.g., photovoltaic (PV)
generators and wind, in distribution networks.

It provides a variety of benefits to distribution
networks, e.g., responding rapidly to near-term
generation or reliability-related requirement

The uncertain and intermittent nature of DERs has
posed new challenges to voltage regulations
problems in distribution networks.
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1. Motivation

 Over-/under- voltage problems in
distribution systems.

 Rapid development of inverter-based
technologies for DERs provides the
potential of utilizing the inverter’s
reactive power outputs (VAr) to
manage voltage.

 An increasing deployment of
measuring devices in distribution
systems.

How to better perform
Volt/VAr Control (VVC) in
distribution networks by
taking advantage of those
devices?
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2. Literature Review
Different VVC strategies

0 1 j N

Local non-computing agent

Central computing agent

0 1 j N

0 1 j N

Central computing agent

Local computing agent

Local computing agentCentralized VVC [2]-[4]

Distributed VVC [5]-[10] 

multi-round
 communication line

single-round
 communication line

Central computing agent Local non-computing agent Local computing agent

 Considerable communication and computation overload
 Not scalable

 Highly Rely on the reliable communication framework.
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2. Literature Review
Different VVC strategies

Local VVC [11]-[16]

0 1 j N

Local computing agent

 Each local agent adjust its reactive power output based on its voltage measurement

Volt

VAr

g
iq

g
iq

rV

 Rely on local information without requiring communication
 More practical and scalable
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2. Literature Review 

• Classical Droop Control (CDC) [11]-[13]:

• Delayed Droop Control (DDC) [14]:

• Gradient Projection-Based Droop Control (GPDC) [15]-[16]:

• Scaled GPDC [16]:
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 Constant slope and intercept
 Stability and slow convergence problem

 Constant slope and time-varying intercept
 Not easy to determine the delay parameter 𝛼𝛼𝑖𝑖
 w/o the optimality analysis

 Constant slope and time-varying intercept
 w/ the optimality analysis; slow convergence rate

 Constant slope and time-varying intercept
 w/ the optimality analysis; 
 faster convergence rate than GPDC through tuning 𝑑𝑑𝑖𝑖
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2. Literature Review

Control Type Update Description Optimality

CDC [11]-[13] Constant slope, constant 
intercept w/o  analyses

DDC [14] Constant slope, time-
varying intercept w/o  analyses

GPDC [15]-[16] Constant slope, time-
varying intercept w/  analyses

SGPDC [16] Constant slope, time-
varying intercept w/ analyses
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2. Contributions to Date

• This local voltage control is automatic self-adaptive, allowing each bus agent to locally and
dynamically adjust its voltage droop function in accordance with time-varying system changes.
This voltage droop function is associated with both the bus-specific time-varying slope and
intercept, significantly increasing the diversity and flexibility of local voltage control.

• The time-varying slope and intercept are locally and intelligently updated by each bus agent
merely based on its local voltage measurements without requiring communications, where the
closed-form expressions of the bus-specific time-varying slope and intercept are analytically
explored and presented.

• This automatic self-adaptive local voltage control exhibits an accelerated convergence rate
both theoretically and practically in static scenarios, indicating a better tracking capability to
follow time-varying changes in dynamic scenarios.
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3. Problem Statement

The nonlinear power flow:
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Compact form:

Distribution Network
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The VVC problem, based on the nonlinear power flow, can be presented as follows:

21 1min ( ) || || ( ) ( )
2 2

s.t. 

( , )

g T
r r r

g g g

g

m q V V V V V V

q q q

V h q d

Φ= − − Φ −

≤

=

≤

=

non-convex and non-linear

Hard to solve

Distribution Network
DER

Load

Minimize the voltage deviations

3. Problem Statement
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Replace the nonlinear power flow by the linearized power flow:
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Assumption 1: The loss is negligible compared to the line flow.
Assumption 2: Assume a relatively flat voltage profile,  

2 2 2( )j i jiV VV V− ≈ −

1,iV i= ∀ ∈

Compact Form: ( , ) ( )g g par
lV h q d Aq V d= = +
1 1

0 0( )T par T c TA M XM and V d M RM p Aq V M m− − − − −= = − −where
( 1)

0  [ , ]T T N NM m M + ×= ∈ : the incidence matrix of a radial distribution network.

,R X : diagonal matrices with diagonal entries being the resistance and reactance of line segments.

symmetric and positive-definite [16]

3. Problem Statement
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The VVC problem, based on the linearized power flow, can be presented as follows:

21min ( ) || ||
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3. Problem Statement
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3. GFGM-Based VVC

Definition: Approximation model of 𝑭𝑭(𝒒𝒒𝒈𝒈). 
Given a symmetric positive-definite matrix 𝐿𝐿, we 
say 𝑄𝑄𝐿𝐿 𝑞𝑞𝑔𝑔,𝑦𝑦 is the quadratic approximation 
model of 𝐹𝐹(𝑞𝑞𝑔𝑔) at a given point 𝑦𝑦 if 𝑄𝑄𝐿𝐿 𝑞𝑞𝑔𝑔,𝑦𝑦
satisfies: 
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F q f q g q

Q q y f y f y q y q y g q
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L
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q y q y L q y
< ∇ − >= ∇ −
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Based on the above definition, the generalized fast
Gradient method (GFGM) can be applied to solve 
the  VVC problem.

 How to ensure stability, convergence and optimality? 
 How to facilitate local implementation?
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3. Stability, Convergence, and Optimality

Proposition 1: Assume that 𝑓𝑓(𝑞𝑞𝑔𝑔) is convex and continuously differentiable and 𝐿𝐿 is a symmetric positive-
definite matrix. The condition that:

2( ) ( ), || ||g g g
Lf q f y q y q y< ∇ −∇ − >≤ −

21( ) ( ) ( ), || ||
2

g g g
Lf q f y f y q y q y≤ + < ∇ − > + −

is equivalent to:

2( ) ( ), || ||g g g
Lf q f y q y q y< ∇ −∇ − >≤ −

As long as the condition is satisfied:

then:

𝑄𝑄𝐿𝐿 𝑞𝑞𝑔𝑔,𝑦𝑦 is the quadratic approximation model of 𝐹𝐹 𝑞𝑞𝑔𝑔 at a given point 𝑦𝑦.  
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Proposition 2: Suppose 𝐹𝐹 𝑞𝑞𝑔𝑔 = 𝑓𝑓(𝑞𝑞𝑔𝑔) + 𝑔𝑔(𝑞𝑞𝑔𝑔) satisfies the following conditions:
• [P2.A]  𝑔𝑔(𝑞𝑞𝑔𝑔) is a convex function which may not be differentiable.
• [P2.B]  𝑓𝑓(𝑞𝑞𝑔𝑔) is convex and continuously differentiable.
• [P2.C]  𝑄𝑄𝐿𝐿(𝑞𝑞𝑔𝑔,𝑦𝑦) is the quadratic approximation model of 𝐹𝐹 𝑞𝑞𝑔𝑔 .

Then the sequence {𝑞𝑞𝑔𝑔(𝑘𝑘)}, generated by Algorithm 1: GFGM-Based VVC, satisfies:
2

2

2 || (0) ||( ( )) ( ) , 1
( 1)

g g
g g Lq qF q k F q k

k

∗
∗ −

− ≤ ∀ ≥
+

where 𝑞𝑞𝑔𝑔∗ is the optimal solution of the VVC problem.

From Proposition 1, we know:  
2 2( ) ( ), || || || ||g g g g
A A Lf q f y q y q y q yΦ< ∇ −∇ − >= − ≤ −

then [P2.C] holds.
, .L A L A is semi definite positivA eAΦ − Φ −

2 2|| || || ||g g
A A Lq y q yΦ− ≤ −

3. Stability, Convergence, and Optimality
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Proposition 3: Suppose 𝐹𝐹 𝑞𝑞𝑔𝑔 = 𝑓𝑓 𝑞𝑞𝑔𝑔 + 𝑔𝑔(𝑞𝑞𝑔𝑔) satisfies the following conditions:

• [P3.A]  [P2.A]-[P2.C] hold.
• [P3.B]  𝑔𝑔(𝑞𝑞𝑔𝑔) is an indicator function, and for ∀𝑞𝑞𝑔𝑔,𝑦𝑦 ∈ 𝑅𝑅𝑁𝑁, there exists a positive definite matrix 𝐻𝐻

satisfying:

Then the sequence {𝑞𝑞𝑔𝑔(𝑘𝑘)}, generated by Algorithm 1: GFGM-Based VVC, satisfies:

where 𝜎𝜎min(�) denotes the smallest eigenvalue.
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2 21 1( ) || ( , ) || || ( ) ||
2 2

g g g par
l r rf q h q d V Aq V d VΦ Φ= − = + −
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[P3.B] always holds with 𝐻𝐻 = 𝐴𝐴ϕ𝐴𝐴

3. Stability, Convergence, and Optimality
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Proposition 4: Let �𝑞𝑞𝑔𝑔∗,𝑚𝑚(�𝑞𝑞𝑔𝑔∗) be the optimal solution and value of problem  and 𝑞𝑞𝑔𝑔∗, 𝑓𝑓(�𝑞𝑞𝑔𝑔∗) be the optimal 
solution and value of problem. Assume the following conditions hold:
• [P4.A] The error between the linearized power flow model and the exact nonlinear power flow model is bounded. 

That is, there exists a 𝛿𝛿<∞ satisfying:

• [P4.B] The error between the optimal objective values of problem ( ) and problem ( ) is bounded. That is, there 
exists a 𝜏𝜏<∞ satisfying:

• [P4.C] [P2.A]-[P2.C] hold.

Then, it follows that:

where E, satisfying 𝐸𝐸𝑇𝑇𝐸𝐸 = Φ, is a upper triangular matrix with real and positive entries   
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Linearized power flow-based OPFNonlinear power flow-based OPF

3. Stability, Convergence, and Optimality
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3. Local Implementation

Simultaneously and locally update
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3. Local Implementation
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Proposition 5: As L is a diagonal positive definite matrix, 𝑞𝑞𝑔𝑔 𝑘𝑘 = 𝑝𝑝𝐿𝐿(𝑦𝑦(𝑘𝑘)) is equivalent to:
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3. Local Implementation
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3. Local Implementation
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3. Local Implementation
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• In short, as 𝚽𝚽 = 𝑨𝑨−1 and 𝑳𝑳 is a diagonal positive definite matrix, we can achieve 
the local implementation of  Algorithm 1: GFGM-Based VVC.

• ensures the stability, convergence and optimality of  Algorithm 1: 
GFGM-Based VVC.
L AAΦ

𝐻𝐻𝐻𝐻𝐻𝐻 𝑡𝑡𝐻𝐻 𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑 𝐿𝐿?

3. Local Implementation
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We utilize the following convex semi-definite programming problem to determine 𝑳𝑳 :
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As we choose 𝚽𝚽 = 𝑨𝑨−1 and 𝑳𝑳 , determined by (*), it facilitates the local
implementation of Algorithm 1: GFGM-Based VVC while ensuring its stability,
convergence and optimality.

(*)

3. Local Implementation
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Simultaneously and locally update
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local implementation

3. Local Implementation
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3. Reinterpretation of GFGM: Modified Droop Control
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3. Reinterpretation of GFGM: Modified Droop Control
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modified droop control with bus-specific 
self-adaptive coefficients  

Locally update

Locally update
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3. Reinterpretation of GFGM: Modified Droop Control

The yellow droop function:  the modified droop control.

The blue droop function:  the droop control with the slope −𝑎𝑎𝑖𝑖(𝑘𝑘).

The modified droop control (the yellow line segments) for bus i is translated from the blue droop 
function.
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3. Online Implementation

21min ( ) || ||
2

s.t. 

( , ) ( )

g
r

g g g

g g par
l

m q V V

q q q

V h q d Aq V d

Φ= −

≤ ≤

= = +
},{ c g cd p pq p−= = denotes the changes in the system.

What will happen if 𝑑𝑑 is time-varying? 

𝑑𝑑 might have changed before the decision/control variables converge in the offline implementation.

How? Online implementation.

Online implementation: the decision/control variables are adjusted in real-time (for each
iteration), based on the real-time feedback from operating statuses, to adapt to real-time changes
in the environment.
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Updated based on the inverter capacities and
instantaneous real power outputs of DERs

Reset 𝛾𝛾 𝑡𝑡 and 𝜇𝜇(𝑡𝑡) every 𝑇𝑇𝛾𝛾 time steps.

Note that the time-varying 𝒅𝒅 can be reflected
in the real-time voltage measurement
𝑉𝑉𝑖𝑖 𝑡𝑡 − 1 .

3. Online Implementation
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Each local DER agent adjusts its droop control function in real-time, based on its local
voltage measurement, to determine its real-time VAr output.

3. Online Implementation
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4. Case Study

Modified single-phase IEEE 123-bus test system.

• Static Scenario:
 Each bus has a constant load 1+j0.5 kVA.
 Each PV inverter can supply or absorb at most 10 kVAr.
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4. Case Study
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DDC

Centralized Optimization

 The convergence outcomes  of CDC and DDC fail to track the centralized optimization outcomes.
 The convergence outcomes of ALALVC, SGPDC, and GPDC closely track the centralized optimization outcomes.
 The ALALVC exhibits the best convergence performance.

Voltage mismatch error versus iteration for various 
controls under the static scenario
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4. Case Study

• Dynamic Scenario with a sudden load change

 The stable operating statuses, determined by the CDC and 
DDC, are both far away from the optimal operating statuses.

 The stable operating statuses, determined by the ASALVC, 
GPDC and SGPDC, are the same as the optimal operating 
statuses.

 The ALALVC exhibits its stronger capability to recover from a 
sudden disturbance.

Voltage at bus 56 under the dynamic scenario with a sudden load change: (a) for 
the CDC and DDC; (b) for the GPDC, SGPDC, ASALVC, and centralized optimization.

Aggregate load in the dynamic scenario with a sudden load change.

Reactive power (Var) outputs are updated  every second.
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4. Case Study

Aggregate load and PV generation with
continuous fast  system changes.

Voltage and capacity issues under the dynamic scenario 
with continuous fast system changes

• Dynamic Scenario with fast continuous system 
changes

 The time span is one day.

 The time granularity is  6s. We also set 𝑇𝑇𝑟𝑟 = 6𝑠𝑠.

 The CDC and DDC suffer from voltage violation problems 
under the dynamic scenario with continuous fast system 
changes.

 There are not capacity violation problems for all controls.
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4. Case Study

 The performances of the CDC and DDC are
poor in the dynamic scenario.

 The ASALVC still exhibits the best performance
compared to the GPDC and SGPDC in the
dynamic scenario.

 The ASALVC is more capable of maintaining a
flat network voltage profile in the time-varying
environment.
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5. Conclusion

• We propose an ASALVC strategy, where each bus agent locally adjusts the VAr output of its
DER based on its time-varying voltage droop function.

• This function is associated with the bus-specific time-varying slope and intercept, which can
be dynamically updated merely based on the local voltage measurement.

• Stability, convergence and optimality properties of the ASALVC are analytically established.

• The ASALVC exhibits a great performance for both static and dynamic scenarios. It shows a
strong capability to quickly recover from a sudden disturbance and a great tracking
capability for continuous fast system changes.
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5. Future Work

 Most customer-owned DERs are distributed across the secondary distribution network.
 Consider the secondary distribution network modeling, power flow, and its associated

convexification.
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Thank You!
Q & A
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